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Introduction 
Evolver represents the fastest, most advanced commercial genetic 
algorithm-based optimizer ever available.  Evolver, through the 
application of powerful genetic algorithm-based optimization 
techniques, can find optimal solutions to problems which are 
"unsolvable" for standard linear and non-linear optimizers.   Evolver 
is offered in two versions - professional and industrial - to allow you 
to select the optimizer with the capacity you need  

The Evolver User’s Guide, which you are reading now, offers an 
introduction to Evolver and the principles behind it, then goes on to 
show several example applications of Evolver’s unique genetic 
algorithm technology.  This complete manual may also be used as a 
fully-indexed reference guide, with a description and illustration of 
each Evolver feature.   

Before You Begin 
Before you install and begin working with Evolver, make sure that 
your Evolver package contains all the required items, and check that 
your computer meets the minimum requirements for proper use. 

What the Package Includes 
Evolver may be purchased on its own and also ships with the 
DecisionTools Suite Professional and Industrial versions. The Evolver 
CD-ROM contains the Evolver Excel add-in, several Evolver 
examples, and a fully-indexed Evolver on-line help system.  The 
DecisionTools Suite Professional and Industrial versions contain all of 
the above plus additional applications. 

About This Version 
This version of Evolver can be installed as a 32-bit program for 
Microsoft Excel 2000 or higher. 
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Working with your Operating Environment 
This User’s Guide assumes that you have a general knowledge of the 
Windows operating system and Excel.  In particular: 

♦ You are familiar with your computer and using the mouse. 
♦ You are familiar with terms such as icons, click, double-click, menu, 

window, command and object. 
♦ You understand basic concepts such as directory structures and file 

naming. 

If You Need Help 
Technical support is provided free of charge for all registered users of 
Evolver with a current maintenance plan, or is available on a per 
incident charge.  To ensure that you are a registered user of Evolver, 
please register online at 
http://www.palisade.com/support/register.asp. 

If you contact us by telephone, please have your serial number and 
User’s Guide ready.  We can offer better technical support if you are 
in front of your computer and ready to work. 

Before contacting technical support, please review the following 
checklist: 
• Have you referred to the on-line help?  
• Have you checked this User's Guide and reviewed the on-line 

multimedia tutorial? 
• Have you read the README.WRI file? It contains current information 

on Evolver that may not be included in the manual. 
• Can you duplicate the problem consistently? Can you duplicate the 

problem on a different computer or with a different model? 
• Have you looked at our site on the World Wide Web? It can be found at 

http://www.palisade.com. Our Web site also contains the latest FAQ 
(a searchable database of tech support questions and answers) and 
Evolver patches in our Technical Support section.  We recommend 
visiting our Web site regularly for all the latest information on Evolver 
and other Palisade software. 

Before Calling 
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Palisade Corporation welcomes your questions, comments or 
suggestions regarding Evolver.  Contact our technical support staff 
using any of the following methods: 
• Email us at support@palisade.com. 
• Telephone us at (607) 277-8000 any weekday from 9:00 AM to 5:00 PM, 

EST.  Follow the prompt to reach technical support. 
• Fax us at (607) 277-8001. 
• Mail us a letter at: 

Technical Support 
Palisade Corporation  
798 Cascadilla St. 
Ithaca, NY  14850  USA 

If you want to contact Palisade Europe: 
• Email us at support@palisade-europe.com. 
• Telephone us at +44 1895 425050 (UK). 
• Fax us at +44 1895 425051 (UK). 
• Mail us a letter at: 

Palisade Europe 
31 The Green 
West Drayton 
Middlesex 
UB7 7PN 
United Kingdom 

If you want to contact Palisade Asia-Pacific: 
• Email us at support@palisade.com.au. 
• Telephone us at + 61 2 9252 5922  (AU). 
• Fax us at + 61 2 9252 2820 (AU). 
• Mail us a letter to: 

Palisade Asia-Pacific Pty Limited 
Suite 404, Level 4 
20 Loftus Street 
Sydney NSW 2000 
Australia  

Regardless of how you contact us, please include the product name, 
version and serial number.  The exact version can be found by 
selecting the Help About command on the Evolver menu in Excel. 

 

Contacting 
Palisade 
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Telephone support is not available with the student version of 
Evolver.  If you need help, we recommend the following alternatives: 

♦ Consult with your professor or teaching assistant. 
♦ Log on to http://www.palisade.com for answers to frequently asked 

questions. 
♦ Contact our technical support department via e-mail or fax. 

Evolver System Requirements   
System requirements for Evolver include: 
• Pentium PC or faster with a hard disk. 
• Microsoft Windows 2000 SP4 or higher. 
• Microsoft Excel Version 2000 or higher. 

Student 
Versions 
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Installation Instructions 
Evolver is an add-in program to Microsoft Excel.  By adding 
additional commands to the Excel menu bars, Evolver enhances the 
functionality of the spreadsheet program.  

General Installation Instructions 
The Setup program copies the Evolver system files into a directory 
you specify on your hard disk.  To run the Setup program in 
Windows 2000 or higher: 

1) Insert the Evolver or DecisionTools Suite Professional or Industrial 
version CD-ROM in your CD-ROM drive 

2) Click the Start button, click Settings and then click Control Panel 

3) Double-click the Add/Remove Programs icon 

4) On the Install/Uninstall tab, click the Install button 

5) Follow the Setup instructions on the screen 

If you encounter problems while installing Evolver, verify that there 
is adequate space on the drive to which you’re trying to install.  After 
you’ve freed up adequate space, try rerunning the installation. 

If you wish to remove Evolver (or the DecisionTools Suite) from your 
computer, use the Control Panel’s Add/Remove Programs utility and 
select the entry for @RISK or the DecisionTools Suite.   

Removing 
Evolver from 
Your Computer 
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The DecisionTools Suite  
Evolver can be used with the DecisionTools Suite, a set of products for 
risk and decision analysis available from Palisade Corporation.  The 
default installation procedure of Evolver puts Evolver in a 
subdirectory of a main “Program Files\Palisade” directory.  This is 
quite similar to how Excel is often installed into a subdirectory of a 
“Microsoft Office” directory.   

One subdirectory of the Program Files\Palisade directory will be the 
Evolver directory (by default called Evolver5).  This directory 
contains the Evolver add-in program file (EVOLVER.XLA) plus 
example models and other files necessary for Evolver to run.  Another 
subdirectory of Program Files\Palisade is the SYSTEM directory 
which contains files needed by every program in the DecisionTools 
Suite, including common help files and program libraries. 
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Setting Up the Evolver Icons or Shortcuts 
In Windows, setup automatically creates a Evolver command in the 
Programs menu of the Taskbar.  However, if problems are 
encountered during Setup, or if you wish to do this manually another 
time, follow these directions: 

1) Click the Start button, and then point to Settings. 

2) Click Taskbar, and then click the Start Menu Programs tab. 

3) Click Add, and then click Browse. 

4) Locate the file EVOLVER.EXE and double click it. 

5) Click Next, and then double-click the menu on which you want the 
program to appear. 

6) Type the name “Evolver”, and then click Finish.  

Macro Security Warning Message on Startup 
Microsoft Office provides several security settings (under 
Tools>Macro>Security) to keep unwanted or malicious macros from 
being run in Office applications.  A warning message appears each 
time you attempt to load a file with macros, unless you use the lowest 
security setting.  To keep this message from appearing every time you 
run a Palisade add-in, Palisade digitally signs their add-in files.  Thus, 
once you have specified Palisade Corporation as a trusted source, 
you can open any Palisade add-in without warning messages.  To do 
this: 

• Click Always trust macros from this source when a Security 
Warning dialog (such as the one below) is displayed when 
starting Evolver. 
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Other Evolver Information 
Additional information on Evolver can be found in the following 
sources: 

This file contains a quick summary of Evolver, as well as any late-
breaking news or information on the latest version of your software.  
View the Readme file by selecting the Windows Start Menu/ 
Programs/ Palisade DecisionTools/ Readmes and clicking on Evolver 
5.0 – Readme.  It is a good idea to read this file before using Evolver.   

The Evolver on-line tutorial provides first-time users with a quick 
introduction of Evolver and genetic algorithms.  The presentation 
takes only a few minutes to view.  See the Learning Evolver section 
below for information on how to access the tutorial. 

Learning Evolver   
The quickest way to become familiar with Evolver is by using the on-
line Evolver Tutorial, where experts guide you through sample 
models in movie format.  This tutorial is a multi-media presentation 
on the main features of Evolver. 

The tutorial can be run by selecting the Evolver Help menu Getting 
Started Tutorial command. 

   

 

  

Evolver Readme 

Evolver Tutorial 
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What Is Evolver?  
The Evolver software package provides users with an easy way to 
find optimal solutions to virtually any type of problem.  Simply put, 
Evolver finds the best inputs that produce a desired output.  You can 
use Evolver to find the right mix, order, or grouping of variables that 
produces the highest profits, the lowest risk, or the most goods from 
the least amount of materials.  Evolver is most often used as an add-in 
to the Microsoft Excel spreadsheet program; users set up a model of 
their problem in Excel, then call up Evolver to solve it. 

 
You must first model your problem in Excel, then describe it to the Evolver add-in. 

 

Excel provides all of the formulas, functions, graphs, and macro 
capabilities that most users need to create realistic models of their 
problems.  Evolver provides the interface to describe the uncertainty 
in your model and what you are looking for, and provides the engines 
that will find it.  Together, they can find optimal solutions to virtually 
any problem that can be modeled. 
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How does Evolver work? 
Evolver uses a proprietary set of genetic algorithms to search for 
optimum solutions to a problem.   

Genetic algorithms are used in Evolver to find the best solution for 
your model.  Genetic algorithms mimic Darwinian principles of 
natural selection by creating an environment where hundreds of 
possible solutions to a problem can compete with one another, and 
only the “fittest” survive.  Just as in biological evolution, each solution 
can pass along its good “genes” through “offspring” solutions so that 
the entire population of solutions will continue to evolve better 
solutions.   

As you may already realize, the terminology used when working with 
genetic algorithms is often similar to that of its inspiration.  We talk 
about how “crossover” functions help focus the search for solutions, 
“mutation” rates help diversify the “gene pool”, and we evaluate the 
entire “population” of solutions or “organisms”.  To learn more about 
how Evolver’s genetic algorithm works, see Chapter 7 - Genetic 
Algorithms.   

Genetic 
Algorithms 
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What Is Optimization?  
Optimization is the process of trying to find the best solution to a 
problem that may have many possible solutions.  Most problems 
involve many variables that interact based on given formulas and 
constraints.  For example, a company may have three manufacturing 
plants, each manufacturing different quantities of different goods.  
Given the cost for each plant to produce each good, the costs for each 
plant to ship to each store, and the limitations of each plant, what is 
the optimal way to adequately meet the demand of local retail stores 
while minimizing the transportation costs? This is the sort of question 
that optimization tools are designed to answer.  

 
 

Optimization often deals with searching for the  
combination that yields the most from given resources. 

 

In the example above, each proposed solution would consist of a 
complete list of what goods made by what manufacturing plant get 
shipped in what truck to what retail store.  Other examples of 
optimization problems include finding out how to produce the 
highest profit, the lowest cost, the most lives saved, the least noise in a 
circuit, the shortest route between a set of cities, or the most effective 
mix of advertising media purchases.  An important subset of 
optimization problems involves scheduling, where the goals may 
include maximizing efficiency during a work shift or minimizing 
schedule conflicts of groups meeting at different times.  To learn more 
about optimization, see Chapter 6 - Optimization.   
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Why Build Excel Models? 
To increase the efficiency of any system, we must first understand 
how it behaves.  This is why we construct a working model of the 
system.  Models are necessary abstractions when studying complex 
systems, yet in order for the results to be applicable to the “real-
world,” the model must not oversimplify the cause-and-effect 
relationships between variables.  Better software and increasingly 
powerful computers allow economists to build more realistic models 
of the economy, scientists to improve predictions of chemical 
reactions, and business people to increase the sensitivity of their 
corporate models. 

In the last few years computer hardware and software programs such 
as Microsoft Excel, have advanced so dramatically that virtually 
anyone with a personal computer can create realistic models of 
complex systems.  Excel’s built-in functions, macro capabilities and 
clean, intuitive interface allow beginners to model and analyze 
sophisticated problems.  To learn more about building a model, see 
Chapter 9 - Evolver Extras.   

Why Use Evolver?  
Evolver’s unique technology allows anyone with a PC and Excel for 
Windows to enjoy the benefits of optimization.  Before Evolver, those 
who wished to increase efficiency or search for optimum solutions 
had three choices: guess, use low-powered problem-solving software, 
or hire experts in the optimization consulting field to design and 
build customized software.  Here are a few of the most important 
advantages to using Evolver: 

When you are dealing with large numbers of interacting variables, 
and you are trying to find the best mix, the right order, the optimum 
grouping of those variables, you may be tempted to just take an 
“educated guess”.  A surprising number of people assume that any 
kind of modeling and analysis beyond guessing will require 
complicated programming, or confusing statistical or mathematical 
algorithms.  A good optimized solution might save millions of 
dollars, thousands of gallons of scarce fuel, months of wasted time, 
etc.  Now that powerful desktop computers are increasingly 
affordable, and software like Excel and Evolver are readily available, 
there is little reason to guess at solutions, or waste valuable time 
trying out many scenarios by hand.  

No More 
Guessing 
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Evolver allows you to use the entire range of Excel formulas and even 
macros to build more realistic models of any system.  When you use 
Evolver, you do not have to “compromise” the accuracy of your 
model because the algorithm you are using can not handle real world 
complexities.  Traditional “baby” solvers (statistical and linear 
programming tools) force the user to make assumptions about the 
way the variables in their problem interact, thereby forcing users to 
build over-simplified, unrealistic models of their problem.  By the 
time the user has simplified a system enough that these solvers can be 
used, the resulting solution is often too abstract to be practical.  Any 
problems involving large amounts of variables, non-linear functions, 
lookup tables, if-then statements, database queries, or stochastic 
(random) elements cannot be solved by these methods, no matter how 
simply you try to design your model. 

There are many solving algorithms which do a good job at solving 
small, simple linear and non-linear types of problems, including hill-
climbing, baby-solvers, and other mathematical methods.  Even when 
offered as spreadsheet add-ins, these general-purpose optimization 
tools can only perform numerical optimization.  For larger or more 
complex problems, you may be able to write specific, customized 
algorithms to get good results, but this may require a lot of research 
and development.  Even then, the resulting program would require 
modification each time your model changed.   

Not only can Evolver handle numerical problems, it is the only 
commercial program in the world that can solve most combinatorial 
problems.  These are problems where the variables must be shuffled 
around (permuted) or combined with each other.  For example, 
choosing the batting order for a baseball team is a combinatorial 
problem; it is a question of swapping players’ positions in the lineup.  
Complex scheduling problems are also combinatorial.  The same 
Evolver can solve all these types of problems, and many more that 
nothing else can solve.  Evolver’s unique genetic algorithm technology 
allows it to optimize virtually any type of model; any size and any 
complexity. 

Evolver finds better solutions.  Most software derives optimum 
solutions mathematically and systematically.  Too often these 
methods are limited to taking an existing solution and searching for 
the closest answer that is better.  This “local” solution may be far from 
the optimal solution.  Evolver intelligently samples the entire realm of 
possibilities, resulting in a much better “global” solution.  

More Accurate, 
More 
Meaningful 

 

More Flexible 
 

More Powerful 
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In spite of its obvious power and flexibility advantages, Evolver 
remains easy to use because an understanding of the complex genetic 
algorithm techniques it uses is completely unnecessary.  Evolver 
doesn’t care about the “nuts and bolts” of your problem; it just needs 
a spreadsheet model that can evaluate how good different scenarios 
are.  Just select the spreadsheet cells that contain the variables and tell 
Evolver what you are looking for.  Evolver intelligently hides the 
difficult technology, automating the “what-if” process of analyzing a 
problem.   

Although there have been many commercial programs developed for 
mathematical programming and model-building, spreadsheets are by 
far the most popular, with literally millions being sold each month.  
With their intuitive row and column format, spreadsheets are easier 
to set up and maintain than other dedicated packages.  They are also 
more compatible with other programs such as word processors and 
databases, and offer more built-in formulas, formatting options, 
graphing, and macro capabilities than any of the stand-alone 
packages.  Because Evolver is an add-in to Microsoft Excel, users have 
access to the entire range of functions and development tools to easily 
build more realistic models of their system.   

Many companies have hired trained consultants to provide 
customized optimization systems.  Such systems will often perform 
quite well, but may require many months and a large investment to 
develop and implement.  These systems are also difficult to learn, and 
therefore require costly training and constant maintenance.  If your 
system must be altered, you may need to develop a whole new 
algorithm to find optimal solutions.  For a considerably smaller 
investment, Evolver supplies the most powerful genetic algorithms 
available and allows for quick and accurate solutions to a wide 
variety of problems.  Because it works in an intuitive and familiar 
environment, there is virtually no costly training and maintenance.   

You may even wish to add Evolver’s optimization power to your own 
custom programs.  In just a few days, you could use Visual Basic to 
develop your own scheduling, distribution, manufacturing or 
financial management system.   See the Evolver Developer Kit for 
details on developing an Evolver-based application.   

 

Easier to Use 
 

Cost Effective 
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Introduction 
In this chapter, we will take you through an entire Evolver 
optimization one step at a time.  If you do not have Evolver installed 
on your hard drive, please refer to the installation section of Chapter 
1: Introduction and install Evolver before you begin this tutorial. 

We will start by opening a pre-made spreadsheet model, and then we 
will define the problem to Evolver using probability distributions and 
the Evolver dialogs.  Finally we will oversee Evolver’s progress as it is 
searching for solutions, and explore some of the many options in the 
Evolver Watcher.  For additional information about any specific topic, 
see the index at the back of this manual, or refer to Chapter 5: Evolver 
Reference. 

NOTE: The screens shown below are from Excel 2007.  If you are using 
other versions of Excel, your windows may appear slightly different 
from the pictures. 

The problem-solving process begins with a model that accurately 
represents your problem.  Your model must be able to evaluate a 
given set of input values (adjustable cells) and produce a numerical 
rating of how well those inputs solve the problem (the evaluation or 
“fitness” function).  As Evolver searches for solutions, this fitness 
function provides feedback, telling Evolver how good or bad each 
guess is, thereby allowing Evolver to breed increasingly better 
guesses.  When you create a model of your problem you must pay 
close attention to the fitness function, because Evolver will be doing 
everything it can to maximize (or minimize) this cell.   
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The Evolver Tour 

Starting Evolver 
To start Evolver, either:  1) click the Evolver icon in your Windows 
desktop, or 2)  select Palisade DecisionTools then Evolver 5.0 in the 
Windows Start menu Programs entries.  Each of these methods starts 
both Microsoft Excel and Evolver. 

When Evolver is loaded, a new Evolver ribbon or toolbar is visible in 
Excel.  This toolbar contains buttons which can be used to specify 
Evolver settings and start, pause, and stop optimizations. 

 
To review the features of Evolver, you'll examine an example model 
that was installed when you installed Evolver.  To do this: 

1) Open the Bakery – Tutorial Walkthrough.XLS worksheet using 
the Help menu Example Spreadsheets command. 

 

The Evolver 
Toolbar 

Opening an 
Example Model 
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This example sheet contains a simple profit maximization problem for 
a bakery business.  Your bakery produces 6 bread products.  You are 
the bakery manager and track revenues, costs, and profits from 
production.  You are to determine the number of cases for each type 
of bread that maximizes total profit while satisfying production limit 
guidelines.  The guidelines you face include 1) meeting the production 
quota for low calorie bread,  2) maintaining an acceptable ratio of high fiber 
to low calorie,  3) maintaining an acceptable ratio of 5 grain to low calorie, 
and 4) keeping production time within limits for person hours used. 

The Evolver Model Dialog 
To set the Evolver options for this worksheet: 

1) Click the Evolver Model icon on the Evolver toolbar (the one on 
the far left). 

This displays the following Evolver Model dialog box:  

 
The Evolver Model Dialog is designed so users can describe their 
problem in a simple, straightforward way. In our tutorial example, we 
are trying to find the number of cases to produce for the different 
bread products in order to maximize overall total profit. 
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Selecting the Target Cell 
The "total profit" in the example model is what's known as the target 
cell.  This is the cell whose value you are trying to minimize or 
maximize, or the cell whose value you are trying to make as close as 
possible to a pre-set value.  To specify the target cell: 

1) Set the “Optimization Goal” option to “Maximum.” 

2) Enter the target cell, $I$11, in the “Cell” field. 

Cell references can be entered in Evolver dialog fields two ways: 1) 
You may click in the field with your cursor, and type the reference 
directly into the field, or 2) with your cursor in the selected field, you 
may click on Reference Entry icon to select the worksheet cell(s) 
directly with the mouse.   

Adding Adjustable Cell Ranges 
Now you must specify the location of the cells that contain values 
which Evolver can adjust to search for solutions.  These variables are 
added and edited one block at a time through the Adjustable Cells 
Ranges section of the Model Dialog.  The number of cells you can enter 
in Adjustable Cells Ranges depends on the version of Evolver you are 
using.   

1) Click the “Add” button in the "Adjustable Cell Ranges" section. 

2) Select $C$4:$G$4 as the cells in Excel you want to add as an 
adjustable cell range. 

Most of the time you'll want to restrict the possible values for an 
adjustable cell range to a specific minimum-maximum range.  In 
Evolver this is known as a "range" constraint.  You can quickly enter 
this min-max range when you select the set of cells to be adjusted.  
For the Bakery example, the minimum possible value for cases 
produced for each of the bread products in this range is 0 and the 
maximum is 100,000.  To enter this range constraint: 

1) Enter 0 in the Minimum cell and 100,000 in the Maximum cell. 

2) In the Values cell, select Integer from the drop-down list 

Entering the 
Min-Max Range 
for Adjustable 
Cells 
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Now, enter a second cell range to be adjusted: 

1) Click Add to enter a second adjustable cell. 

2) Select cell B4. 

3) Enter 20,000 as the Minimum and 100,000 as the Maximum. 
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This specifies the last adjustable cell, B4, representing the production 
level for low calorie bread. 

If there were additional variables in this problem, we would continue 
to add sets of adjustable cells.  In Evolver, you may create an 
unlimited number of groups of adjustable cells.  To add more cells, 
click the “Add” button once again.   

Later, you may want to check the adjustable cells or change some of 
their settings.  To do this, simply edit the min-max range in the table. 
You may also select a set of cells and delete it by clicking the “Delete” 
button.   

When defining adjustable cells, you can specify a solving method to be 
used.  Different types of adjustable cells are handled by different 
solving methods.  Solving methods are set for a Group of adjustable 
cells and are changed by clicking the “Group” button and displaying 
the Adjustable Cell Group Settings dialog box.  Often you'll use the 
default “recipe” solving method where each cell’s value can be 
changed independently of the others.  Since this is selected as the 
default method, you don't have to change it. 

 
The “recipe” and “order” solving methods are the most popular and 
they can be used together to solve complex combinatorial problems.  
Specifically, the “recipe” solving method treats each variable as an 
ingredient in a recipe, trying to find the “best mix” by changing each 
variable’s value independently.  In contrast, the “order” solving 

Selecting a 
Solving Method 
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method swaps values between variables, shuffling the original values 
to find the “best order.” 

For this model, leave the Solving Method as Recipe and simply: 

♦ Enter the label "Cases Produced" in the Description field. 

Constraints 
Evolver allows you to enter constraints which are conditions that 
must be met for a solution to be valid.  In this example model there 
are three additional constraints that must be met for a possible set of 
production levels for each of the bread products to be valid.  These 
are in addition to the range constraints we already entered for the 
adjustable cells.  They are: 

1) Maintaining an acceptable ratio of high fiber to low calorie 
bread (high fiber cases produced >= 1.5 * low calorie cases 
produced) 

2) Maintaining an acceptable ratio of 5 grain to low calorie bread 
(5 grain cases produced >= 1.5 * low calorie cases produced) 

3) Keeping production time within limits for person hours used 
(total person hours used < 50,000) 

Each time Evolver generates a possible solution to your model it 
checks that the constraints you have entered are valid.    

Constraints are displayed in the bottom Constraints section of the 
Evolver Model dialog box.  Two types of constraints can be specified 
in Evolver: 

♦ Hard.  These are conditions that must be met for a solution to be 
valid (i.e., a hard iteration constraint could be C10<=A4; in this 
case, if a solution generates a value for C10 that is greater than the 
value of cell A4, the solution will be thrown out) 

♦ Soft.  These are conditions which we would like to be met as 
much as possible, but which we may be willing to compromise 
for a big improvement in fitness or target cell result.  (i.e., a soft 
constraint could be C10<100.  In this case, C10 could go over 100, 
but when that happens the calculated value for the target cell 
would be decreased according to the penalty function you have 
entered). 



 

Chapter 3: Evolver:   Step-by-Step 29 
 

 To add a constraint: 

1) Click the Add button in the Constraints section of the main 
Evolver dialog. 

This displays the Constraint Settings dialog box, where you enter the 
constraints for your model. 

 
Two formats – Simple and Formula – can be used for entering 
constraints.  The Simple Range of Values format allows constraints to 
be entered using simple <,<=, >, >= or = relations.  A typical Simple 
Range of Values constraint would be 0<Value of A1<10, where A1 is 
entered in the Cell Range box, 0 is entered in the Min box and 10 is 
entered in the Max box.  The operator desired is selected from the 
drop down list boxes.  With a Simple Range of Values format 
constraint, you can enter just a Min value, just a Max or both. 

A formula constraint, on the other hand, allows you to enter any valid 
Excel formula as a constraint, such as A19<(1.2*E7)+E8.  For each 
possible solution Evolver will check whether the entered formula 
evaluates to TRUE or FALSE to see if the constraint has been met.  If 
you want to use a boolean formula in a worksheet cell as a constraint, 
simply reference that cell in the Formula field of the Constraint 
Settings dialog box. 

Adding a 
Constraint 

Simple Range of 
Values and 
Formula 
Constraints 
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To enter the constraints for the Bakery model you'll specify three new 
hard constraints.  These are hard constraints as the entered conditions 
must be met or the possible solution will be discarded by Evolver.  
First, enter the Simple Range of Values format hard constraints: 

1) Enter  " Acceptable Total Working Hours"  in the description box. 

2) In the Range to Constrain box, enter I8. 

3) Select the <= operator to the right of the Range to Constrain. 

4) Enter 50,000 in the Maximum box. 

5) Clear the default value of 0 in the Minimum box. 

6) To the left of Range to Constrain, clear the operator by selecting 
a blank from the drop down list 

7) Click OK to enter this constraint. 
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Now, enter the formula format hard constraints: 

1) Click Add to display the Constraint Settings dialog box again. 

2) Enter "Acceptable ratio of high fiber to low calorie" in the 
description box.   

3) In the Entry Style box, select Formula.  

4) In the Constraint Formula box, enter C4>= 1.5*B4. 

5) Click OK.   

6) Click Add to display the Constraint Settings dialog box again. 

7) Enter "Acceptable ratio of 5-grain to low calorie" in the 
description box.   

8) In the Entry Style box, select Formula.  

9) In the Constraint Formula box, enter D4>= 1.5*B4. 

10) Click OK 

Your Model dialog with the completed constraints section should 
look like this. 
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Other Evolver Options 
Options such as Update the Display, Random Number Seed and Stopping 
Conditions are available to control how Evolver operates during an 
optimization.  Let's specify some stopping conditions and display 
update settings. 

Evolver will run as long as you wish.  The stopping conditions allow 
Evolver to automatically stop when either: a) a certain number of 
scenarios or “trials” have been examined, b) a certain amount of time has 
elapsed, c) no improvement has been found in the last n scenarios or d) the 
entered Excel formula evaluates to TRUE.   To view and edit the stopping 
conditions: 

1) Click the Optimization Settings icon on the Evolver toolbar. 
2) Select the Runtime tab. 

 
 
In the Optimization Settings dialog you can select any combination of 
these optimization stopping conditions, or none at all.  If you select 
more than one stopping condition, Evolver will stop when any one of 
the selected conditions are met.  If you do not select any stopping 
conditions, Evolver will run forever, until you stop it manually by 
pressing the “stop” button in the Evolver toolbar.   

Stopping 
Conditions 
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Trials 

 

Minutes 

 

Change in last 

 

Formula is True 
This option sets the 
number of “trials” 
that you would like 
Evolver to run.  In 
each trial, Evolver 
evaluates one 
complete set of 
variables or one 
possible solution to 
the problem. 

Evolver will stop 
after the specified 
amount of time has 
elapsed.  This 
number can be a 
fraction (4.25).   

This stopping 
condition is the 
most popular 
because it keeps 
track of the 
improvement and 
allows Evolver to 
run until the rate of 
improvement has 
decreased.  For 
example, Evolver 
could stop if 100 
trials have passed 
and we still haven’t 
had any change in 
the best scenario 
found so far.   

Evolver will stop if 
the entered Excel 
formula evaluates to 
TRUE in a model 
recalculation.   

♦ Turn off all stopping conditions to let Evolver run freely. 
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While Evolver runs, a set of options are available on the View Tab to 
determine what you will see on-screen.   

 
The During Optimization options include: 

 

Every Trial Every New Best Trial 

 

Never 
This option redraws the 
screen after each 
calculation, allowing you to 
see Evolver adjusting the 
variables and calculating 
the output.  We suggest 
this option be turned on 
while you are learning 
Evolver, and also each time 
you use Evolver on a new 
model, to verify that your 
model is calculating 
correctly.   

This option redraws the 
screen each time Evolver 
generates a new best 
answer, allowing you to 
see the current optimal 
solution at any time during 
the optimization.   

This option never redraws 
the screen during the 
optimization.   This results 
in the fastest possible 
optimizations but provides 
little feedback on 
calculated results during 
the run. 

 
♦ Turn on the “Every Trial”  

 

View Options 
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Running the Optimization 
Now, all that remains is to optimize this model to maximize total 
profit while satisfying production limit guidelines.  To do this: 

1) Click OK to exit the Optimization Settings dialog.  

2) Click the Start Optimization icon  

As Evolver begins working on your problem, you will see the current 
best values for your adjustable cells – Cases Produced - in your 
spreadsheet.  The best value for Total Profit is shown in the 
highlighted cell. 

 
During the run, the Progress window displays:  1) the best solution 
found so far,  2) the original value for the target cell when the Evolver 
optimization began,  3) the number of trials of your model that have 
been executed and number of those trials which were valid; i.e., all 
constraints were met and 4) the time that has elapsed in the 
optimization. 

Any time during the run you can click the Excel Updating Options 
icon to see a live updating of the screen each trial.   
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Evolver can also display a running log of each trial solution.  This is 
displayed in the Evolver Watcher while Evolver is running.  The 
Evolver Watcher allows you to explore and modify many aspects of 
your problem as it runs.   To view a running log of the trials: 

1) Click the Watcher (magnifying glass) icon in the Progress 
window to display the Evolver Watcher 

2) Click the Log tab.  

 
In this report the results of each trial solution is shown.   The column 
for Result shows by trial the value of the target cell that you are trying 
to maximize or minimize - in this case, the Total Profit in $I$11.   The 
columns for C4 through G4 identify the values used for your 
adjustable cells.    

The Evolver 
Watcher 
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After five minutes, Evolver will stop the optimization.  You can also 
stop the optimization by: 

1) Clicking the Stop icon in the Evolver Watcher or Progress 
windows. 

When the Evolver process stops, Evolver displays the Stopping 
Options tab which offers the following choices: 

 
These same options will automatically appear when any of the 
stopping conditions that were set in the Evolver Optimization 
Settings dialog are met.   

Stopping the 
Optimization 
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Evolver can create an optimization summary report that contains 
information such as date and time of the run, the optimization 
settings used, the value calculated for the target cell and the value for 
each of the adjustable cells.   

 
This report is useful for comparing the results of successive 
optimizations.   

Summary 
Report 



 

Chapter 3: Evolver:   Step-by-Step 39 
 

To place the new, optimized mix of production levels for the bakery 
to each of the six types of bread in your worksheet: 

1) Click on the “Stop” button. 

2) Make sure the "Update Adjustable Cell Values Shown in 
Workbook to" option is set to “Best” 

You will be returned to the BAKERY – TUTORIAL 
WALKTHROUGH.XLS spreadsheet, with all of the new variable 
values that created the best solution.  

 
IMPORTANT NOTE: Although in our example you can see that 
Evolver found a solution which yielded a total profit of 3,940,486, 
your result may be higher or lower than this.   These differences are 
due to an important distinction between Evolver and all other 
problem-solving algorithms: it is the random nature of Evolver’s 
genetic algorithm engine that enables it to solve a wider variety of 
problems, and find better solutions.  

Placing the 
Results in Your 
Model 
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When you save any sheet after Evolver has run on it (even if you 
“restore” the original values of your sheet after running Evolver), all 
of the Evolver settings in the Evolver dialogs will be saved along with 
that sheet.  The next time that sheet is opened, all of the most recent 
Evolver settings load up automatically.  All of the other example 
worksheets have the Evolver settings pre-filled out and ready to be 
optimized.   

NOTE: If you want to take a look at the Bakery model with all 
optimization settings pre-filled out, open the example model 
Bakery.XLS 
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Introduction 
This chapter explains how Evolver can be used in a variety of 
applications.  These example applications may not include all of the 
features you would want in your own models, and are most effective 
as idea generators and templates.  All examples illustrate how 
Evolver finds solutions by relying on the relationships that already 
exist in your worksheet, so it is important that your worksheet model 
accurately portray the problem you are trying to solve.   

All Excel worksheet examples can be found within your EVOLVE32 
directory, in a sub-directory called “EXAMPLES".  They are listed 
alphabetically in this chapter.  Examples use the following color-
coding conventions:  

♦ blue outlined cells.  .  .  .  .  . adjustable cells that Evolver will 
be adjusting. 

♦ red outlined cells ..  .  .  .  .  .   the target or goal cell.   

Each example comes with all Evolver settings pre-selected, including 
the target cell, adjustable cells, solving methods and constraints.  You 
are encouraged to examine these dialog settings before optimizing.  
By studying the formulas and experimenting with different Evolver 
settings, you can get a better understanding of how Evolver is used.  
The models also let you replace the sample data with your own 
“user” data.  If you decide to modify or adapt these example sheets, 
you may wish to save them with a new name to preserve the original 
examples for reference.   
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Advertising Selection 

An ad agency must figure out the most efficient way to spend its 
advertising dollars to maximize the coverage for its target audience.  
It must not spend over its budget, and the amount spent on TV must 
be more than the amount spent on radio. 

Example file: Advertising Selection.xls 

Goal: Allocate advertising purchases, within your 
budget, among media which have various 
price breaks.  Maximize people reached. 

Solving method: budget 

Similar problems: budget-type problems with additional 
constraints. 

 
The first thing we need to do is choose a solving method that tells 
Evolver what to do with the variables.  See Chapter 5: Complete 
Reference for descriptions of the different solving methods. 

How The Model 
Works 
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This is basically a budget-type problem with the additional constraint 
that TV spending must be more than radio spending.   

The variables to be adjusted by Evolver are in cells C5:C9.  We will 
ask Evolver to juggle them using the “budget” method, to allow each 
variable to be an independent value.  The total audience is calculated 
with the SUM function in cell G13; this is the cell we will ask Evolver 
to maximize.  The hard constraints specify that TV spending must be 
more than radio spending. 

How To Solve It 
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Alphabetize  

This is a list of seven names which we would like Evolver to 
alphabetize.  Although this example is simple, Evolver could handle 
complex sorts where data was interdependent, or names were 
weighted more heavily based upon other information in the model.   

Example file: Alphabetize.xls 

Goal: Alphabetize the list of names. 

Solving method: order 

Similar problems: Any sorting problem that is beyond the 
capability of Excel. 

 

The “Alphabetize.xls” file is a very simple model which illustrates 
Evolver’s sorting possibilities.  Column B contains the first names of 
seven people, and column A contains the corresponding “ID”” 
number for each person.  Column D uses the VLOOKUP function in 
Excel to translate whatever number is chosen in Column C into its 
corresponding name.  Cells E4:E9 use a simple penalty function which 
assigns a value of 1 each time an earlier name gets listed after a later 
name.  The sum of all these errors is in cell E11, our target cell.

How The Model 
Works 
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In this model, the variables to be adjusted are located in column C 
(C3:C9).  We will ask Evolver to juggle cells C3:C9 using the “order” 
solving method.  The “order” solving method tells Evolver to 
rearrange the order of the selected values, trying different 
permutations of those variables rather than trying out new values.  
We will ask Evolver to find the value closest to 0 for the total error in 
cell E11, because when this target cell hits 0, that means that all the 
names are in the correct order.   

 
By not selecting any stopping criteria in the Evolver Options dialog, 
you are telling Evolver to keep working forever until it is manually 
stopped by clicking the “stop” button on the Evolver toolbar.  But in 
this model we have selected the “value closest to” option, so Evolver 
will automatically stop if it finds a solution that meets your “value 
closest to” value of 0.   

We are using a smaller population size because although there are no 
fast rules about choosing an optimal population size, generally, we 
can select a smaller population size when working with problems that 
have a smaller number of total possible solutions, so we focus more 
quickly on breeding the top performing solutions.  In this problem, 
there are only 5040 possible orders of the 7 names.   

How To Solve It 
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Assignment of Tasks 

This example models a common problem involving resource 
allocation.  In this problem, a manager has 16 workers to perform 16 
tasks.  Each worker's ability to perform each task has been rated on a 
scale of 1 to 10 (1= cannot do the task, 10= perfect at the task).  The 
challenge here is to match each worker to a task so that the overall 
productivity of the workers is maximized.   

Example file: Assignment of Tasks.xls 

Goal: Assign 16 workers to 16 tasks so the overall 
efficiency is maximized. 

Solving method: order 

Similar problems: assignment problems, scheduling meetings at 
times when the most workers would be 
happiest to meet, finding the best machines 
for a series of jobs. 
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The model provides a 16 by 16 grid in cells B4:Q19 where each worker 
has been rated for each task.  The "chosen task" column (column S) to 
the right of the grid arbitrarily assigns each worker to one task.  The 
next column over (column U) checks what task was assigned, and 
enters each worker's rating for that task.  Finally, the total score of the 
entire solution (in cell U21) is the sum of adding up all the individual 
ratings. 

There is only one person for each task, so no numbers can be 
duplicates, and each number must be used once.  Each worker’s 
rating at that task is recorded in column U using the INDEX() 
function.  These scores are summed in cell U21 to figure out the total 
score for that set of assignments. 

Evolver is asked to juggle the “chosen task” variables, located in 
column S (S4:S19).  We will ask Evolver to juggle these cells using the 
“order” solving method.  This method will shuffle the existing values 
in those cells around, so be sure that there is only one of each value 
represented before you begin the optimization.  We will ask Evolver 
to find the maximum value for cell U21, the target cell, because the 
higher this cell gets, the better the overall assignment.   

How The Model 
Works 

How To Solve It 
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Bakery  

This example illustrates a common problem in production decision 
problems, where finding the right amount of each product to produce 
becomes very difficult...  even with only a few items.  A bakery owner 
must determine the number of cases to produce for each kind of 
bread, in order to maximize the total profit of the bakery.  Be sure to 
also observe the limitations outlined, such as the total number of 
employee hours, and the correct ratios of products to be produced.  
(Note: this model is covered in detail in Chapter 3: Evolver Step-by-Step) 

Example file: Bakery.xls 

Goal: Find the optimal amount of each kind of bread to bake 
to satisfy all quotas and maximize profits.   

Solving method: recipe 

Similar problems: developing portfolios, manufacturing planning 
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This problem lists the amount of each bread product to be produced 
across the top of the chart in row 4.  When we adjust these quantity 
variables (B4:G4), the model computes the hours and costs it would 
take, as well as the profit that would be generated from baking that 
amount.  The profit (in cells B11:G11) are added together in cell I11, 
which becomes the target cell to maximize.   

 
The model also has three constraints.  Each constraint listed is a hard 
constraint.  One is a Simple Range of Values format constraint and 
two are constraints entered as Excel formulas. 

Evolver is asked to find the values for cells B4:G4 (the amounts to 
make) that will maximize the value in cell I11 (the total profit).  Since 
each value it finds can be independent of the others, we will use the 
“recipe” solving method.  We will also ask Evolver to observe the 
constraints for cells C4, D4 and I8.   

How The Model 
Works 

How To Solve It 
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Budget Allocation  

A senior executive wants to find the most effective way to distribute 
funds among the various departments of the company to maximize 
profit.  Below is a model of a business and its projected profit for the 
next year.  The model estimates next year’s profit by examining the 
annual budget and making assumptions about, for example, how 
advertising affects sales.  This is a simple model, but it illustrates how 
you can set up any model and use Evolver to feed inputs into it to 
find the best output. 

Example file: Budget Allocation.xls 

Goal: Allocate the annual budget among five 
departments to maximize next year’s profits. 

Solving method: budget 

Similar problems: Allocate any scarce resource (such as labor, 
money, gas, time) to entities that can use them 
in different ways or with different efficiencies. 
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The file “Budget Allocation.xls” models the effects of a company’s 
budget on its future sales and profit.  Cells C4:C8 (the variables) 
contain the amounts to be spent on each of the five departments.  
These values total the amount in cell C10, the total annual budget for 
the company.  This budget is set by the company and is 
unchangeable. 

Cells F6:F10 compute an estimate of the demand for the company’s 
product next year, based on the advertising and marketing budgets.  
The amount of actual sales is the minimum of the calculated demand 
and the supply.  The supply is dependent upon the money allocated 
to the production and operations departments. 

Maximize the profit in cell I16 by using the “budget” solving method 
to adjust the values in cells C4:C8.  Set the independent ranges for 
each of the adjustable cells for the budget for each department, to 
keep Evolver from trying negative numbers, or numbers which would 
not make suitable solutions (e.g., all advertising and no production) 
for the departmental budget. 

The “budget” solving method works like the “recipe” solving 
method, in that it is trying to find the right “mix” of the chosen 
variables.  When you use the budget method, however, you add the 
constraint that all variables must sum up to the same number as they 
did before Evolver started optimizing.   

How The Model 
Works 

How To Solve It 
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Chemical Equilibrium  

Any process which can be modeled to produce a result given some 
initial conditions can be optimized by Evolver.  This example shows 
how Evolver can find levels of different chemicals (products and 
reactants) that minimizes the free energy after a reaction has reached 
equilibrium.  In complicated chemical processes the ingredients 
(reagents) and the products continually re-form into one another until 
the concentration of the compounds becomes constant; when 
“equilibrium” is reached.  At any time after equilibrium is reached, a 
steady percentage of the equilibrium chemicals might be reagents 
(e.g.  5%), and a steady percentage would be products (95%). 

Example file: Chemical Equilibrium.xls 

Goal: Compute the free energy of the reaction environment 
and find the levels for the chemicals, subject to the soft 
constraints (some chemical levels are proportional to 
others). 

Solving method: recipe 

Similar problems: determining conditions of the most stable market 
equilibrium. 
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The variables of this problem in cells B4:B13 are the chemical levels to 
be mixed.  Cell B15 calculates the total amount, which must be kept 
within a given range, according to the penalties. 

Constraints in F20:F22 are soft constraints, meaning that we will not 
force Evolver to only accept valid solutions, but instead we will 
calculate penalties if certain chemicals are out of the desired 
proportion to other chemicals.  These soft constraints use penalty 
functions built directly in the worksheet model.  The penalties are 
added to the total free energy cell in F17, so when Evolver is 
minimizing the target, it will be looking for solutions that do not 
produce the penalties.   

Use the recipe solving method for cells B4:B13.  Minimize cell F17. 

How The Model 
Works 

How To Solve It 
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Class Scheduler  
A university must assign 25 different classes to 6 pre-defined time 
blocks.  Each class lasts exactly one time block.  Normally, this would 
allow us to treat the problem with the “grouping” solving method.  
However, there are a number of constraints that must be met while 
the classes are being scheduled.  For example, biology and chemistry 
should not occur at the same time so that pre-medical students can 
take both classes in the same semester.  To meet such constraints, we 
use the “schedule” solving method instead.  The “schedule” solving 
method is like the “grouping” method, only with the constraint that 
certain tasks must (or must not) occur before (or after or during) other 
tasks.   

Example file: Class Scheduler.xls 

Goal: Assign 25 classes to 6 time periods to minimize the 
number of students who get squeezed out of their 
classes.  Meet a number of constraints regarding which 
classes can meet when. 

Solving method: schedule 

Similar problems: Any scheduling problem where all tasks are the same 
length and can be assigned to any of a number of 
discrete time blocks.  Also, any grouping problem 
where constraints exist as to which groups certain 
items can be assigned. 
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The “Class Scheduler.xls” file contains a model of a typical scheduling 
problem where many constraints must be met.  Cells C5:C29 assign 
the 25 classes to the 6 time blocks.  There are only five classrooms 
available, so assigning more than five classes to one time block means 
that at least one of the classes cannot meet. 

Cells K17:M25 contain the constraints; to the left of the constraints are 
English descriptions of the constraints.  You can use either the 
number code or the english description as the constraint.  The list of 
constraint codes for scheduling problems can be found in more detail 
in the “Solving Methods” section of Chapter 5: Complete Reference. 

Each possible schedule is evaluated by calculating both a) the number 
of classes which cannot meet, and b) the number of students who 
cannot sit at their classes because the capacity of the classrooms is full.  
This last constraint keeps Evolver from scheduling all the large classes 
at the same time.  If only one or two large classes meet during a time 
block, the larger classrooms can be used for them. 

Cells I8:N8 uses the DCOUNT Excel function to count up how many 
classes are assigned to each time block.  Right below cells I9:N9 then 
compute how many classes did not get assigned a room for that time 
block.  All the classes that are without rooms are totaled in cell K10. 

If the number of seats required by a given class exceeds the number of 
seats available, cells I12:N12 calculate by how much, and the total 
number of students without seats is calculated in cell K13.  In cell F6, 
this total number of students without seats is added to the average 
class size, and multiplied by the number of classes without rooms.  
This way, we have one cell which combines all penalties such that a 
lower number in this cell always indicates a better schedule. 

Minimize the value of the penalties in F6 by changing cells C5:C29.  
Use the “schedule” solving method.  When this solving method is 
chosen, you will see a number of related options appear in the lower 
“options” section of the dialog box.  Set the number of time blocks to 
6, and set the constraints cells to K17:M25. 

How The Model 
Works 

How To Solve It 
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Code Segmenter  

A Windows programmer wants to break a program up into several 
code segments, so that Windows can use memory more efficiently by 
only keeping in memory the code segments currently being used.   

This is an example of collecting similar items into groups.  The items 
can interact efficiently with others in the same group, but it is difficult 
for items in different groups to interact.  When there are natural 
barriers to letting every item interact directly with every other (say all 
computer users wanted to be directly connected to one printer), it is 
necessary to break the items up into groups.  An efficient grouping 
can have a significant effect on the overall productivity of the system. 

Example file: Code Segmenter.xls 

Goal: Group program routines into eight different code 
segments so that the program executes as quickly as 
possible. 

Solving method: grouping 

Similar problems: Collect workstations into LAN clusters, or circuits into 
areas on microchips, so the cost of the communication 
between groups is minimized. 

 
Windows programmers often break programs up in this way to 
increase program efficiency.  When a routine in another segment 
needs to run, Windows will throw out the calling segment and read in 
the called segment from the disk.  If a 2 Mb program is broken up into 

How The Model 
Works 
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80 segments of 20 Kb each, the program can run if only 20 Kb of 
memory is available.  In order to run with acceptable performance, 
however, the code segments must be carefully organized.  Calling a 
function in another segment takes more time than calling one in the 
same segment as the caller.  Minimizing the number of cross-segment 
calls is referred to as the code segmentation problem. 

Since it is possible to optimize some parts of an application at the 
expense of the whole application, we will use Evolver to perform a 
global optimization.   

The “Code Segmenter.xls” example file assumes that an application 
has been compiled with a certain segmentation.  The application was 
run just like a user would run it, while a performance tracing routine 
kept track of the number of times each function called every other 
function.  These results thus represent the nature of calls in the typical 
usage of the application.  From them we can make predictions about 
the speed of the application with different segmentation strategies. 

This worksheet uses the custom “SegCost” function.  SegCost 
computes the time it would take the user to run the program the same 
way as when the typical usage statistics were acquired.  It does this by 
counting the number of inter- and intra-segment calls, and 
multiplying each by the cost of each kind of call.  Here we assume an 
inter-segment call (or near call) takes seven clock cycles, and an intra-
segment call (or far call) takes 34 cycles, which is the case for any 386 
computer. 

The SegCost function is written as an Excel VBA macro, as shown 
here: 

  
Function segCost(segs, calls, inP, outP) As Double 
 
Dim inCost#, outCost#, total#, temp#, tempPtr# 
Dim i%, j%, wide%, funcNumber%, ThisSeg%, OtherSeg% 
Dim NumCalls%, NumInCall%, NumOutCall%, 
SegOrder$, CallOrder$ 
 
SegOrder = Application.Names("segs").RefersTo 
CallOrder = Application.Names("calls").RefersTo 
NumInCall = 0 
NumOutCall = 0 
inCost = Range("k2") 
outCost = Range("k3") 
total = 0 
wide = Range(CallOrder).Columns.Count 
For i = 1 To Range(SegOrder).Rows.Count 
   ThisSeg = Range(SegOrder).Rows(i) 
   For j = 1 To wide 
      temp = Range(CallOrder).Rows(i).Columns(j) 



 

Chapter 4: Example Applications 61 
 

      If temp <> 0 Then 
         funcNumber = Int(temp) 
         OtherSeg = Range(SegOrder).Rows(funcNumber + 1) 
         NumCalls = 10000 * (temp - funcNumber) 
         If ThisSeg = OtherSeg Then 
            temp = NumCalls * inCost 
            NumInCall = NumInCall + 1 
         Else 
            temp = NumCalls * outCost 
            NumOutCall = NumOutCall + 1 
         End If 
         total = total + temp 
      End If 
   Next 
Next 
segCost = total 
End Function 

The sample application has 80 functions.  The number of times each 
function calls each other is stored in the “calls” range (C5:I104).  We 
could create a 80 by 80 matrix to represent the calling pattern, but this 
n by n approach would become unusable after about 250 functions, 
because Excel has a limit of 256 columns (and because the approach 
would need an exponential amount of memory). 

Instead, we use a condensed notation to represent the calling pattern.  
We first assume that no function calls more than a certain number of 
other functions.  In the example file, we assume seven is the upper 
limit; that is why the calls range is seven columns wide, but this limit 
is arbitrary.  We also assume that no function is called by any other 
function more than 9999 times. 

Let us look at function 1, starting at cell C5.  Function 1 calls four 
functions: 3, 9, 81, and 41.  C5:I5, the first row in calls, contains one 
real number for each function called (e.g.  3.0023).  The integer portion 
(e.g.  3) represents the function that is called, and the fraction 
multiplied by 10,000 (e.g.  .0023 x 10,000 = 23) represents the number 
of times function 1 called function 3 in the typical usage of the 
application.  Thus, 9.1117 means that the function called function #9  
1,117 times, and so on.  This concise format lets us save memory and 
make the best use of the limited number of columns available in 
Excel. 

Cell A5:A104 (the “segs” range) contains the number of the segment 
each function is assigned to.  Cell K4 calls “SegCost” to compute the 
overall performance of the current segmentation strategy. 
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Minimize the value in cell K4 by adjusting the cells in A5:A104.  Use 
the “grouping” method.  The “grouping” solving method tells 
Evolver to arrange variables into x groups, where x is the number of 
different values in the adjustable cells at the start of an optimization.   

How To Solve It 
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Dakota: Routing With Constraints  

A real-estate firm needs to assess each of its properties throughout 
North Dakota in a certain order, so that certain properties are visited 
before others.  Similar to the classic traveling salesman problem, the 
goal of this problem is to find the shortest route among a set of cities 
that ensures that each city is visited once.  However, here we add the 
constraint that certain cities must be visited before certain other cities 
(such as town #2 coming after town #4).  This means that instead of 
the “order” solving method we will use the “project” solving method. 

A project is an ordering for a set of tasks where certain tasks must 
precede other tasks.  You could use the “project” solving method, in 
conjunction with your own custom functions, to find the best timing 
for a project (based on a combination of any number of criteria, such 
as time to finish, resource utilization, etc.). 

Example file: Dakota.xls 

Goal: Plan a route among 41 towns in North Dakota which 
finds the shortest route between all cities while 
making sure some cities are visited before others. 

Solving method: project 

Similar problems: Re-schedule a project to balance resource utilization.  
Schedule the flow of jobs in a machine shop to reduce 
total time while ensuring that some jobs are done 
before others. 
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Cells F3:F43 contain the order in which the cities will be visited.  Cell 
H10 calculates the total length of the route, based on the order and the 
x,y locations of the cities (in C3:D43).  Cell H10 uses the custom 
function “BigRouteLength” to speed up the computation of the total 
route length. 

Cells J3:L43 contain the precedence tasks.  This is a table showing 
which cities (tasks) must be preceded by other cities.  Eight cities 
(1,2,3,4,5,7, 11 and 13) must have certain cities that are visited before 
them. 

Minimize the route length in H10 by changing the cells F3:F43.  Use 
the “project” solving method and set the precedence tasks to J3:L43.  
These precedents are set in the Preceding Tasks field of the Adjustable 
Cell Group Settings Dialog: 

 

Precedent 
Tasks

    

How The Model 
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Job Shop Scheduling  

A metalworking shop needs to find the best way to schedule a set of 
jobs that can be broken down into steps that can be run on different 
machines.  Each job is composed of five tasks, and the tasks must be 
completed in order.  Each task must be done on a specific machine, 
and takes a specific amount of time to complete.  There are five jobs 
and five machines. 

Clicking the Draw Schedule button at the top of the sheet will redraw 
the bar chart to show when each of the job tasks is scheduled to run. 

 

Example file: Job Shop Scheduling.xls 

Goal: Assign job pieces (tasks) to machines so total time for 
all jobs to finish is minimized. 

Solving method: order 

Similar problems: Scheduling or project-management problems 
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Cell D5 computes the makespan, or how much time elapses between 
the start of the first scheduled task and the end of the last scheduled 
task.  This total time is what we wish to minimize.  Cells G11:G35 
hold the variables (the tasks) to be shuffled to find the best 
assignment order.  The equations on the sheet figure out how soon 
each task can run on the machine that it needs. 

Select a set of adjustable cells G11:G35 and select the order solving 
method.  Minimize cell D5.   

How The Model 
Works 

How To Solve It 
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Radio Tower Location  

A radio network wants to build three radio towers in a region that has 
twelve major communities.  Each community has a different 
population size, and each radio tower has a different strength 
broadcast range.  The goal is to place the towers so that the maximum 
number of potential listeners fall inside the broadcast radii of the 
towers. 

xy
1 1  

A more complicated example of a location problem might be to locate 
several factories so that they are a) in the vicinity of both vendors and 
customers, b) in affordable, open land, and c) near a large, technically 
trained work force.  Any number of additional influences on the best 
locations, such as tax incentives, can also be added to such a model.  
Evolver can then find the best locations in x,y or even x,y,z coordinate 
space. 

 

Example file: Radio Tower Location.xls 

The Goal: Find the best x,y coordinates for three radio towers so 
that the maximum potential listening population falls 
inside their broadcasting range. 

Solving method: recipe 

Similar problems: Find sites for warehouses that minimize the shipping 
necessary between warehouses and stores.  Locate fire 
stations so that populations are best covered with a 
limited number of stations, including factors such as 
housing density. 
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The file “Radio Tower Location.xls” models a two-dimensional 
landscape where the placement of five radio towers determines how 
many listeners are reached.  Cells C6:D8 contain the x,y coordinates 
for the three towers.  The illustration in the model consists of two 
elements: one is a bitmap picture of the population densities (in 
green) pasted from the Windows Paintbrush program; the other is an 
Excel scatter graph that re-calculates automatically to show the 
locations of the towers. 

Ten communities are represented as single-point locations.  The Excel 
model computes the distance between the communities and the 
towers in K4:M15 to determine if each community is covered (yes) or 
not covered (no).  The total population of all the covered communities 
(the number we want to maximize) is calculated in cell O17. 

Maximize the population reached in cell O17 by adjusting the tower 
location cells C6:D8.  Use the “recipe” solving method and set the 
ranges for the variables from 0 to 50 (the limits of our location area). 

The “recipe” solving method tells Evolver to adjust the variables 
chosen in any way it sees fit.  As is the case with a recipe for baking, 
we are trying to find the right mix of “ingredients” (x,y coordinates) 
to produce the optimum solution.   

How The Model 
Works 
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Portfolio Balancing  

A broker has a list of 80 securities, each worth a different amount of 
money.  The broker wants to group these securities into five packages 
(portfolios) that are as close to each other in total value as possible. 

This is an example of a general class of problems called bin packing 
problems.  Packing the holds of a cargo ship, so that each hold weighs 
as much as the others is another example.  If there are millions of 
small items to be packaged into a few groups, such as grains of wheat 
into ship holds, a roughly equal distribution can be guessed at 
without a big difference in weight.  However, several dozen packages 
of different weights and/or sizes can be packed in very different 
ways, and efficient packing can improve the balance that would be 
found manually. 

Example file:  Portfolio Balancing.xls 

Goal:  Break a list of securities up into five different 
portfolios whose total values are as close as possible to 
each other. 

Solving method:  grouping 

Similar problems: Create teams that have roughly equivalent collective 
skills.  Pack containers into holds of a ship so that the 
weight is evenly distributed. 
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The “Portfolio Balancing.xls” file models a typical grouping 
assignment.  Column A contains identification numbers to specific 
securities, and column B contains the dollar value of each security.  
Column C assigns each security to one of the five portfolios.  When 
setting a grouping or bin packing type of problem and using the 
grouping solving method, you must be sure that before you start 
Evolver each group (1-5) is represented in the current scenario at least 
once.   

Cells F6:F10 calculate the total value of each of the five portfolios.  
This is done with database criteria offscreen (in column I) and 
“DSUM()” formulas in cells F6:F10.  Thus, cell F6, for example, 
calculates DSUM of all the values in column B that have been 
assigned to group 5 (in column C). 

Cell F12 computes the standard deviation among the total portfolio 
values using the “STDEV()” function.  This provides a measure of 
how close in total value to each other the portfolios are.  The graph 
shows the total value of each portfolio, with a reference line drawn at 
the goal number where each portfolio would be if they were all even. 

Minimize the value in cell F12 by adjusting the cells in C5:C104.  Use 
the “grouping” method and make sure the values 1, 2, 3, 4, and 5 each 
appear at least once in column C. 

The “grouping” solving method tells Evolver to arrange variables into 
x groups, where x is the number of different values in the adjustable 
cells at the start of an optimization.   

How The Model 
Works 

How To Solve It 
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Portfolio Mix 

A young couple has assets in many different types of investments, 
each with its own yield, potential growth, and risk.  By combining 
several formulas which multiply various weights, they have 
customized a sort of “score” which shows how well any particular 
mix of investments satisfies their needs.   

Example file: Portfolio Mix.xls 

The Goal: Find the optimal mix of investments to maximize your 
profit, given your current risk/return needs.   

Solving method: budget 

 
This is a classic financial model which attempts to balance the risk of 
loss against the return on investment.  Each asset listed in column A is 
assigned some weight in column C.  The model multiplies the return 
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percentages by the weight each asset carries in the portfolio to yield a 
total return in cell C18.  We also calculate a total risk number in cell 
C19, which should not be higher than the acceptable risk listed in cell 
D19.   

The total “score” in cell C22 reflects the total return minus a penalty 
for any risk above the acceptable percentage.  We maximize this score. 

How To Solve It 
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Power Stations 

A radio network buys three abandoned, non-working radio towers in 
a region that has ten major communities.  The network wants to 
purchase brand new broadcast transmitters and install them in the 
towers to get them broadcasting again.   

Because there is a limited budget, the goal is to spend the least 
amount of money on transmitters that will still cover all 9 
surrounding communities.  We assume a linear pricing model where 
the cost of a transmitter is directly related to its power, so we’ll be 
looking for the lowest amount of power to purchase, but it would be 
just as easy to create a lookup chart of actual transmitter types and 
prices.   

 

Example file: Power Stations.xls 

The Goal: Find the smallest (cheapest) transmitter for each of the 
old towers that will still cover the entire ten 
surrounding communities. 

Solving method: recipe 

Similar problems: set-covering problems, where a bunch of elements 
need to be described by a small number of well-
defined sets. 
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This is very similar to the radio tower location example (Radio Tower 
Location.xls), except that here the locations are frozen, and it is the 
tower’s power ranges in cells E5:E7 that are the variables to be 
adjusted.  We add up the power cost of the three towers in cell E12, 
the target cell to be minimized.   

Cells K4:M12 calculate how far away each community is from a 
tower, and column N returns a TRUE if a community is near enough 
to one of the transmitters to be covered.  All of these constraints are 
checked in a single hard constraint named All Areas Covered?.  This 
constraint has the formula AND($N$4:$N$12) which returns TRUE 
only if all values in column N are TRUE.   

Minimize the power required in cell E12 by adjusting the radii of the 
towers in cells E5:E7.  Use the "recipe" solving method and set the 
ranges for the variables from 0 to 100.  The single hard constraint, 
entered using the Excel formula format, is described above. 

How The Model 
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Purchasing 

Any time you have many possible ways to order items the quantity 
discounts make it difficult to determine the most cost effective way to 
buy the items.  This model contains a simple price table, listing 
quantity discount prices for a special solvent.  You must buy at least 
155 liters of this solvent, which comes in small, medium, large and 
extra-large barrels.   

Try to purchase the right number of each barrel size to minimize your 
cost.   

Example file: Purchasing.xls 

The Goal: Spend the least amount of money buying 155 liters of 
solvent. 

Solving method: recipe 

Similar problems: The opposite: create a pricing table that most 
consistently and fairly rewards higher quantity orders. 
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This solvent comes in 3, 6, 10 and 14-liter barrels.  The table of prices 
for each size is listed in cells D6:H9.  Cells H13:H16 contain the 
amounts to buy of each size.  Column K calculates the cost for each 
purchase, and cell K18 is the total cost.  This model allows you to 
change the required amount to be purchased (cell I19) from 155 to 
whatever you wish.  Cell I18 contains the total liters that were 
purchased, and so this cell must be at least the required number in 
cell I19 (155).  The single hard constraint is that the amount purchased 
exceeds the amount required. 

Since we need 155 liters, we might just think of buying 11 extra-large 
barrels (154 liters), plus one small barrel (3 liters) for a total of 157 
liters.  According to the price table, that would cost $1,200 total.  But 
running the optimization will give you an even more cost-effective 
combination.   

Minimize the cost in cell K18 by adjusting the quantities to buy in cell 
H13:H16.  Use the recipe solving method to adjust values, and set the 
ranges of these variables to be between 1 and 20.  You can not buy just 
a part of one barrel, so we will ask Evolver to try only integers by 
checking the “integers” option in the Adjustable Cells Dialog.  Since 
we cannot purchase less than 155 liters, enter a single hard constraint 
specifying that I18>155.   

How The Model 
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Salesman Problem 
A salesman is required to visit every city in the assigned territory 
once.  What is the shortest route possible that visits every city? This is 
a classic optimization problem and one that is extremely difficult for 
conventional techniques to solve if there are a large (>50) number of 
cities involved. 

A similar problem might be finding the best order to perform tasks in 
a factory.  For example, it might be much easier to apply black paint 
after applying white paint than the other way around.  In Evolver, 
these types of problems can be best solved by the order solving 
method. 

Example file: Salesman Problem.xls 

Goal: Find the shortest route among n cities that visits each 
city once. 

Solving method: order 

Similar problems: Plan the drilling of circuit board holes in the fastest 
way. 
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The file “Salesman Problem.xls” calculates the route length of a trip to 
various cities by looking up the distances in a table.  Column A 
contains identifying numbers for specific cities.  Column B contains 
the names that those numbers represent (with a lookup function).  
The order in which the cities (and their numbers) appear from top to 
bottom represents the order in which the cities are visited.  For 
example, if you entered a “9” into cell A3, then Ottawa would be the 
first city visited.  If A4 contained “6” (Halifax), then Halifax would be 
the second city visited. 

The distances between cities are represented in the table beginning at 
C25.  The distances in the table are symmetric (distance from A to B is 
the same as from B to A).  However, more realistic models may 
include non-symmetric distances to represent greater difficulty of 
traveling in one direction (because of tolls, available transportation, 
headwinds, slope, etc.). 

A function now must be used to calculate the length of the route 
between these cities.  The total route length will be stored in cell G2, 
the cell we wish to optimize.  To do this, we use the “RouteLength” 
function.  This is a custom VBA function in Salesman Problem.xls. 

Minimize the value in cell G2 by adjusting the cells in A3:A22.  Use 
the “order” method and make sure the values 1 through 20 exist in 
the adjustable cells (A3:A22) before you start optimizing. 

The “order” solving method tells Evolver to rearrange the chosen 
variables, trying different permutations of existing variables.   
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Space Navigator  

As the launching crew of the space shuttle “Evolver III”, you must 
figure out the amount and direction of each rocket thrust to reach 
your destination using the least amount of fuel.  The better solutions 
will probably exploit the gravitational “whip” effect of nearby suns to 
conserve fuel.   

Example file: Space Navigator.xls 

Goal: Get a spaceship to its destination using as little fuel as 
possible.  Take advantage of the gravity of stars 
moving through your neighborhood. 

Solving method: recipe 

Similar problems: process control problems 

 
Cells Q5:R15 hold the blast size and direction values for each of ten 
time steps.  Cell Q16, which we want to minimize, is simply the sum 
of all the fuel burned in the ten time steps (Q4:Q13).   

The hard constraints are:  a) that the ship's final position be within 10 
horizontal units of its destination, and b) that it be within 10 vertical 
units.  

How The Model 
Works 
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Minimize cell Q16.  Create an adjustable cells group that uses the 
recipe solving method using cells Q5:R13.  The Blast cells (Q5:Q13) 
should range between 0 and 300 and the Direction cells (R5:R13) 
should range between -3 and 3, since it uses Radians to represent the 
direction of the blasts.  One Radian is about 57 degrees. 

How To Solve It 
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Trader  

You are trading on the S&P 500, and you have determined that 
technical analysis provides more accurate forecasting of stocks than 
traditional fundamental analysis, and can save you time once you 
build a system.  It seems there are an infinite number of possible rules 
by which you could trade, but only a few of them would have made 
you a tidy profit if you had been following them.  An intelligent 
computer search could help you determine what rules would have 
made the most money over a certain historical period.   

Example file: Trader.xls 

Goal: Find a set of three rules which would have yielded the 
highest return over a certain time period. 

Solving method: recipe 

Similar problems: find optimal moving averages that would have 
yielded the best result; any rule-finding or criteria-
finding problems 
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This model uses several adjustable cell groups to solve the overall 
problem.  There are three rules that are evaluated for each trading 
day.  If the conditions of all three rules are true, then the computer 
will buy on that day, otherwise it will sell.  (A more realistic trading 
system would not just buy or sell, but also sometimes hold onto what 
it has.) 

Each rule is described by a set of four numbers in cells C5:E8 which 
indicate several things: 1) which data source the rule refers to, 2) 
whether the data value should be above or below a cutoff value, 3) the 
cutoff value that determines if the rule is true, and 4.) a modifier value 
that determines if the value itself should be examined, or if the last 
day's value or the change since the last day should be examined. 

The cutoff values range from 0 to 1, and represent the percentage of 
the data source's range.  For example, if volume ranges from 5,000 to 
10,000, then a cutoff value of 0.0 would match a volume of 5,000, a 
cutoff value of 1.0 would match a volume of 10,000, and a cutoff value 
of 0.5 would match a volume of 7,500.  This system allows the rules to 
refer to any data source, regardless of the values it takes on. 

Create adjustable cell groups, all using the “recipe” solving method.  
Each row in C5:E5, C6:E6, C7:E7, and C8:E8 should be created 
separately, so that each group can easily be assigned its own options 
such as integer and ranges.  The settings for each set of variables are 
listed in F5:F8.  Maximize on cell E10, which calls a macro to simulate 
trading with those rules.  The total profit made after simulating 
trading on each day in the historical database is returned in cell E10. 

How The Model 
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Transformer  

The 2-winding transformer must be rated at 1080 VA with full load 
losses under 28 watts and surface heat dissipation not over 0.16 
watts/cm2.  Minimize costs while observing the performance criteria.   

Example file: Transformer.xls 

Goal: Minimize the initial and operating cost of a 
transformer.    

Solving method: recipe 

Similar problems: circuit design, bridge design 

 
The rating, load loss, and heat dissipation constraints are coded as 
soft constraints.  We create a soft constraint by penalizing those 
solutions which do not meet our requirements, and are invalid.  
Unlike a hard constraint which must be met, Evolver is allowed to try 
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out some invalid solutions, but because these invalid solutions are 
penalized by a function in your model which checks for violations, 
they will produce poor results in your target cell.  Thus, over time, 
these invalid solutions will be discarded from the evolving 
population of possible solutions.   

A soft-constraint model may work better than a hard-constraint, if the 
problem is less heavily constrained.  It also allows Evolver to accept a 
really great solution even if it may fall a little short of the constraints, 
which could be more valuable than a not-so-great solution that meets 
all the constraints.   

Compute material cost (initial cost) and operating costs (cost of 
electricity * electricity wasted) in cells F11 and F12.  Combine these 
with penalty functions set in F18:F20 to form a final constrained cost 
in cell F22.  Minimize this target cell using the recipe solving method. 

How To Solve It 
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Transportation  

How cheaply can we truck objects around the country? This standard 
problem was expanded from an older Microsoft Solver example. 

“Minimize the costs of shipping goods from production plants to 
warehouses near metropolitan demand centers, while not exceeding 
the supply available from each plant and meeting the demand from 
each metropolitan area.” 

To make the problem more realistic, the shipping costs were changed 
so they are no longer linear, but depend on how many trucks are 
needed.  A truck can carry up to 6 objects, so shipping 14 objects 
requires 3 trucks (carrying 6 + 6 + 2 objects). 

Example file: Transportation.xls 

Goal: Truck objects from three plants to five warehouses in 
the cheapest way possible. 

Solving method: recipe 

Similar problems: design communications networks 
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Cells C5:G7 contain the number of objects shipped from each plant to 
each warehouse.  C13:G13 compute the number of trucks that would 
be needed to ship those objects.  The hard constraints are: 1) that the 
total shipped from each plant is less than or equal to the supply on 
hand at the plant, and 2) that the total shipped from all plants to each 
warehouse is greater than or equal the amount that warehouse 
requires.  This ensures that every warehouse will get what it needs, 
and no plant is overtaxed. 

Use the recipe solving method on cells C5:G7, using integers between 
0 and 500.  A set of hard constraints are entered for each plant 
specifying that plant shipments<=plant supply.  A second set of hard 
constraints are entered for each warehouse specifying that total 
shipments to warehouse>=warehouse demands.  Minimize the 
shipping cost in cell B22. 

How The Model 
Works 

How To Solve It 
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Model Definition Command 
Defines the goal, adjustable cells and constraints for a model 
Selecting the Evolver Model Definition command (or clicking the 
Model icon on the Evolver toolbar) displays the Model Dialog. 

 
The Evolver Model Dialog.    

The Evolver Model Dialog is used to specify or describe an 
optimization problem to Evolver.  This dialog starts empty with each 
new Excel workbook, but saves its information with each workbook.  
That means that when the sheet is opened again, it will be filled out 
the same way.  Each component of the dialog is described in this 
section. 
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Options in the Model dialog include: 

• Optimization Goal.   The Optimization Goal option determines 
what kind of answer Evolver is to search for.  If Minimum is 
selected, Evolver will look for variable values that produce the 
smallest possible value for the target cell (all the way down to -
1e300).  If Maximum is selected, Evolver will search for the 
variable values that result in the largest possible value for the 
target cell (up to +1e300). 

If Target Value is selected, Evolver will search for variable values 
that produce a value for the target cell as close as possible to the 
value you specify.  When Evolver finds a solution which produces 
this result, it will automatically stop.  For example, if you specify 
that Evolver should find the result that is closest to 14, Evolver 
might find scenarios that result in a value such as 13.7 or 14.5.  
Note that 13.7 is closer to 14 than 14.5; Evolver does not care 
whether the value is greater or less than the value you specify, it 
only looks at how close the value is. 

• Cell.  The cell or target cell contains the output of your model.  A 
value for this target cell will be generated for each "trial solution" 
that Evolver generates (i.e., each combination of possible 
adjustable cell values).  The target cell should contain a formula 
which depends (either directly or through a series of calculations) 
on the adjustable cells.  This formula can be made with standard 
Excel formulas such as SUM() or user-defined VBA macro 
functions.  By using VBA macro functions you can have Evolver 
evaluate models that are very complex. 

As Evolver searches for a solution it uses value of the target cell as 
a rating or “fitness function” to evaluate how good each possible 
scenario is, and to determine which variable values should 
continue cross-breeding, and which should die.  In biological 
evolution, death is the “fitness function” that determines what 
genes continue to flourish throughout the population.  When you 
build your model, your target cell must reflect the fitness or 
“goodness” of any given scenario, so as Evolver calculates the 
possibilities, it can accurately measure its progress. 
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Adjustable Cell Ranges 
The Adjustable Cell Ranges table displays each range which contains 
the cells or values that Evolver can adjust, along with the description 
entered for those cells.  Each set of adjustable cells is listed in a 
horizontal row.  One or more adjustable cell ranges can be included in 
an Adjustable Cell Group.  All cell ranges in an Adjustable Cell 
Group share a common solving method, crossover rate, mutation rate 
and operators. 

 
Because the adjustable cells contain the variables of the problem, you 
must define at least one group of adjustable cells to use Evolver.  Most 
problems will be described with only one group of adjustable cells, 
but more complex problems may require different blocks of variables 
to be solved with different solving methods simultaneously.  This 
unique architecture allows for highly complex problems to be easily 
built up from many groups of adjustable cells.   

The following options are available for entering Adjustable Cell 
Ranges: 

• Add. You can add new adjustable cells by clicking on the “Add” 
button next to the Adjustable Cells list box.  Select the cell or cell 
range to be added, and a new row will appear in the Adjustable 
Cell Ranges table.  In the table, you can enter a Minimum and 
Maximum value for the cells in the range, along with the type of 
Values to test – Integer values across the range, or Any values. 

• Minimum and Maximum.  After you have specified the location 
of the adjustable cells, the Minimum and Maximum entries set the 
range of acceptable values for each adjustable cell.  By default, 
each adjustable cell takes on a real-number (double-precision 
floating point) value between -infinity and +infinity. 
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Range settings are constraints that are strictly enforced.  Evolver 
will not allow any variable to take on a value outside the set 
ranges.  You are encouraged to set more specific ranges for your 
variables whenever possible to improve Evolver’s performance.  
For example, you may know that the number cannot be a 
negative, or that Evolver should only try values between 50 and 
70 for a given variable.   

• Range.  The reference for the cell(s) to be adjusted is entered in 
the Range field.  This reference can be entered by selecting the 
region in the spreadsheet with the mouse, entering a range name 
or typing in a valid Excel reference such as Sheet1!A1:B8.  The 
Range field is available for all solving methods.  For recipe and 
budget methods, however, Minimum, Maximum and Values 
options can be added to allow the entry of a range for the 
adjustable cells. 

NOTE: By assigning tight ranges to your variables, you can limit 
the scope of the search, and speed up Evolver’s convergence on a 
solution.  But be careful not to limit the ranges of your variables 
too tightly; this may prevent Evolver from finding optimal 
solutions.   

• Values.  The Values entry allows you to specify that Evolver 
should treat all of the variables in the specified range as integers 
(e.g., 22), rather than as real numbers (e.g., 22.395).  This option is 
only available when using the “recipe” and “budget” solving 
methods.  The default is to treat the variables as real numbers. 

Be sure to turn on the Integers setting if your model uses variables to 
lookup items from tables (HLOOKUP(), VLOOKUP(), INDEX(), 
OFFSET(), etc.).  Note that the Integers setting affects all of the 
variables in the selected range.  If you want to treat some of your 
variables as reals and some as integers, you can create two groups of 
adjustable cells instead of one, and treat one block as integers and the 
other block as reals.  Simply “Add” a recipe group of adjustable cells, 
and leave the Values entry as Any.  Next, “Add” another cell range, 
this time selecting the Integers setting and selecting only the integer 
adjustable cells. 
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Adjustable Cell Groups 
Each group of adjustable cells can contain multiple cell ranges.  This 
allows you to build a "hierarchy" of groups of cell ranges that are 
related. Within each group, each cell range can have its own Min-Max 
range constraint. 

All cell ranges in an Adjustable Cell Group share a common solving 
method, crossover rate, mutation rate and operators.  These are 
specified in the Adjustable Cell Group Settings dialog.  This dialog 
is accessed by clicking the Group button next to the Adjustable Cell 
Ranges table.  You may create a new Group to which you can add 
adjustable cell ranges or edit the settings for an existing group. 
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Options on the General tab in the Adjustable Cell Group Settings 
dialog include: 

• Description.  Describes the group of adjustable cell ranges in 
dialogs and reports. 

• Solving Method.  Selects the Solving Method to be used for each 
of the adjustable cell ranges in the group. 

 
When you select a range of cells to be adjusted by Evolver, you also 
are specifying a “solving method” you wish to apply when adjusting 
those adjustable cells.  Each solving method is, in essence, a 
completely different genetic algorithm, with its own optimized 
selection, crossover and mutation routines.  Each solving method 
juggles the values of your variables a different way.   

The “recipe” solving method, for example, treats each variable 
selected as an ingredient in a recipe; each variable’s value can be 
changed independently of the others’.  In contrast, the “order” solving 
method swaps values between the adjustable cells, reordering the 
values that were originally there. 

There are six solving methods that come with Evolver.  Three of the 
solving methods (recipe, order, and grouping) use entirely different 
algorithms.  The other three are descendants of the first three, adding 
additional constraints. 

The following section describes the function of each solving method.  
To get a better understanding of how each solving method is used, 
you are also encouraged to explore the example files included with 
the software (see Chapter 4: Example Applications).   
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The “recipe” solving method is the most simple and most popular 
type of solving method.  Use recipe whenever the set of variables that 
are to be adjusted can be varied independently of one another.  Think 
of each variable as the amount of an ingredient in a cake; when you 
use the “recipe” solving method, you are telling Evolver to generate 
numbers for those variables in an effort to find the best mix.  The only 
constraint you place on recipe variables is to set the range (the highest 
and lowest value) that those values must fall between.  Set these 
values in the Min and Max fields in the Adjustable Cells dialog (e.g.  1 
to 100), and also indicate whether or not Evolver should be trying 
integers (1, 2, 7) or real numbers (1.4230024, 63.72442).  
Below are examples of a set of variable values as they might be in a 
sheet before Evolver is called, and what two new scenarios might look 
like after using the recipe solving method. 

Original Set of 
Variable Values 

One Set of Possible 
Recipe Values 

Another Set of 
Possible Recipe Values 

23.472 15.344 37.452 

145 101 190 

9 32.44 7.073 

65,664 14,021 93,572 

Recipe Solving 
Method  
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The “order” solving method is the second most popular type, after 
“recipe”.  An order is a permutation of a list of items, where you are 
trying to find the best way to arrange a set of given values.  Unlike 
“recipe” and “budget” solving methods, which ask Evolver to 
generate values for the chosen variables, this solving method asks 
Evolver to use the existing values in your model.   

An order could represent the order in which to perform a set of tasks.  
For example, you might wish to find the order in which to accomplish 
five tasks, numbered 1,2,3,4, and 5.  The “order” solving method 
would scramble those values, so one scenario might be 3,5,2,4,1.  
Because Evolver is just trying variable values from your initial sheet, 
there is no Min - Max range entered for adjustable cells when the 
Order solving method is used.   

Below are examples of a set of variable values as they might be in a 
sheet before Evolver is called, and what two new scenarios might look 
like after using the order solving method. 

Original Set of      
Variable Values 

One Set of Possible 
Order Values 

Another Set of Possible 
Order Values 

23.472 145 65,664 

145 23.472 9 

9 65,664 145 

65,664 9 23.472 

The “grouping” solving method should be used whenever your 
problem involves multiple variables to be grouped together in sets.  
The number of different groups that Evolver creates will be equal to 
the number of unique values present in the adjustable cells at the start 
of an optimization.  Therefore, when you build a model of your 
system, be sure that each group is represented at least once.   

For example, suppose a range of 50 cells contains only the values 2, 
3.5, and 17.  When you select the 50 cells and adjust the values using 
the “grouping” solving method, Evolver will assign each of the fifty 
cells to one of the three groups, 2, 3.5 or 17.  All of the groups are 
represented by at least one of the adjustable cells; just like tossing 
each of the 50 variables in one of several “bins”, and making sure 
there is at least one variable in each bin.  Another example would be 
assigning 1s, and 0s, and -1s to a trading system to indicate buy, sell 
and hold positions.  Like the “order” solving method, Evolver is 
arranging existing values, so there is no min-max range or integers 
option to define.   

Order Solving 
Method 

 

Grouping 
Solving Method  
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NOTE: When using the “grouping” solving method, do not leave any 
cells blank, unless you would like 0.0 to be considered one of the 
groups.   

You may realize that the “grouping” solving method could be 
approximated by using the “recipe” solving method with the integers 
option “on” and the ranges set from 1 to 3 (or whatever number of 
groups there are).  The difference lies in the way a recipe and a 
grouping perform their search.  Their selection, mutation and crossover 
routines are different; a grouping is much more concerned with the 
values of all the variables, because it can swap a set of variables from 
one group with a set of variables from another group.   

Below are examples of a set of variable values as they might be in a 
sheet before Evolver is called, and what two new scenarios might look 
like after using the grouping solving method. 

Original Set of      
Variable Values 

One Set of Possible 
Grouping Values 

Another Set of 
Possible Grouping 
Values 

6 6 8 

7 6 7 

8 8 6 

8 7 7 

When using the Grouping solving method, there are 2 additional 
settings in the Adjustable Cell Group Settings dialog:  

• Group Names (Optional). This setting allows a user to specify a 
range containing numeric group IDs.  Normally Evolver reads 
group IDs from the adjustable range.  For example, if the 
adjustable range is A1:D1, and it contains numbers 1, 1, 3, 2, then 
Evolver with use 1, 2, and 3 as group IDs.  However, there may 
be more groups than there are adjustable cells; for example, we 
may want to assign items represented by cells A1:D1 to groups 
numbered 1 to 5.  In this case, the Group Names setting will 
allow the user to specify a range containing five cells with 
numbers 1 to 5 be used as group IDs during optimization.  

• All Groups Must Be Used.  If this option is checked, every 
solution will have members from every group.  For example, if 
the adjustable cells are A1:D1, and group IDs are 1, 2, and 3, then 
Evolver will not try a solution with 1 assigned to all four cells 
(with 2 and 3 missing).  On the other hand this solution may be 
tried if the check box is not selected. 
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A “budget” is similar to a “recipe” except that all of the variables’ 
values must total to a certain number.  That number is the total of the 
variables’ values at the time an optimization is started. 

For example, you might want to find the best way to distribute an 
annual budget among a number of departments.  The “budget” 
solving method will take the total of the current values for the 
departments, and use that sum as the total budget to be optimally 
distributed.  Below are examples of what two new scenarios might 
look like after using the budget solving method.  

Original 
Set of Budget Values 

One Set of 
Possible Budget 

Values 

Another Set of 
Possible Budget 

Values 

200 93.1 223.5 

3.5 30 0 

10 100 -67 

10 .4 67 

Many values are being tried, but the sum of all values remains 223.5.

Budget Solving 
Method  
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The “project” solving method is similar to the “order” solving method 
except that certain items (tasks) must precede others.  The “project” 
solving method can be used in project management to rearrange the 
order in which tasks are carried out, but the order will always meet 
the precedence constraints. 

A problem modeled using the Project solving method will be much 
easier to work with and understand if the adjustable cells containing 
the task order are in a single column, rather than in a row.  This is 
because the solving method expects the preceding tasks cells to be 
arranged vertically rather than horizontally, and it will be easier to 
examine your worksheet if the adjustable cells are also vertical.   

After you have specified the location of the adjustable cells, you 
should specify the location of the preceding tasks cells in the Preceding 
Tasks section of the dialog.  This is a table of cells that describes which 
tasks must be preceded by which other tasks.  The solving method 
uses this table to rearrange the order of variables in a scenario until 
the precedence constraints are met.  There should be one row in the 
preceding tasks range for each task in the adjustable cells.  Starting in 
the first column of the preceding tasks range, the identifying number 
of each task on which that row’s task depends should be listed in 
separate columns.   

 
 

Example of how to set up precedents for Project solving method.    
The precedence tasks range should be specified as being n rows by m 
columns, where n is the number of tasks in the project (adjustable 
cells), and m is the largest number of preceding tasks that any one 
task has. 

Project Solving 
Method  
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Below are examples of a set of variable values as they might be in a 
sheet before Evolver is called, and what two new scenarios might look 
like after using the Project solving method, with the constraint that 2 
must always come after 1, and 4 must always come after 2. 

Original Set of 
Variable Values 

One Set of Possible 
Project Values 

Another Set of 
Possible Project 
Values 

1 1 1 

2 3 2 

3 2 4 

4 4 3 

A schedule is similar to a grouping; it is an assignment of tasks to 
times.  Each task is assumed to take the same amount of time, much 
as classes at a school are all of the same length.  Unlike a grouping, 
however, the Adjustable Cell Group Settings Dialog for the 
“schedule” solving method lets you directly specify the number of 
time blocks (or groups) to be used.  Notice when you select the 
“schedule” method, several related options appear in the lower 
portion of the dialog box. 

 
In the Optimization Parameters section, you will notice that you can 
also have a constraint cell range attached to it.  This range can be of 
any length, but must be exactly three columns wide.  Eight kinds of 
constraints are recognized:  
1) (with) The tasks in the 1st & 3rd columns must occur in the same time 

block. 
2) (not with) The tasks in the 1st & 3rd columns must not occur in the 

same time block. 
3) (before) The task in the 1st column must occur before the task in the 3rd 

column. 
4) (at) The task in the 1st column must occur in the time block in the 3rd 

column. 

Schedule 
Solving Method  
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5) (not after) The task in 1st column must occur at the same time or before 
the task in the 3rd column. 

6) (not before) The task in 1st column must occur at the same time or after 
the task in the 3rd column. 

7) (not at) The task in the 1st column must not occur in the time block in 
the 3rd column. 

8) (after) The task in the 1st column must occur after the task in the 3rd 
column. 

Either a numeric code (1 through 8) or the English description (after, 
not at, etc.) can be entered for a constraint.  (Note: All language 
versions of the Evolver will recognize the English description entered 
for a constraint as well as the its translated form). All of the 
constraints specified in your problem will be met.  To create 
constraints, find an empty space on your worksheet and create a table 
where the left and right columns represent tasks, and the middle 
column represents the type of constraints.  A number from 1 to 8 
represents the kind of constraint listed above.  The cells in the 
constraint range must have the constraint data in them before you 
start optimizing.   

This Task Constraint This Task 

5 4 2 

12 2 8 

2 3 1 

7 1 5 

6 2 4 

9 3 1  
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Below are examples of a set of variable values as they might be in a 
sheet before Evolver is called, and what two new scenarios might look 
like after using the Schedule solving method. 

Original Set of          
Variable Values 

One Set of Possible 
Schedule Values 

Another Set of 
Possible Schedule 
Values 

1 1 1 

2 1 3 

3 3 1 

1 1 2 

2 2 2 

3 3 2 

NOTE: When you select the schedule solving method, integers 
starting from 1 are always used (1,2,3...), regardless of the original 
values in the adjustable cells. 
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One of the most difficult problems with searching for optimal 
solutions, when your problem has seemingly endless possibilities, is 
in determining where to focus your energy.  In other words, how 
much computational time should be devoted to looking in new areas 
of the “solution space”, and how much time should be devoted to 
fine-tuning the solutions in our population that have already proven 
to be pretty good? 

A big part of the genetic algorithm success has been attributed to its 
ability to preserve this balance inherently.  The structure of the GA 
allows good solutions to “breed”, but also keeps “less fit” organisms 
around to maintain diversity in the hopes that maybe a latent “gene” 
will prove important to the final solution.   

Crossover and Mutation are two parameters that affect the scope of the 
search, and Evolver allows users to change these parameters before, 
and also during the evolutionary process.  This way, a knowledgeable 
user can help out the GA by deciding where it should focus its 
energy.  For most purposes, the default crossover and mutation 
settings (.5 and .1 respectively) do not need adjustment.  In the event 
that you wish to fine-tune the algorithm to your problem, conduct 
comparative studies, or just to experiment, here is a brief introduction 
to these two parameters: 

• Crossover.  The crossover rate can be set to between 0.01 and 1.0, 
and reflects the likelihood that future scenarios or “organisms” 
will contain a mix of information from the previous generation of 
parent organisms.  This rate can be changed by experienced users 
to fine-tune Evolver’s performance on complex problems.   

In other words, a rate of 0.5 means that an offspring organism will 
contain roughly 50% of its variable values from one parent and 
the remaining values from the other parent.  A rate of 0.9 means 
that roughly 90% of an offspring organism’s values will come 
from the first parent and 10% will come from the second parent.  
A Crossover rate of 1 means that no crossover will occur, so only 
clones of the parents will be evaluated.   

The default rate used by Evolver is 0.5.  Once Evolver has started 
solving a problem, you can change the crossover rate by using the 
Evolver Watcher (see the Evolver Watcher section in this chapter).   

Crossover and 
Mutation Rate  
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• Mutation Rate.   The mutation rate can be set to between 0.0 and 
1.0, and reflects the likelihood that future scenarios will contain 
some random values.  A higher mutation rate simply means that 
more mutations or random “gene” values will be introduced into 
the population.  Because mutation occurs after crossover, setting 
the mutation rate to 1 (100% random values) will effectively 
prevent the crossover from having any effect, and Evolver will 
generate totally random scenarios. 

If all the data of the optimal solution was somewhere in the 
population, then the crossover operator alone would be enough to 
eventually piece together the solution.  Mutation has proven to be 
a powerful force in the biological world for many of the same 
reasons that it is needed in a genetic algorithm: it is vital to 
maintaining a diverse population of individual organisms, 
thereby preventing the population from becoming too rigid, and 
unable to adapt to a dynamic environment.  As in a genetic 
algorithm, it is often the genetic mutations in animals which 
eventually lead to the development of critical new functions. 

For most purposes, the default mutation setting does not need 
adjustment, but can, however, be changed by experienced users to 
fine-tune Evolver’s performance on complex problems.  The user 
may wish to boost the mutation rate if Evolver’s population is 
fairly homogenous, and no new solutions have been found in the 
last several hundred trials.  Typical setting changes are from .06 to 
.2.  Once Evolver has started solving a problem, you can change 
the mutation rate dynamically by using the Evolver Watcher (see 
the Evolver Watcher section later in this chapter). 

By selecting Auto from the drop down list in the Mutation rate 
field, auto-mutation rate adjustment is selected.  Auto-mutation 
rate adjustment allows Evolver to increase the mutation rate 
automatically when an organism "ages" significantly; that is, it has 
remained in place over an extended number of trials.  For many 
models, especially where the optimal mutation rate is not known, 
selecting Auto can give better results faster. 

For more information on these options, see the Schedule Solving 
method in the Solving Methods section of this chapter. 

 
For more information on these options, see the Project Solving method 
in the Solving Methods section of this chapter. 

Number of Time 
Blocks and 
Constraint Cells  
Preceding 
Tasks 
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Evolver includes selectable genetic operators when used with the 
Recipe solving method.  Clicking the Operators tab in the Adjustable 
Cell Group Settings Dialog allows you to select a specific genetic 
operator (such as heuristic crossover or boundary mutation) to be 
used when generating possible values for a set of adjustable cells. In 
addition, you can have Evolver automatically test all available 
operators and identify the best performing one for your problem. 

 
Genetic algorithms use genetic operators to create new members of 
the population from current members.  Two of the types of genetic 
operators Evolver employs are mutation and crossover.  The mutation 
operator determines if random changes in “genes” (variables) will 
occur and how they occur.  The crossover operator determines how 
pairs of members in a population swap genes to produce “offspring” 
that may be better answers than either of their “parents”.   

Evolver includes the following specialized genetic operators: 

♦ Arithmetic Crossover – Creates new offspring by arithmetically 
combining the two parents (as opposed to swapping genes). 

♦ Heuristic Crossover – Uses values produced by the parents to 
determine how the offspring is produced.  Searches in the most 
promising direction and provides fine local tuning. 

♦ Cauchy Mutation – Designed to produce small changes in 
variables most of the time, but can occasionally generate large 
changes.  

Operators 
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♦ Boundary Mutation – Designed to quickly optimize variables that 
affect the result in a monotonic fashion and can be set to the 
extremes of their range without violating constraints. 

♦ Non-uniform Mutation – Produces smaller and smaller 
mutations as more trials are calculated.  This allows Evolver to 
“fine tune” answers. 

♦ Linear – Designed to solve problems where the optimal solution 
lies on the boundary of the search space defined by the 
constraints.  This mutation and crossover operator pair is well 
suited for solving linear optimization problems. 

♦ Local search - Designed to search the solution space in the 
neighborhood of a previous solution, expanding in directions that 
provide improvement, and contracting in directions that produce 
a worse result. 

Depending on the type of optimization problem, different 
combinations of mutation and crossover operators may produce 
better results than others. In the Operators tab of the Adjustable Cell 
Group Settings dialog, when using the Recipe solving method, any 
number of operators may be selected.  When multiple selections are 
made, Evolver will test valid combinations of the selected operators to 
identify the best performing ones for your model.  After a run, the 
Optimization summary worksheet ranks each of the selected operators 
by their performance during the run.  For subsequent runs of the 
same model, selecting just the top performing operators may lead to 
faster, better performing optimizations. 

NOTE: When creating multiple groups of adjustable cells, check to be 
sure that no spreadsheet cell is included in several different groups of 
adjustable cells.  Each group of adjustable cells should contain 
unique adjustable cells because the values in the first group of 
adjustable cells would be ignored and overwritten by the values in 
the second group of adjustable cells.  If you think a problem needs to 
be represented by more than one solving method, consider how to 
break up the variables into two or more groups. 
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Constraints  
Evolver allows you to enter constraints, or conditions that must be 
met for a solution to be valid. Constraints you have entered are 
shown in the Constraints table in the Model Definition dialog box. 

 
Clicking the Add button next to the Constraints table displays the 
Constraint Settings dialog box where constraints are entered.  Using 
this dialog box the type of constraint desired, along with its 
description, type, definition and evaluation time can be entered. 

Add - Adding 
Constraints 
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Two types of constraints can be specified in Evolver: 

• Hard, or conditions that must be met for a solution to be valid 
(i.e., a hard constraint could be C10<=A4; in this case, if a solution 
generates a value for C10 that is greater than the value of cell A4, 
the solution will be thrown out). 

• Soft, or conditions which we would like to be met as much as 
possible, but which we may be willing to compromise for a big 
improvement in fitness or target cell result (i.e., a soft constraint 
could be C10<100;  however, C10 could go over 100, but when 
that happened the calculated value for the target cell would be 
decreased based on the penalty function you have entered). 

Two formats – Simple and Formula -- can be used for entering 
constraints.  The type of information you can enter for a constraint 
depends on the format you select.   

• Simple Format - The Simple format allows constraints to be 
entered using simple <, <=, >, >= or = relations where a cell is 
compared with an entered number.  A typical Simple constraint 
would be:  

0<Value of A1<10 
where A1 is entered in the Cell Range box, 0 is entered in the Min 
box and 10 is entered in the Max box.  The operator desired is 
selected from the drop down list boxes.  With a simple range of 
values format constraint, you can enter just a Min value, just a 
Max or both.  The entered Min and Max values must be numeric 
in the simple range of values constraint format. 

• Formula Format - The Formula format allows you to enter any 
valid Excel formula as a constraint, such as A19<(1.2*E7)+E8.  
Evolver will check whether the entered formula evaluates to 
TRUE or FALSE to see if the constraint has been met 

Constraint Type 

Simple and 
Formula 
Constraints 
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Soft Constraints are conditions which we would like to be met as 
much as possible, but which we may be willing to compromise for a 
big improvement in fitness or target cell result.  When a soft 
constraint is not met it causes a change in the target cell result away 
from its optimal value.  The amount of change caused by an unmet 
soft constraint is calculated using a penalty function that is entered 
when you specify the soft constraint. 

 
More information about penalty functions is as follows: 

• Entering a Penalty Function.   Evolver has a default penalty 
function which is displayed when you first enter a soft constraint.  
Any valid Excel formula, however, may be entered to calculate 
the amount of penalty to apply when the soft constraint is not 
met.  An entered penalty function should include the keyword 
deviation which represents the absolute amount by which the 
constraint has gone beyond its limit. With each recalculation 
Evolver checks if the soft constraint has been met; if not, it places 
the amount of deviation in the entered penalty formula and then 
calculates the amount of penalty to apply to the target cell. 

The penalty amount is either added or subtracted from the 
calculated target cell value in order to make it less "optimal".  For 
example, if Maximum is selected in the Optimization Goal field in 
the Evolver Model Dialog, the penalty is subtracted from the 
calculated target cell value.   

Soft Constraints 
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• Viewing the Effects of an Entered Penalty Function.  Evolver 
includes an Excel worksheet PENALTY.XLS which can be used to 
evaluate the effects of different penalty functions on specific soft 
constraints and target cell results.  

 
PENALTY.XLS allows you to select a soft constraint from your model 
whose effects you wish to analyze.  You can then change the penalty 
function to see how the function will map a specific value for the 
unmet soft constraint into a specific penalized target value.  For 
example, if your soft constraint is A10<100, you could use 
PENALTY.XLS to see what the target value would be if a value of 105 
was calculated for cell A10. 

• Viewing the Penalties Applied.  When a penalty is applied to the 
target cell due to an unmet soft constraint, the amount of penalty 
applied can be viewed in the Evolver Watcher.  In addition, 
penalty values are shown in Optimization Log worksheets, 
created optionally after optimization. 

NOTE: If you place a solution in your worksheet using the Update 
Adjustable Cell Values options in the Stop dialog, the calculated 
target cell result shown in the spreadsheet will not include any 
penalties applied due to unmet soft constraints.  Check the 
Optimization Log worksheet to see the penalized target cell result 
and the amount of penalty imposed due to each unmet soft 
constraint. 
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• Implementing Soft Constraints in Worksheet Formulas.  Penalty 
functions can be implemented directly in the formulas in your 
worksheet.  If soft constraints are implemented directly in the 
worksheet they should not be entered in the main Evolver dialog.  
For more information on implementing penalty functions in your 
worksheet, see the section Soft Constraints in Chapter 9: Evolver 
Extras. 
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Optimization Settings Command  

Optimization Settings Command – General Tab 
Defines the general settings for an optimization 

The Optimization Settings dialog General tab displays settings for 
population size, display update, and random number generator seed. 

 
Optimization Parameter Options on the General tab include: 

• Population Size.   The population size tells Evolver how many 
organisms (or complete sets of variables) should be stored in 
memory at any given time.  Although there is still much debate 
and research regarding the optimal population size to use on 
different problems, generally we recommend using 30-100 
organisms in your population, depending on the size of your 
problem (bigger population for larger problems).  The common 
view is that a larger population takes longer to settle on a 
solution, but is more likely to find a global answer because of its 
more diverse gene pool.   
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• Random Number Generator Seed.  The Random Number 
Generator Seed option allows you to set the starting seed value 
for the random number generator used in Evolver.  When the 
same seed value is used, an optimization will generate the exact 
same answers for the same model as long as the model has not 
been modified.  The seed value must be an integer in the range 1 
to 2147483647. 
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Optimization Settings Command – Runtime Tab 
Defines the runtime settings for an optimization 
The Optimization Settings dialog Runtime tab displays Evolver 
settings that determine the runtime of the optimization.  These 
stopping conditions specify how and when Evolver will stop during 
an optimization.  Once you select the Start Optimization command, 
Evolver will continuously run, searching for better solutions and 
running trials until the selected stopping criteria are met.  You can 
turn on any number of these conditions, or none at all if you want 
Evolver to search indefinitely (until you stop it).  When multiple 
conditions are checked, Evolver stops as soon as one of the chosen 
conditions is met.  You may also override these selections and stop 
Evolver at any time manually using the stop button in the Evolver 
Watcher or Progress windows. 

 



 

116 Optimization Settings Command 

Optimization Runtime options on the Runtime tab include: 

• Trials - This option, when set, stops Evolver when the given 
number of trial solutions are generated by Evolver. 

The Trials setting is particularly useful when comparing Evolver’s 
efficiency when trying different modeling methods.  By changing 
the way you model a problem, or by choosing a different solving 
method, you may increase Evolver’s efficiency.  Having a model 
run a specified number of trials will indicate how efficiently 
Evolver is converging on a solution, regardless of any differences 
in the number of variables chosen, the speed of the computer 
hardware being used, or the screen re-drawing time.  The Evolver 
optimization summary worksheet is also useful in comparing 
results between runs.  For more information on Optimization 
Summary worksheets, see the Evolver Watcher – Stopping 
Options section in this chapter. 

• Time - This option, when set, stops Evolver from optimizing 
scenarios after the given number of hours, minutes or seconds has 
elapsed.  This entry can be any positive real number (600, 5.2, 
etc.). 

• Progress - This option, when set, stops Evolver from optimizing 
scenarios when the improvement in the target cell is less than the 
specified amount (change criterion).  You can specify, as an 
integer, the number of trials over which to check the 
improvement.  A percentage value - such as 1% - can be entered 
as the maximum change value in the Maximum Change field. 

Suppose that we are trying to maximize the mean of the target 
cell, and after 500 trials, the best answer found so far is 354.8.  If 
the “Progress” option is the only stopping condition selected, 
Evolver will pause at trial #600 and will only continue if it is able 
to find an answer of at least 354.9 during those last 100 trials.  In 
other words, Evolver’s answers have not improved at least 0.1 
over the last 100 trials, so it assumes there is little more 
improvement to be found, and stops the search.  For more 
complex problems, you may want to boost the number of trials 
that Evolver runs through (500) before deciding whether there is 
still sufficient improvement to go on. 

This is the most popular stopping condition, because it gives 
the user an effective way to stop Evolver after the 
improvement rate is slowing down, and Evolver is not 
seeming to find any better solutions.  If you are viewing the 
graphs of the best results on the Progress tab of the Evolver 

Optimization 
Runtime 
Options 
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Watcher, you will see the graphs plateau or flatten out for a 
while before this condition is met and Evolver stops.  
“Progress” is really just an automatic way to do what you 
could do yourself with the graph -- let it run until the 
improvement levels off. 

• Formula is True.  This stopping condition causes the 
optimization to stop whenever the entered (or referenced) 
Excel formula evaluates to TRUE during the optimization. 

• Stop on Error.  This stopping condition causes the 
optimization to stop whenever an Error value is calculated for 
the target cell. 

NOTE: You can also select no stopping conditions, and Evolver will 
run forever until you press the stop button on the Evolver Watcher 
window.   
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Optimization Settings Command – View Tab 
Defines the view settings for an optimization 
The Optimization Settings dialog View tab displays Evolver settings 
that determine what will be shown during an optimization.   

 
Options on the View tab include: 

• Minimize Excel at Start.  This option selects to minimize Excel 
when an optimization starts. 

• Show Excel Recalculations. This specifies to update Excel either 
with Every New Best Trial, or at the end of Every Trial. 

• Keep Log of Trials.  This option specifies that Evolver keeps a 
running log of each new trial performed.  This log can be viewed 
in the Evolver Watcher Window. 
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Optimization Settings Command – Macros Tab 
Defines macros to be run during an optimization 
VBA macros can be run at different times during an optimization and 
during each trial solution.  This allows the development of custom 
calculations that will be invoked during an optimization. 

 
Macros may be executed at the following times during an 
optimization: 

• At the Start of the Optimization - macro runs after the Run icon 
is clicked; prior to the first trial solution being generated. 

• Before Recalculation of Each Trial - macro runs before 
recalculation of each trial that is executed.   

• After Recalculation of Each Trial- macro runs after recalculation 
of each trial that is executed 

• After Storing Output  - macro runs after each trial that is 
executed and after the value for the target cell's is stored. 

• At the End of the Optimization - macro runs when the 
optimization is completed. 

This feature allows calculations which only can be performed through 
the use of a macro to be made during an optimization.  Examples of 
such macro-performed calculations are iterative "looping" calculations 
and calculations which require new data from external sources.   

The Macro Name defines the macro to be run. 
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Start Optimization Command 
Starts an optimization 
Selecting the Start Optimization command or clicking the Start 
Optimization icon starts an optimization of the active model and 
workbook.  As soon as Evolver is running, you will see the following 
Evolver Progress window.   

 
The Progress window displays: 

• Trial or the total number of trials that have been executed and 
#Valid indicates the number of those trials for which all 
constraints were met.   

• Runtime or the elapsed time in the run 

• Original or the original value for the target cell.  

• Best or the current best value for the target cell that is being 
minimized or maximized.   
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Options on the Evolver Toolbar of the Progress window include: 

• Display Excel Updating Options.  Selects to update the Excel 
display Every Trial, on Every New Best Trial or Never.  Note 
that in some situations the screen will be updated independently 
of these settings, for example when optimization has been 
paused. 

• Display Evolver Watcher.  Displays the full Evolver Watcher 
window. 

• Run.  Clicking the Run icon causes Evolver to begin searching for 
a solution based on the current description in the Evolver Model 
Dialog.  If you pause Evolver you will still be able to click the Run 
icon to continue the search for better solutions.   

• Pause.   If you would like to pause the Evolver process, just click 
the Pause icon, and you temporarily “freeze” the Evolver process.  
While paused, you may wish to open and explore the Evolver 
Watcher and change parameters, look at the whole population, 
view a status report, or copy a graph.   

• Stop.  Stops the optimization.   
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Utilities Commands 

Application Settings Command 
Displays the Application Settings dialog where program 
defaults can be set 
A wide variety of Evolver settings can be set at default values that 
will be used each time Evolver runs.  These include Stopping 
Defaults, Default Crossover and Mutation Rates and others. 
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Constraint Solver Command 
Runs the Constraint Solver 

The Constraint Solver enhances Evolver's ability to handle model 
constraints.  When Evolver runs an optimization, it is assumed that 
the original adjustable cell values meet all the hard constraints, i.e. 
that the original solution is valid.  If that is not the case, the algorithm 
may run very many trials before finding a first valid solution.  
However, if a model contains multiple constraints, then it may not be 
obvious what adjustable cell values will meet all of them. 

If a Evolver model contains multiple hard constraints, and 
optimizations fail with all solutions invalid,  you will be notified and 
the Constraint Solver can be run.  The Constraint  Solver runs an 
optimization in a special mode, in which the objective is to find a 
solution meeting all the hard constraints.  The optimization progress 
is shown to the user in the same way as in regular optimizations.  The 
Progress Window shows the number of constraints that are met in the 
original and best solutions. 
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A button in the Progress Window allows the user to switch to the 
Evolver Watcher.  In the Constraint Solver mode the details of 
optimization progress are available like in regular mode 
optimizations, in Progress, Summary, Log, Population and Diversity 
tabs.  In the Constraint Solver mode the Watcher contains an 
additional tab, entitled Constraint Solver.  This tab shows the status 
of each hard constraint (Met or Not Met) for the Best, Original, and 
Last solution. 

 
 A Constraint Solver optimization stops automatically when a 
solution meeting all the hard constraints is found; it can also be 
stopped by clicking a button in the progress window or in the Evolver 
Watcher.  After a Constraint Solver run, in the Evolver Watcher 
Stopping Options tab you can choose to keep the Best, Original, or 
Last solution, like in regular-mode optimizations.   

Note there is no need to set up the Constraint Solver before a run.  It 
uses the settings specified in the model, only changing the 
optimization objective: the new objective is to find a solution meeting 
all the hard constraints. 
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Chapter 5: Evolver Reference Guide 127 
 

Evolver Watcher 
The magnifying glass icon on the Evolver Progress window toolbar 
displays the Evolver Watcher.  Evolver Watcher is responsible for 
regulating and reporting on all Evolver activity.   

From Evolver Watcher, you can change parameters and analyze the 
progress of the optimization.  You can also see real-time information 
about the problem and information on Evolver’s progress in the status 
bar across the bottom of Evolver Watcher. 
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Evolver Watcher – Progress Tab 
Displays progress graphs for target cell value 
The Progress Tab in the Evolver Watcher graphically shows how 
results are changing, by trial, for the selected target cell. 

 
Progress graphs show the trial count on the X-axis and target cell 
value on the Y-axis.  Progress graphs can be rescaled by clicking on 
the axis limits and dragging the axis to the new scale value.  
Alternatively, right-clicking on the Progress graph can display the 
Graph Options dialog where further customization of the graphs is 
allowed. 
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The Graph Options dialog displays settings that control the titles, 
legends, scaling and fonts used on the displayed graph. 

 

Graph Options 
Dialog 
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Evolver Watcher – Summary Tab 
Displays details for adjustable cell values 
The Summary Tab in the Evolver Watcher displays a summary table 
of adjustable cell values tested during the optimization, along with 
tools for adjusting the crossover and mutation rate for each 
Adjustable Cell Group in the model. 

 
The Adjustable Cell Group Settings allows you to change the 
Crossover and Mutation rates of the genetic algorithm as the problem 
is in progress.  Any changes made here will override the original 
setting of these parameters and will take place immediately, affecting 
the population (or group of adjustable cells) that was selected in the 
Group Shown field.   

We almost always recommend using the default crossover of 0.5.  For 
mutation, in many models you may turn it up as high as about 0.4 if 
you want to find the best solution and are willing to wait longer for it.  
Setting the mutation value to 1 (the maximum) will result in 
completely random guessing, as Evolver performs mutation after it 
performs crossover.  This means that after the two selected parents 
are crossed over to create an offspring solution, 100% of that 
solution’s “genes” will mutate to random numbers, effectively 
rendering the crossover meaningless  (see “crossover rate, what it 
does” and “mutation rate, what it does” in the index for more 
information).
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Evolver Watcher – Log Tab 
Displays a log of each trial run during the optimization 
The Log Tab in the Evolver Watcher displays a summary table of each 
trial run during the optimization.  The log includes the results for the 
target cell, each adjustable cell and entered constraints.  A log is only 
available if the option Keep a Log of All Trials is selected in the 
Otimization Settings dialog View tab. 

 
The Show options select to show a log of All Trials or only those 
Trials where there was a Progress Step (i.e. where the optimization 
result improved).  The log includes: 

1) Elapsed Time, or the start time of the optimization 

2) Iters, or the number of iterations run  

3) Result, or the value of the target cell that you are trying to 
maximize or minimize, including penalties for soft constraints 

4) Input columns, or the values used for your adjustable cells  

5) Constraint columns showing whether your constraints were met  
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Evolver Watcher – Population Tab 
Lists all the variables of each organism (each possible 
solution) in the current population 
The population table is a grid which lists all the variables of each 
organism (each possible solution) in the current population.  These 
organisms (“Org n”) are ranked in order from worst to best.  Since 
this table lists all organisms in the population, the “population size” 
setting in the Evolver Settings dialog determines how many 
organisms will be listed here (default 50).  In addition, the first 
column of the chart shows the resulting value of the target cell for 
each organism.   
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Evolver Watcher – Diversity Tab 
Displays a color plot of all variables in the current population 
The plot on the Diversity tab assigns colors to adjustable cell values, 
based on how much the value of a given cell differs across the 
population of organisms (solutions) that are stored in memory at a 
given point.  (Using the genetic optimization terminology, this is an 
indication of the diversity that exists in the gene pool.)  Each vertical 
bar in the plot corresponds to one adjustable cell.  Horizontal stripes 
within each bar represent the values of that adjustable cell in different 
organisms (solutions).  The colors of the stripes are assigned by 
dividing the range between the minimum and maximum value for a 
given adjustable cell into 16 equal-length intervals; each of the 
intervals is represented by a different color.  For example, in the 
picture the fact that the vertical bar representing the second adjustable 
cell is single-color means that the cell has the same value in each 
solution in memory. 
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Evolver Watcher – Stopping Options Tab 
Displays stopping options for the optimization 
When you click the Stop button, the Evolver Watcher dialog 
Stopping Options tab is displayed.  This includes the options 
available for updating your worksheet with the best calculated values 
for adjustable cells, restoring original values, and generating an 
optimization summary report. 

Clicking OK destroys Evolver’s population of solutions and places the 
selected values in your spreadsheet.  If you wish to save any 
information about the Evolver session, including the population 
values, the time and number of trials run, be sure to select to create an 
optimization summary report. 

 
This dialog will also appear if one of the user specified stopping 
conditions has been met (number of requested trials have been 
evaluated, minutes requested have elapsed, etc.).  The stop alert offers 
three choices for updating the adjustable cell values in your 
spreadsheet: Best, Original and Last. 

• Best .  This accepts Evolver’s results and ends Evolver’s search for 
better solutions.  When you choose this option, the values of the 
best scenario Evolver has found in its search are placed into the 
adjustable cells of your spreadsheet.   
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• Original.  This restores the adjustable cells to their original values 
before Evolver was run, and ends Evolver’s search for better 
solutions.  

• Last.  This causes Evolver to place the last calculated values in the 
optimization in the worksheet.  The Last Calculated Values option 
is particularly useful when debugging models. 

The Reports to Generate options can generate optimization summary 
worksheets that can be used for reporting on the results of a run and 
comparing the results between runs.  Report options include: 

• Optimization Summary.  This summary report contains 
information such as date and time of the run, the optimization 
settings used, the value calculated for the target cell and the value 
for each of the adjustable cells.   

 
This report is useful for comparing the results of successive 
optimizations.   
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• Log of All Trials.  This report logs the results of all trials 
performed. 

 
• Log of Progress Steps.  This report logs the results of all trials that 

improved the result for the target cell. 
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Optimization Methods  
We have already seen a few examples of optimization problems in the 
tutorials.  Some optimization problems are much harder than others 
to solve.  For tough problems, such as finding the shortest route 
between 1000 cities, it is not feasible to examine every possible 
solution.  Such an approach would require years of calculations on the 
fastest computers. 

To solve such problems, it is necessary to search through a subset of 
all possible solutions.  By examining these solutions, we can get an 
idea of how to find better solutions.  This is accomplished with an 
algorithm.  An algorithm is simply a step-by-step description of how to 
approach a problem.  All computer programs, for example, are built 
by combining numerous algorithms. 

Let us start by exploring how most problem-solving algorithms 
represent a problem.  Most problems can be divided into three basic 
components: inputs, a function of some kind, and a resulting output.   

   Looking for:  Given this:    To get the best: 

Problem 
Components 

Inputs Function Output 

In Evolver/Excel  Variables  Model  Goal 

Let us assume that our optimization problem involves two variables, 
X and Y.  When placed in an equation, these two variables produce a 
result =Z.  Our problem is to find the value for X and Y that produces 
the largest Z value.  We can think of Z as a “rating”, which indicates 
how good any particular X,Y pairing is. 

   Looking for:       Given this:       To get the best: 

In this example X and Y  Equation  Z   
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A plot of every single set of Xs,Ys, and the resulting Zs would 
produce a three-dimensional surface graph such as the one shown 
below.   

 
 

A “landscape” of possible scenarios or solutions. 

Each intersection of an X and Y value produces a Z height.  The peaks 
and valleys of this “landscape” represent good and bad solutions 
respectively.  Searching for the maximum or highest point on this 
function by examining each solution would take far too much time, 
even with a powerful computer and the fastest program.* Remember 
that we are giving Excel just the function itself, not a graph of the 
function, and that we could just as easily be dealing with a 200-
dimensional problem as with this two-dimensional problem.  Thus, 
we need a method that will let us do fewer calculations and still find 
the maximum productivity.   

                                                           
* In our diagram, the function is shown as a smooth landscape.  In the 
rare cases where we deal with simple, smooth (differentiable) 
functions, it is possible to use calculus to find minima and maxima.  
However, most realistic problems are not described by such smooth 
functions. 
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About Hill Climbing Algorithms 
Let us look at a simple algorithm called hill-climbing.  Hill-climbing is 
an algorithm that works like this: 

1)  Start at a random point on the landscape (take a random guess). 
2)  Walk a small distance in some arbitrary direction. 
3)  If you have walked to a new point that is higher, stay and repeat 

step 2.  If your new point is lower, go back to your original point 
and try again.   

Hill-climbing tries only one solution or scenario at a time.  We will 
use a black dot (•) to represent one possible solution (a set of X, Y and 
Z values).  If we place the dot at the random starting point, we hope 
that our hill-climbing method will bring the dot to the highest point 
on the graph.   

 
From the diagram above we can clearly see that we want the dot to go 
up the high hill to the right.  However, we only know that because we 
have already seen the entire landscape.  As the algorithm runs, it sees 
the landscape immediately around it, but not the entire landscape; it 
sees the trees but not the forest. 
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In most real-world problems, the landscape is not so smooth, and 
would require years to calculate, so we only calculate the current 
scenario and the immediately surrounding scenarios.  Imagine that 
the dot is a blindfolded man standing amidst smooth, rolling hills.  If 
the man employed the hill-climbing algorithm, this man would put 
one foot in each direction, and only move when he felt higher ground.  
This man would successfully step his way upwards, and eventually 
would come to rest on the hilltop where the ground all around him 
was lower than the ground he was on.  This seems simple enough.  
However, we get into a very serious problem if the man starts out in 
another place...  he climbs up the wrong hill! (see the diagram below).   

 
Even with a smooth function, hill climbing can fail 

 if you start from a slightly different position (right).  
Hill-climbing only finds the nearest hilltop, or local maximum.  Thus, if 
your problem has a very rough and hilly solution landscape, as most 
realistic models do, hill-climbing is not likely to find the highest hill, 
or even one of the highest. 

Hill-climbing has another problem; how do we actually find the 
terrain around our current location? If the landscape is described by a 
smooth function, it may be possible to use differentiation (a calculus 
technique) to find out which direction has the steepest slope.  If the 
landscape is discontinuous or not differentiable (as is more likely in 
real-world problems), we need to calculate the “fitness” of 
surrounding scenarios.   
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For example, lets say a bank hires one security guard from 9:00am to 
5:00pm to guard the bank, but the bank must give the officer two (2) 
half-hour breaks.  We must try to find the optimum break times, 
given general rules about performance/fatigue ratios, and 
considering the different levels of customer activity throughout the 
day.  We may start by trying out different combinations of duty 
breaks and evaluate them.  If we currently use a schedule where the 
breaks are timed at 11:00am and 3:00pm, we might calculate the 
productivity of the surrounding scenarios: 

 
Direction Break 1 (x) Break 2 (y) –Score” (z) 
Current Solution 11:00am 3:00pm = 46.5 
West Scenario 10:45am 3:00pm = 44.67 
East Scenario 11:15am 3:00pm = 40.08 
North Scenario 11:00am 3:15pm = 49.227 
South Scenario 11:00am 2:45pm = 43.97  

If we had three adjustable cells (breaks) instead of two, we would 
need to look at eight different directions.  In fact, if we had just fifty 
variables, (quite realistic for a medium-sized problem), we would 
need to calculate productivity for 250, or over one quadrillion 
scenarios, just for one guard!!  

There are modifications that can be made to hill-climbing to improve 
its ability to find global maxima (the highest hills on the entire 
landscape).  Hill-climbing is most useful for dealing with unimodal 
(one-peak) problems, and that is why some analysis programs use the 
technique.  Nevertheless, it is very limited for complex and/or large 
problems.   
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Excel Solver 
Excel includes an optimization utility called Solver.  It serves a 
somewhat similar purpose as Evolver: to find optimal solutions.  
Solver can solve two kinds of problems: linear problems and simple 
non-linear problems.  It solves linear problems using a linear 
programming routine.  This classic mathematical technique is often 
called the Simplex method, and it will always find perfect answers to 
small, purely linear problems. 

Like most other baby solvers, the Microsoft Solver also solves non-
linear problems, using a hill climbing routine (specifically, the GRG2 
routine).  A hill climbing routine starts with the current variable 
values and slowly adjusts them until the output of the model does not 
improve anymore.  This means that problems with more than one 
possible solution may be impossible for Solver to solve well, because 
Solver ends up at a local solution and cannot jump over to the global 
solution (see figure below). 

 
Landscape of possible solutions. 

In addition, Solver requires that the function represented by your 
model be continuous.  This means the output should change smoothly 
as the inputs are adjusted.  If your model uses lookup tables, acquires 
noisy, real-time data from another program, contains random 
elements, or involves if-then rules, your model will be jumpy and 
discontinuous.  Solver would not be able to solve such a problem.   

Solver also puts a limit on the number of variables and the number of 
constraints in your problem (200) above which you must turn to a 
more powerful technique. 
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Evolver vs. Solver  
The Excel Solver and Evolver each has its strengths and weaknesses.  
Generally speaking, Solver is faster for solving small and simple 
problems, while Evolver is the only way to solve many other kinds of 
problems.  In addition, you may find Evolver will find much better 
answers than Solver for larger, more complex problems, the kind 
often seen in the “real world”. 

Evolver can find answers for many more kinds of problems than 
Solver.  Almost any numerical situation that you can model in Excel 
can be optimized with Evolver.   

Specifically, Evolver finds optimal solutions to linear, non-linear, 
table-based, or stochastic (random) numerical problems.  It can solve 
problems with any combination of these qualities.  Evolver can also 
generate permutations of existing values, re-order the values, or 
group the values together in different ways to find the optimum 
solution.  In fact, wherever you have a spreadsheet model with 
variables that you can adjust to influence the model’s output, Evolver 
can automate the search process for you by intelligently crunching 
through thousands of scenarios and keeping track of the best ones. 

Evolver’s genetic algorithm process is more suitable than Solver to 
interruptions; you may stop the Evolver process at any time and see 
the best solution Evolver has found so far.  You can then make 
changes to the problem itself, and continue the process right from 
where you left off.  For example, in a job scheduling problem, you 
may wish to find the best tasks to assign your machines.  When one 
machine is available, you may stop the genetic algorithm process to 
find the optimal task to assign to that machine.  Then the task may be 
omitted from the problem, and the optimization can continue with the 
remaining jobs. 

The genetic algorithm that gives Evolver the ability to handle all of 
those kinds of problems will usually be slower than the Solver and 
other traditional mathematical or statistical methods.  Some classes of 
problems have well-known and finely-tuned optimization routines 
available.  In such cases, you will find answers faster by using the 
custom methods, rather than the general-purpose method used in 
Evolver. 
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When to Use Evolver 
Generally speaking, Evolver should be used when: 

1) Traditional algorithms fail to produce good, global solutions. 

2) The problem is too large and/or contains more variables than your 
algorithm can handle. 

3) Your problem is too complex to be solved by any other method. 

4) Your model involves random numbers, lookup tables, if-then statements or 
any other discontinuous functions which prohibit the use of traditional 
solvers. 

5) You have no idea what the solution could be, and therefore have no 
starting guess from which a traditional solver must begin its search. 

6) You want the option of making some “hard” constraints in your problem 
(X must equal Y) more “soft”, and therefore more accurate (X should equal 
Y, because otherwise I lose some Z), exploring a much wider range of 
possibly better solutions, even if a few constraints are violated to get them. 

7) You would rather get a pretty good solution to your problem quickly than 
to wait a long time for the absolute best solution. 

8) You need many alternative solutions that are near to the best solution. 

9) You wish to imbed a simple, robust search algorithm into your own 
custom application (see the Evolver Developer Kit for details). 

NOTE: When time permits, Evolver can always be used in addition to 
other methods to double-check their accuracy.  Although it may take 
more time than other methods, the better solution that Evolver may 
find is most likely worth the investment.   

Remember, because Evolver does not need to know the “nuts and 
bolts” of your problem, Evolver can solve problems where the user 
has no knowledge of linear programming techniques, optimization 
theory, mathematics or statistics.  Using Evolver requires only that the 
user set the variables (the cells which contain values that can be 
adjusted), the goal (the cell that contains the output), and a 
description of what values Evolver may use when searching for 
optimal solutions.  
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Types of Problems 
Several different types of problems are typically optimized.  If you 
understand these types of problems, you'll be better equipped to 
apply Evolver to your own models. 

In linear problems, all the outputs are simple linear functions of the 
inputs, as in y=mx+b.  When problems only use simple arithmetic 
operations such as addition, subtraction, and Excel functions such as 
TREND() and FORCAST() it indicates there are purely linear 
relationships between the variables. 

Linear problems have been fairly easy to solve since the advent of 
computers and the invention by George Dantzig of the Simplex 
Method.  A simple linear problem can be solved most quickly and 
accurately with a linear programming utility.  The Solver utility 
included with Excel becomes a linear programming tool when you set 
the “Assume Linear Model” checkbox.* Solver then uses a linear 
programming routine to quickly find the perfect solution.  If your 
problem can be expressed in purely linear terms, you should use 
linear programming.  Unfortunately, most real-world problems 
cannot be described linearly. 

If the cost to manufacture and ship out 5,000 widgets was $5,000, 
would it cost $1 to manufacture and ship 1 widget? Probably not.  The 
assembly line in the widget factory would still consume energy, the 
paperwork would still need to be filled out and processed through the 
various departments, the materials would still be bought in bulk, the 
trucks would require the same amount of gas to deliver the widgets, 
and the truck driver would still get paid a full day’s salary no matter 
how full the load was.  Most real-world problems do not involve 
variables with simple linear relationships.  These problems involve 
multiplication, division, exponents, and built-in Excel functions such 
as SQRT() and GROWTH().  Whenever the variables share a 
disproportional relationship to one another, the problem becomes 
non-linear.   

                                                           
* For more specifics on Microsoft’s Solver utility, see the Excel User’s 
Guide. 

Linear Problems  

Non-linear 
Problems 
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A perfect example of a non-linear problem is the management of a 
manufacturing process at a chemical plant.  Imagine that we want to 
mix some chemical reactants together and get a chemical product as 
the result.  The rate of this reaction may vary non-linearly with the 
amount of reactants available; at some point the catalyst becomes 
saturated and excess reactant just gets in the way.  The following 
diagram shows this relationship: 

 
If we simply need to find the minimum level of reactants that will 
give us the highest rate of reaction, we can just start anywhere on the 
graph and climb along the curve until we reach the top.  This method 
of finding an answer is called hill climbing. 

Hill climbing will always find the best answer if a) the function being 
explored is smooth, and b) the initial variable values place you on the 
side of the highest mountain.  If either condition is not met, hill 
climbing can end up in a local solution, rather than the global 
solution. 

Highly non-linear problems, the kind often seen in practice, have 
many possible solutions across a complicated landscape.  If a problem 
has many variables, and/or if the formulas involved are very noisy or 
curvy, the best answer will probably not be found with hill climbing, 
even after trying hundreds of times with different starting points.  
Most likely, a sub-optimal, and extremely local solution will be found 
(see figure below). 

     



 

Chapter 6: Optimization 151 
 

Hill climbing finds the local, but not 
global maximum. 

Noisy data: Hill climbing 
not effective, even with 
multiple tries. 

 

Evolver does not use hill climbing.  Rather, it uses a stochastic, 
directed search technique, dubbed a genetic algorithm.  This lets 
Evolver jump around in the solution space of a problem, examining 
many combinations of input values without getting stuck in local 
optima.  In addition, Evolver lets good scenarios “communicate” with 
each other to gain valuable information as to what the overall solution 
landscape looks like, and then uses that information to better guess 
which scenarios are likely to be successful.  If you have a complex or 
highly non-linear problem, you should, and often must, use Evolver. 

 
 

Evolver generates many possible scenarios, then  
refines the search based on the feedback it receives. 

Many problems require the use of lookup tables and databases.  For 
example, in choosing the quantities of different materials to buy, you 
might need to look up the prices charged for different quantities. 

Tables and databases make problems discontinuous (non-smooth).  
That makes it difficult for hill-climbing routines like Solver to find 
optimal solutions.  Evolver, however, does not require continuity in 
the functions it evaluates, and it can find good solutions for table-
based problems, even problems that use many large, interrelated 
tables.   

If your problem involves looking up values from a database, or a table 
of data in Excel, where the index of the table item is a variable or a 
function of a variable, you need to use Evolver.  If you only look up a 
single, constant item in a table (the same record is retrieved from the 
table regardless of the input variables’ values), then you are really 
only dealing with a constant, and you can probably use Solver 
effectively. 

There is a large class of problems that are very different from the 
numerical problems examined so far.  Problems where the outputs 
involve changing the order of existing input variables, or grouping 

Table-based 
problems 

Combinatorial 
problems 
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subsets of the inputs are called combinatorial problems.  These 
problems are usually very hard to solve, because they often require 
exponential time; that is, the amount of time needed to solve a 
problem with 4 variables might be 4 x 3 x 2 x 1, and doubling the 
number of variables to 8 raises the solving time to 8 x 7 x 6 x 5 x 4 x 3 x 
2 x 1, or a factor of 1,680.  The number of variables doubles, but the 
number of possible solutions that must be checked increases 1,680 
times.  For example, choosing the starting lineup for a baseball team is 
a combinatorial problem.  For 9 players, you can choose one out of the 
9 as the first batter.  You can then choose one out of the remaining 8 as 
the second batter, one of the remaining 7 will be the third, and so on.  
There are thus 9x8x7x6x5x4x3x2x1 (9 factorial) ways to choose a 
lineup of 9 players.  This is about 362,880 different orderings.  Now if 
you double the number of players, there are 18 factorial possible 
lineups, or 6,402,373,705,000,000 possible lineups! 

Evolver’s genetic algorithm intelligently searches through the possible 
permutations.  This is much more practical than searching through all 
possibilities, and it is much more efficient than examining purely 
random permutations; sub-orders from good scenarios can be 
retained and used to create even better scenarios. 



 

Chapter 7: Genetic Algorithms 153 
 

Chapter 7: Genetic 
Algorithms 

Introduction.....................................................................................155 

History..............................................................................................155 

A Biological Example .....................................................................158 

A Digital Example ...........................................................................159 

 



 

154 Introduction 



 

Chapter 7: Genetic Algorithms 155 
 

Introduction 
Evolver uses genetic algorithms to search for optimal answers for 
models.  The genetic algorithms used are adapted from Evolver, an 
optimization add-in to Excel from Palisade Corporation.  This chapter 
provides background information on genetic algorithms to give 
insights on how they are used for optimizing models. 

History 
The first genetic algorithms were developed in the early 1970s by John 
Holland at the University of Michigan.  Holland was impressed by 
the ease in which biological systems could perform tasks which 
eluded even the most powerful super-computers; animals can 
flawlessly recognize objects, understand and translate sounds, and 
generally navigate through a dynamic environment almost 
instantaneously.   

For decades, scientists have promised to replicate these capabilities in 
machines, but we are beginning to recognize just how difficult this 
task is.  Most scientists agree that any complex biological system that 
exhibits these qualities has evolved to get that way.   
Evolution, so the theory goes, has produced systems with amazing 
capabilities through relatively simple, self-replicating building blocks 
that follow a few simple rules: 

1) Evolution takes place at the level of the chromosome.  The 
organism doesn’t evolve, but only serves as the vessel in which the 
genes are carried and passed along.  It is the chromosomes which are 
dynamically changing with each re-arrangement of genes.   

2) Nature tends to make more copies of chromosomes which produce 
a more “fit” organism.  If an organism survives long enough, and is 
healthy, its genes are more likely to be passed along to a new 
generation of organisms through reproduction.  This principle is often 
referred to as “survival of the fittest”.  Remember that “fittest” is a 
relative term; an organism only needs to be fit in comparison to others 
in the current population to be “successful”. 

3) Diversity must be maintained in the population.  Seemingly 
random mutations occur frequently in nature that ensure variation in 
the organisms.  These genetic mutations often result in a useful, or 
even vital feature for a species’ survival.  With a wider spectrum of 
possible combinations, a population is also less susceptible to a 
common weakness that could destroy them all (virus, etc.) or other 
problems associated with inbreeding.   

Evolution 
Theory 



 

156 History 

Once we break down evolution into these fundamental building 
blocks, it becomes easier to apply these techniques to the 
computational world, and truly begin to move towards more fluid, 
more naturally behaving machines.   

Holland began applying these properties of evolution to simple 
strings of numbers that represented chromosomes.  He first encoded 
his problem into binary strings (rows of “1s” and “0s”) to represent 
the chromosomes, and then had the computer generate many of these 
“bit” strings to form a whole population of them.  A fitness function 
was programmed that could evaluate and rank each bit string, and 
those strings which were deemed most “fit” would exchange data 
with others through a “crossover” routine to create “offspring” bit 
strings.  Holland even subjected his digital chromosomes to a 
“mutation” operator, which injected randomness into the resulting 
“offspring” chromosomes to retain diversity in the population.  This 
fitness function replaced the role of death in the biological world; 
determining which strings were good enough to continue breeding 
and which would no longer be kept in memory.   

 
The program kept a given number of these “chromosomes” in 
memory, and this entire “population” of strings continued to evolve 
until they maximized the fitness function.  The result was then de-
coded back to its original values to reveal the solution.  John Holland 
remains an active pioneer in this field, and is now joined by hundreds 
of scientists and scholars who have devoted the majority of their time 
toward this promising alternative to traditional linear programming, 
mathematical, and statistical techniques.   

Holland’s original genetic algorithm was quite simple, yet remarkably 
robust, finding optimal solutions to a wide variety of problems.  
Many custom programs today solve very large and complex real-
world problems using only slightly modified versions of this original 
genetic algorithm.  
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As interest swelled in academic circles, as serious computational 
power began moving its way into mainstream desktop machines, 
standards like Microsoft Windows and Excel made design and 
maintenance of complex models easier.  The use of real numbers 
rather than bit string representations eliminated the difficult task of 
encoding and decoding chromosomes.   

The popularity of the genetic algorithm is now growing 
exponentially, with seminars, books, magazine articles, and 
knowledgeable consultants popping up everywhere.  The 
International Conference of Genetic Algorithms is already focusing on 
practical applications, a sign of maturity that eludes other “artificial 
intelligence” technologies.  Many Fortune 500 companies employ 
genetic algorithms regularly to solve real-world problems, from 
brokerage firms to power plants, phone companies, restaurant chains, 
automobile manufacturers and television networks.  In fact, there is a 
good chance that you have already indirectly used a genetic algorithm 
before!  

Modern 
Adaptations of 
Genetic 
Algorithms 
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A Biological Example 
Let us look at a simple example of evolution in the biological world 
(on a small scale).  By “evolution” here we mean any change in the 
distribution or frequency of genes in a population.  Of course, the 
interesting thing about evolution is that it tends to lead to populations 
that are constantly adapting to their environments. 

Imagine that we are looking at a population of mice.  These mice 
exhibit two sizes, small and large, and they exhibit two colors, light or 
dark.  Our population consists of the following eight mice: 

  
One day, cats move into the neighborhood and start eating mice.  It 
turns out that darker mice and smaller mice are harder for the cats to 
find.  Thus, different mice have different odds of avoiding the cats 
long enough to reproduce.  This affects the nature of the next 
generation of mice.  Assuming the old mice die soon after 
reproducing, the next generation of mice looks like this: 

  
Notice that large mice, light mice, and especially large, light mice, are 
having trouble surviving long enough to reproduce.  This continues in 
the next generation. 

  
Now the population consists mostly of small, dark mice, because 
these mice are better suited for survival in this environment than 
other kinds of mice.  Similarly, as the cats begin to go hungry with 
less mice to eat, perhaps those cats who prefer a lunch of grass will be 
better adapted, and pass along their grass-loving gene to a new 
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generation of cats.  This is the central concept of “survival of the 
fittest”.  More precisely, it could be phrased “survival until 
reproduction”.  In evolutionary terms, being the healthiest bachelor in 
the population is worthless, since you must reproduce in order for 
your genes to influence future generations.   

A Digital Example 
Imagine a problem with two variables, X and Y, that produce a result 
Z.  If we calculated and plotted the resulting Z for every possible X 
and Y values, we would see a solution “landscape” emerge (discussed 
also in Chapter 6: Optimization).  Since we are trying to find the 
maximum “Z”, the peaks of the function are “good” solutions, and 
the valleys are “bad” ones.   

When we use a genetic algorithm to maximize our function, we start 
by creating several possible solutions or scenarios at random (the 
black dots), rather than just one starting point.  We then calculate the 
function’s output for each scenario and plot each scenario as one dot.  
Next we rank all of the scenarios by altitude, from best to worst.  We 
keep the scenarios from the top half, and throw out the others.   

First, create a whole “population” of 
possible solutions.  Some will be better 
(higher) than others. 

Next we rank them all and 
keep the solutions which yield 
better results.   
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Each of the three remaining scenarios duplicates itself, bringing the 
number of scenarios back up to six.  Now comes the interesting part: 
Each of the six scenarios is made up of two adjustable values (plotted 
as an X and a Y coordinate).  The scenarios pair off with each other at 
random.  Now each scenario exchanges the first of its two adjustable 
values with the corresponding value from its partner.  For example: 

 
 Before After  

Scenario 1 3.4,  5.0 2.6,  5.0 

Scenario 2 2.6,  3.2 3.4,  3.2 

This operation is called crossing over, or crossover.  When our six 
scenarios randomly mate and perform crossover, we may get a new 
set of scenarios such as this: 

   
In the above example, we assume that the original three scenarios, a, 
b, and c, paired up with the duplicates, A, B, C, to form the pairs aB, 
bC, bA.  These pairs then switched values for the first adjustable cell, 
which is equivalent in our diagram to exchanging the x and y 
coordinates between pairs of dots.  The population of scenarios has 
just lived through a generation, with its cycle of “death” and “birth”. 
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Notice that some of the new scenarios result in lower output (lower 
altitude) than any we saw in the original generation.  However, one 
scenario has moved high up on the tallest hill, indicating progress.  If 
we let the population evolve for another generation, we may see a 
scene like the following: 

   
You can see how the average performance of the population of 
scenarios increases over the last generation.  In this example, there is 
not much room left for improvement.  This is because there are only 
two genes per organism, only six organisms, and no way for new 
genes to be created.  This means there is a limited gene pool.  The gene 
pool is the sum of all the genes of all organisms in the population. 

Genetic algorithms can be made much more powerful by replicating 
more of the inherent strength of evolution in the biological world; 
increasing the number of genes per organism, increasing the number 
of organisms in a population, and allowing for occasional, random 
mutations.  In addition, we can choose the scenarios that will live and 
reproduce more like they occur naturally: with a random element that 
has a slight bias towards those that perform better, instead of simply 
choosing the best performers to breed (even the biggest and strongest 
lion may get hit with lightning)! 

All of these techniques stimulate genetic refinement, and help to 
maintain diversity in the gene pool, keeping all kinds of genes 
available in case they turn out to be useful in different combinations.  
Evolver automatically implements all of these techniques.  
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Adding Constraints  
Realistic problems often have a number of constraints that must be 
met while we search for optimal answers.  For example, in the tutorial 
which seeks the transformer design with the lowest cost, one of the 
constraints is that the transformer must remain cool, radiating no 
more than 0.16 watts/cm2. 

A scenario which meets all the constraints in a model is said to be a 
viable or “valid” solution.  Sometimes it is difficult to find viable 
solutions for a model, much less to find the optimal viable solution.  
This may be because the problem is very complex, and only has a few 
viable solutions, or because the problem is over-specified (there are 
too many constraints, or some constraints conflict with others), and 
there are no viable solutions. 

There are three basic kinds of constraints: range constraints, or min-
max ranges placed on adjustable cells, hard constraints, which must 
always be met, and soft constraints which we would like to be met as 
much as possible, but which we may be willing to compromise for a 
big improvement in fitness.   
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Range Constraints 
The simplest hard constraints are the ones that are placed on the 
variables themselves.  By setting a certain range on each variable, we 
can limit the overall number of possible solutions Evolver will search 
through, resulting in a more efficient search.  Enter Min and Max 
values in the Model window’s Adjustable Cell Ranges section to tell 
Evolver the range of values that are acceptable for each variable.   

 
Evolver will only try values between 0 and 5,000 for the specified cells.   

A second type of hard constraint placed on the variables is built in to 
each of Evolver’s solving methods  (recipe, order, grouping, etc.).  For 
example, when we adjust variables using the budget solving method, 
that means Evolver is hard constrained to try only sets of values that 
add up the same amount.  Like the Ranges setting, this hard 
constraint also reduces the number of possible scenarios that must be 
searched.   

The integer option in the Model dialog box is also a hard constraint, 
telling Evolver to try only integer values (1, 2, 3 etc.) instead of real 
numbers (1.34, 2.034, etc.) when adjusting the variable values. 
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Hard Constraints - customized 
Any constraint that falls outside the Evolver variable constraints can 
be entered using the Constraint Settings dialog. 

 

NOTE: Like evolution in nature, a genetic algorithm’s problem-
solving power lies primarily in its ability to freely explore many 
combinations of likely solutions, and naturally lean towards the best 
ones.  If we forbid Evolver to even look at solutions that do not meet 
our demands, the genetic algorithm optimization process can be 
crippled. 

It is always easier for Evolver to find solutions that meet the hard 
constraints if the initial scenario in the worksheet does itself meet the 
constraints.  That lets Evolver know a starting point in the space of 
valid solutions.  If you do not know of a scenario which meets the 
constraints, run Evolver with any initial scenario and it will do its best 
to find scenarios which meet the constraints.   
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Soft Constraints  
Forcing a program to find only solutions that meet all constraints can 
result in no viable solutions being found.  Often, it is more useful to 
have an approximately viable solution, where maybe a few solutions 
fall short of meeting the constraints. 

An alternative to the use of “hard constraints” that must be met is to 
reconfigure the problem with “soft constraints”; constraints that 
Evolver will tend to meet.  These soft constraints are often more 
realistic, and allow Evolver to try many more options.  In the case of a 
highly constrained problem (where there are not very many possible 
solutions that would meet all your requirements), Evolver’s genetic 
algorithm will be more likely to find the best solution if it is allowed 
to get feedback on some solutions that are close to satisfying the 
constraints.    

When constraints are design goals, such as “produce twice as many 
forks as knives”, it is often not so important to meet them exactly: 
especially if getting a perfectly balanced production schedule 
required a day-long optimization process.  In this case, a good 
solution to the problem, that almost meets the constraint (production 
is 40% forks, 23% knives, 37% spoons), is usually better than waiting 
all day to find out that maybe there is no solution, because all the 
constraints could not possibly be met.
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Soft constraints can easily be implemented in Excel through the use of 
penalty functions.  Instead of telling Evolver that it absolutely cannot 
use certain values when looking for solutions, we allow those 
“invalid” values to be explored, but we will penalize such solutions 
accordingly.  For example, your problem may involve finding the 
most efficient way to distribute goods with the constraint that you use 
only three trucks.  A more accurate model would include a penalty 
function that allowed you to use more trucks, but added the 
tremendous cost to the bottom line.  Penalty functions can be 
specified in the Constraint Settings dialog or entered directly in your 
model by adding formulas to represent the penalty functions. 

 
Evolver has a default penalty function which is displayed when you 
first enter a soft constraint.  Any valid Excel formula, however, may 
be entered to calculate the amount of penalty to apply when the soft 
constraint is not met.  An entered penalty function should include the 
keyword deviation which represents the absolute amount by which the 
constraint has gone beyond its limit.  At the end of a trial solution 
Evolver checks if the soft constraint has been met; if not, it places the 
amount of deviation in the entered penalty formula and then 
calculates the amount of penalty to apply to the target cell value that 
is being minimized or maximized. 

The penalty amount is either added or subtracted from the value for 
the target cell in order to make it less "optimal."  For example, if 
Maximum is selected in the Find the field in the Evolver Model Dialog, 
the penalty is subtracted from the value for the target cell.   

Penalty 
Functions  

Entering a 
Penalty 
Function 
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Evolver includes an Excel worksheet PENALTY.XLS which can be 
used to evaluate the effects of different penalty functions on specific 
soft constraints and target cell results.  

 
PENALTY.XLS allows you to select a soft constraint from your model 
whose effects you wish to analyze.  You can then change the penalty 
function to see how the function will map a specific value for the 
unmet soft constraint into a value for the target cell.  For example, if 
your soft constraint is A10<100, you could use PENALTY.XLS to see 
what the target value would be if a value of 105 was calculated for cell 
A10. 

When a penalty is applied to the target cell due to an unmet soft 
constraint, the amount of penalty applied can be viewed in the 
Evolver Watcher.  In addition, penalty values are shown in 
Optimization Log worksheets, created optionally after optimization. 

Viewing the 
Effects of an 
Entered Penalty 
Function 

Viewing the 
Penalties 
Applied 
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Penalty functions may also be entered directly in your worksheet.  A 
Boolean penalty function will assign a set penalty on any scenario 
which does not meet the specified constraint.  For example, if you 
wanted the value in cell B1(supply) to be at least as great as the value 
in cell A1(demand), you could create this penalty function in another 
cell: =IF(A1>B1, -1000, 0).  If the result of this cell were added to the 
value for the target cell, than every time Evolver tried a solution 
which violated that constraint (i.e.  the supply did not meet the 
demand), the value for the target cell being maximized would show a 
value 1,000 lower than the real result.  Any solution which violated 
this constraint would produce a low value for the value for the target 
cell, and eventually Evolver would “breed out” these organisms.   

You can also use a scaling penalty function, which more accurately 
penalizes the solution relative to how badly it violates the constraint.  
This is often more practical in the real world, because a solution 
where supply did not quite meet demand would be better than a 
solution where supply didn’t even come close to the demand.  A 
simple scaling penalty function computes the absolute difference 
between the constraint’s goal value and it’s actual value.  For 
example, in the same problem where A1(demand) should not exceed 
B1(supply), we could assign the following penalty function: 
=IF(A1>B1, (A1-B1)^2, 0).  This kind of penalty function measures 
how close a constraint is to being met, and exaggerates that difference 
by squaring it.  Now our penalty changes based on how badly a 
solution violates the constraint.

Entering Soft 
Constraints In 
Your Worksheet  
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For example, suppose you have created a manufacturing model 
where one of the constraints is that the amount of wood used should 
be equal to the amount of plastic used.  This constraint is met when 
“AmountWood” = “AmountPlastic”.  We want to find solutions that 
include the same amount of both materials, so we create a penalty 
function to discourage solutions that stray from our goal.  The 
formula “=ABS(AmountWood-AmountPlastic)” computes the absolute 
(non-negative) difference between the amount of wood and the 
amount of plastic being used.  By using the ABS() function, we arrive 
at the same penalty value if AmountWood is 20 greater than 
AmountPlastic, or if AmountPlastic is 20 less than AmountWood.  
Now when we optimize the model, our goal is to minimize this 
absolute difference. 

Suppose instead we impose the following constraint: The amount of 
wood must be twice the amount of plastic.  The penalty function 
would then be:  

 =ABS(AmountWood-AmountPlastic*2) 

A different possible constraint is that the amount of wood should be 
no less than twice the amount of plastic.  While the previous example 
produced a penalty if there was too much wood, in this case we only 
care if there is not enough wood; if AmountWood is ten times 
AmountPlastic, we want no penalty to be applied.  The appropriate 
penalty function would then be: 

=IF(AmountWood<AmountPlastic*2, 
ABS(AmountPlastic*2-AmountWood),0) 

If AmountWood is at least twice as great as AmountPlastic, the 
penalty function returns 0.  Otherwise, it gives a measure of how 
much less than twice AmountPlastic the AmountWood value is. 

After you have created penalty functions to describe the soft 
constraints in your model, you can combine them with your normal 
target cell formula to obtain a constrained target cell formula.  In the 
example illustrated below, if cell C8 computes the total cost of a 
project, and cells E3:E6 contain five penalty functions, then you can 
create a formula in cell C10 such as =SUM(C8, E3:E6). 

More Examples 
of Penalty 
Functions  

Using Penalty 
Functions  
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Create a cell that adds the constraints to your total, and minimize the values for this 

cell. 
 

This adds the penalties in column E to the cost in C8 to obtain a 
constrained or penalized cost function in C10.  Note that if this were a 
maximization problem, you would subtract, rather than add, the 
penalties to the original target cell.  Now when you use Evolver, you 
simply select this constrained cell, C10, as the target cell to be whose 
value will be optimized. 

When Evolver tries to optimize a constrained value for the target cell, 
the penalty functions will tend to force the search towards scenarios 
that meet the constraints.  Eventually Evolver will end up with 
solutions that are good answers and that meet or nearly meet all 
constraints (the penalty functions will have values near 0).   

Multiple Goal Problems   
You may only specify one cell in the target cell field of Evolver, but 
you can still solve for multiple goals by creating a function that 
combines the two goals into one goal.  For example, as a polymer 
scientist, you may be trying to create a substance that is flexible, but 
also strong.  Your model computes the resulting strength, flexibility 
and weight that would result from a given mix of chemical 
combinations.  The amounts of each chemical to use are the adjustable 
variables of the problem.   

Since you want to maximize the Strength of the substance (in cell S3) 
but also maximize its Flexibility (in cell F3), you would create a new 
cell with the formula: =(S3+F3).  This would be your new target cell, 
for the higher this number went, the better the overall solution.   
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If the flexibility was more important than the strength, we could 
change the formula in the target cell to read =(S3+(F3*2)).  This way, 
scenarios which increased the flexibility by a certain amount would 
look better (produce a higher fitness “score”) than scenarios which 
increased the strength by the same amount. 

If you wanted to maximize the Strength of a substance (in cell S5) but 
also minimize its Weight (in cell W5), you would create a new cell 
with the following formula: =(S5^2)-(W5^2).  This formula would 
produce a higher number when the structure was both strong-and-
light, a lower number when the structure was weak-and-heavy, and 
equally average numbers for weak-but-light and strong-but-heavy 
scenarios.  You would therefore use this new cell as your target, and 
maximize its mean to satisfy both goals. 
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Improving Speed  
When you use Evolver to solve a problem, you are using both the 
Evolver library of compiled routines to control the process and Excel’s 
spreadsheet evaluation function to examine different scenarios.  A 
large percentage of the time used by Evolver is actually used by Excel 
as it recalculates your spreadsheet.  There are a number of things that 
can be done to speed up Evolver optimization and Excel’s 
recalculation process.   

♦ The speed of Evolver is directly related to the speed of your 
computer processor.  A Pentium/2.0ghz will be roughly twice as 
fast as the Pentium/1.0ghz.  This means that Evolver will be able 
to evaluate twice as many trials in the same amount of time.   

♦ Try to avoid re-drawing in your window.  Drawing graphics and 
numbers on the screen takes time, sometimes more than half the 
time spent optimizing! If you have charts or graphs on the sheet, 
they will slow down the re-calculate time significantly.  You can 
tell Excel not to spend time drawing while Evolver is solving a 
problem by turning off the Update Display option in the Evolver 
Model Dialog or by minimizing the Excel sheet.  You can see how 
much faster your problem is working by watching the status bar. 

♦ Once Evolver has more or less converged on a solution, and there 
has been no improvement on the best solution in a while (e.g.  last 
1000 trials), you may want to increase the mutation rate to allow 
Evolver to broaden its search for solutions, rather than continuing 
to refine solutions in the current population using primarily 
crossover.  You can increase mutation rate through the Evolver 
Watcher using the Population Settings command. 

♦ Set more tightly the ranges that the adjustable cells must fall 
between; this will create a smaller area in which Evolver must 
search for solutions, and should therefore speed up the process.  
Make sure that your ranges allow enough freedom for Evolver to 
explore all realistic solutions.    
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How Evolver's Optimization is 
Implemented   
In this section we describe more specifically how Evolver’s 
optimization algorithms are implemented.   

NOTE: You do not need to know this material in order to use Evolver.   

The majority of Evolver’s genetic algorithm technology such as the 
recipe and order solving methods are based on academic work in the 
genetic algorithm field over the last ten years.  However, most of the 
descendant solving methods included with Evolver, and the multiple 
groups of adjustable cells, backtracking, strategy, and probability 
features are unique to Evolver. 

Evolver uses a steady-state approach.  This means that only one 
organism is replaced at a time, rather than an entire “generation” 
being replaced.  This steady state technique has been shown to work 
as well or better than the generational replacement method.  To find 
out the equivalent number of “generations” Evolver has run, take the 
number of individual trials it has explored and divide that by the size 
of the population.   

When a new organism is to be created, two parents are chosen from 
the current population.  Organisms that have high fitness scores are 
more likely to be chosen as parents.   

In Evolver, parents are chosen with a rank-based mechanism.  Instead 
of some genetic algorithm systems, where a parent's chance to be 
selected for reproduction is directly proportional to its fitness, a 
ranking approach offers a smoother selection probability curve.  This 
prevents good organisms from completely dominating the evolution 
from an early point. 

Since each solving method adjusts the variables in different ways, 
Evolver employs a different crossover routine optimized for that type 
of problem.   

The basic recipe solving method performs crossover using a uniform 
crossover routine.  This means that instead of chopping the list of 
variables in a given scenario at some point and dealing with each of 
the two blocks (called “single-point” or “double-point” crossover), 
two groups are formed by randomly selecting items to be in one 
group or another.  Traditional x-point crossovers may bias the search 
with the irrelevant position of the variables, whereas the uniform 

Selection 

Crossover 
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crossover method is considered better at preserving schema, and can 
generate any schema from the two parents.   

 
The order solving method performs crossover using a similar 
algorithm to the order crossover operator described in L.  Davis’ 
Handbook of Genetic Algorithms.* This selects items randomly from 
one parent, finds their place in the other parent, and copies the 
remaining items into the second parent in the same order as they 
appear in the first parent.  This preserves some of the sub-orderings in 
the original parents while creating some new sub-orderings. 

Like crossover, mutation methods are customized for each of the 
different solving methods.  The basic recipe solving method performs 
mutation by looking at each variable individually.  A random number 
between 0 and 1 is generated for each of the variables in the organism, 
and if a variable gets a number that is less than or equal to the 
mutation rate (for example, 0.06), then that variable is mutated.  The 
amount and nature of the mutation is automatically determined by a 
proprietary algorithm.  Mutating a variable involves replacing it with 
a randomly generated value (within its valid min-max range). 

To preserve all the original values, the order solving method performs 
mutation by swapping the positions of some variables in the 
organism.  The number of swaps performed is increased or decreased 
proportionately to the increase and decrease of the mutation rate 
setting (from 0 to 1).   

Since Evolver uses a rank-ordered rather than generational 
replacement method, the worst-performing organisms are always 
replaced with the new organism that is created by selection, 
crossover, and mutation, regardless of its fitness “score”.

                                                           
* Davis, Lawrence (1991).  Handbook of Genetic Algorithms.  New 
York: Van Nostrand Reinhold. 

Mutation  

Replacement 
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Hard constraints are implemented with Palisade’s proprietary 
“backtracking” technology.  If a new offspring violates some 
externally imposed constraints, Evolver backtracks towards one of the 
parents of the child, changing the child until it falls within the valid 
solution space. 

 

Constraints 
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Appendix A: Automating 
Evolver 

VBA 
Evolver comes with a complete macro language for building custom 
applications which use Evolver's capabilities.  Evolver's custom 
functions can be used in Visual Basic for Applications (VBA) for 
setting up and running optimizations and displaying the results from 
optimizations.  For more information on this programming interface, 
see the Evolver Developer Kit help document, available via the 
Evolver Help menu. 
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Troubleshooting / Q&A 
This section answers some commonly asked questions regarding 
Evolver and keeps you up to date on common questions, problems 
and suggestions.  After reading through this section, you may call 
Palisade customer support at the numbers listed in the beginning 
chapter of this manual.   

Q: Why am I having trouble getting a valid answer from Evolver? 
A: Make sure that the Evolver dialog is set up correctly.  Most of the 

problems are associated with the setting of the variables.  Each 
group of adjustable cells should be exclusive, in that no single cell 
or range of cells is being treated with more than one solving 
method. 

Q: Can Evolver deal with concepts or categories instead of just 
numbers? 

A: Evolver can indirectly deal with any kind of data, since numbers 
are just symbols.  Use a lookup table in Excel to translate between 
integers and strings of text.  Evolver (like all computer programs) 
ultimately can only deal with numbers, but your interface may 
use those numbers to represent and display any strings. 

Q: Even though I’m filling in the dialogs the same way, and letting 
Evolver run the same amount of time, why does Evolver 
sometimes find different solutions? 

A: As is the case with natural selection in the biological world, the 
Evolver genetic algorithm will not always follow the same path 
when searching for solutions (unless you use a fixed random 
number generator seed).  Ironically it is this “unpredictability” 
that allows Evolver to solve more types of problems, and often 
find better solutions than traditional techniques.  Evolver’s 
genetic algorithm engine is not just executing a series of pre-
programmed commands, or plugging values through a 
mathematical formula, but it is efficiently experimenting with 
many random hypothetical scenarios simultaneously, and then 
refining the search through many “survival-of-the-fittest” 
operators which also contain random elements. 
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Q: Why is the best solution found not changing? 
A: You may have specified the wrong target cell in the Evolver 

Model Dialog.  Evolver is looking at this blank cell and the value 
does not change because there is no formula.  To fix this, display 
the Evolver Model Dialog and select a proper target cell; i.e. one 
that accurately reflects how good/bad each possible solution is.  
A proper target cell has a formula which depends, directly or 
indirectly, on the variables Evolver is adjusting (adjustable cells).   

Q:   Some of the cells in my spreadsheet model contain “####” 
symbols.   

A: If the cell is too small to display all of its contents, it will display 
several #### signs.  Increase the size of the cell.   

Q: Evolver is working OK, but is there any simple way to get better 
results? 

A: Consider loosening the constraints in the problem, including 
variable ranges.  Change some of your hard constraints to soft 
constraints via penalty functions (see Adding Constraints in 
Chapter 8: Evolver Extras).  Too many restrictions on what 
Evolver can try may be preventing Evolver from exploring an 
area of possibilities that may yield better results.  Remember, the 
longer you let Evolver explore the possibilities, the more likely it 
is to find the optimal solution.  For more ideas on how to fine-
tune Evolver, see Chapter 8: Evolver Extras.   

 The more scenarios Evolver can run through, the better.  Speed up 
the Evolver process by turning off the “Every Recalculation” 
option for display update.   
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Additional Learning Resources 
The following list represents a select sampling of genetic algorithm 
and artificial-life-related materials.  A star (*) indicates a Palisade 
favorite. 

Books 
• Bolles, R.C., & Beecher, M.D.  (Eds.).  (1988).  Evolution and Learning.  

Lawrence Erlbaum. 

• Beer, R.D.  (1990).  Intelligence as Adaptive Behavior: An Experiment in 
Computational Neuroethology.  Academic Press. 

• Davis, Lawrence (1987).  Genetic Algorithms and Simulated Annealing.  
Palo Alto, CA: Morgan Kaufman. 

* Davis, Lawrence (1991).  Handbook of Genetic Algorithms.  New York: Van 
Nostrand Reinhold. 

• Darwin, Charles (1985).  On The Origin of Species.  London: Penguin 
Classics.  (originally 1859) 

* Dawkins, Richard.  (1976).  The Selfish Gene.  Oxford University Press. 

• Eldredge, N.  (1989).  Macroevolutionary Dynamics: Species, Niches, and 
Adaptive Peaks.  McGraw-Hill. 

• Fogel, L., Owens, J., and Walsh, J.  (1966).  Artificial Intelligence through 
Simulated Evolution.  New York: John Wiley and Sons. 

• Goldberg, David (1989).  Genetic Algorithms in Search, Optimization, and 
Machine Learning.  Reading, MA: Addison-Wesley Publishing. 

• Holland, J.H.  (1975).  Adaptation in Natural and Artificial Systems.  Ann 
Arbor, MI: University of Michigan Press.   

• Koza, John (1992).  Genetic Programming.  Cambridge, MA: MIT Press. 

* Langton, C.L.  (1989).  Artificial Life.  MIT Press.  [ALife I] 

• Levy, Steven (1992).  Artificial Life.  New York: Pantheon. 

• Meyer, J.-A., & S.W.  Wilson (Eds.).  (1991).  Proceedings of the First 
International Conference on Simulation of Adaptive Behavior: From 
Animals to Animats.  MIT Press/Bradford Books. 

* Proceedings of the Sixth International Conference (ICGA) on Genetic 
Algorithms (1995).  San Mateo, CA: Morgan Kaufman Publishing.  (Also 
available; the first five ICGA proceedings). 

• Proceedings of the Workshop on Artificial Life (1990).  Christopher G.  
Langton, Senior Editor.  Reading, MA: Addison-Wesley Publishing. 
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• Rawlins, Gregory (1991).  Foundations of Genetic Algorithms.  San Mateo, 
CA: Morgan Kaufman Publishing. 

• Richards, R.J.  (1987).  Darwin and the Emergence of Evolutionary Theories 
of Mind and Behavior.  U.  Chicago Press. 

• Williams, G.C.  (1966).  Adaptation and Natural Selection.  Princeton U.  
Press. 

Articles 
* Antonoff, Michael (October, 1991).  Software by Natural Selection.  Popular 

Science, p.  70-74. 

• Arifovic, Jasmina (January, 1994).  Genetic Algorithm Learning and the 
Cobweb Model.  In Journal of Economic Dynamics & Control v18 p.3 

* Begley, S (May 8, 1995).  “Software au Naturel” In Newsweek p.  70 

• Celko, Joe (April, 1993).  Genetic Algorithms and Database Indexing.  In Dr.  
Dobb’s Journal p.30 

• Ditlea, Steve (November, 1994).  Imitation of Life.  In Upside Magazine p.48 

• Gordon, Michael (June, 1991).  User-based Document Clustering by 
Redescribing Subject Descriptions with a Genetic Algorithm.  In Journal 
of the American Society for Information Science v42 p.311 

• Hedberg, Sara (September, 1994).  Emerging Genetic Algorithms.  In AI 
Expert, p.  25-29.   

• Hinton, G.E., & Nowlan, S.J.  (1987).  How Learning Can Guide Evolution.  
In Complex Systems 1: p.495-502. 

* Kennedy, Scott (June, 1995).  Genetic Algorithms: Digital Darwinism.  In 
Hitchhicker’s Guide to Artificial Intelligence  Miller Freeman Publishers  

• Kennedy, Scott (December, 1993).  Five Ways to a Better GA.  In AI Expert, 
p.  35-38 

• Lane, A (June, 1995).  The GA Edge in Analyzing Data. In AI Expert p.11 

• Lee, Y.C.  (Ed.).  (1988).  Evolution, learning, and cognition.  In World 
Scientific. 

• Levitin, G and Rubinovitz, J (August, 1993).  Genetic Algorithm for Linear 
and Cyclic Assignment Problem.  In Computers & Operations Research 
v20 p.575 

• Marler, P., & H.S.  Terrace.  (Eds.).  (1984).  The Biology of Learning.  
Springer-Verlag. 

• Mendelsohn, L.  (December, 1994) Evolver Review In Technical Analysis of 
Stocks and Commodities.  p.33 

• Maynard Smith, J.  (1987).  When Learning Guides Evolution.  In Nature 
329: p.761-762. 
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• Murray, Dan (June, 1994).  Tuning Neural Networks with Genetic 
Algorithms.  In AI Expert p.27 

• Wayner, Peter (January, 1991).  Genetic Algorithms: Programming Takes a 
Valuable Tip from Nature.  In Byte Magazine v16 p.361 

Magazines & Newsletters 
• Advanced Technology for Developers (monthly newsletter).  Jane 

Klimasauskas, Ed., High-Tech Communications, 103 Buckskin Court, 
Sewickley, PA 15143  (412) 741-7699 

• AI Expert (monthly magazine).  Larry O’Brien, Ed., 600 Harrison St., San 
Francisco, CA 94107  (415) 905-2234.  *Although AI Expert ceased 
publishing in the spring of 1995, its back issues contain many useful 
articles.  Miller-Freeman, San Francisco. 

• Applied Intelligent Systems (bimonthly newsletter).  New Science 
Associates, Inc.  167 Old Post Rd., Southport, CT 06490  (203) 259-1661 

• Intelligence (monthly newsletter).  Edward Rosenfeld, Ed., PO Box 20008, 
New York, NY 10025-1510  (212) 222-1123 

• PC AI Magazine (monthly magazine).  Joseph Schmuller, Ed., 3310 West 
Bell Rd., Suite 119, Phoenix, AZ 85023  (602) 971-1869 

• Release 1.0 (monthly newsletter).  Esther Dyson, Ed., 375 Park Avenue, 
New York, NY 10152  (212) 758-3434 

• Sixth Generation Systems (monthly newsletter).  Derek Stubbs, Ed., PO Box 
155, Vicksburg, MI, 49097  (616) 649-3592 
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Introduction to Simulation 
If you are new to Simulation or if you would just like some more 
background information on the technique, the following books and 
articles might be helpful: 

* Baird, Bruce F. Managerial Decisions Under Uncertainty: John Wiley & Sons, 
Inc. 1989. 

* Clemen, Robert T. Making Hard Decisions: Duxbury Press, 1990. 

• Hertz, D.B. "Risk Analysis in Capital Investment": HBR Classic, Harvard 
Business Review, September/October 1979, pp. 169-182. 

• Hertz, D.B. and Thomas, H. Risk Analysis and Its Applications: John Wiley 
and Sons, New York, NY, 1983. 

• Megill, R.E. (Editor). Evaluating and Managing Risk: PennWell Books, 
Tulsa, OK, 1984. 

• Megill, R.E. An Introduction to Risk Analysis, 2nd Ed.: PennWell Books, 
Tulsa, OK, 1985. 

• Morgan, M. Granger and Henrion, Max, with a chapter by Mitchell Small, 
Uncertainty: Cambridge University Press, 1990. 

• Newendorp, P.D. Decision Analysis for Petroleum Exploration: Petroleum 
Publishing Company, Tulsa, Okla., 1975. 

• Raiffa, H. Decision Analysis: Addison-Wesley, Reading, Mass., 1968. 
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Technical References to Simulation and Monte 
Carlo Techniques 
If you would like a more in depth examination of simulation, 
sampling techniques and statistical theory, the following books may 
be useful: 

• Iman, R. L., Conover, W.J. "A Distribution-Free Approach To Inducing Rank 
Correlation Among Input Variables":  Commun. Statist.-Simula. 
Computa.(1982) 11(3), 311-334 

* Law, A.M. and Kelton, W.D. Simulation Modeling and Analysis: McGraw-
Hill, New York, NY, 1991,1982. 

Rubinstein, R.Y. Simulation and the Monte Carlo Method: John Wiley and 
Sons, New York, NY, 1981. 

Technical References to Latin Hypercube 
Sampling Techniques 
If you are interested in the relatively new technique of Latin 
Hypercube sampling, the following sources might be helpful: 

• Iman, R.L., Davenport, J.M., and Zeigler, D.K. "Latin Hypercube Sampling 
(A Program Users Guide)": Technical Report SAND79-1473, Sandia 
Laboratories, Albuquerque (1980). 

• Iman, R.L. and Conover, W.J. "Risk Methodology for Geologic Displosal of 
Radioactive Waste: A Distribution - Free Approach to Inducing 
Correlations Among Input Variables for Simulation Studies": Technical 
Report NUREG CR 0390, Sandia Laboratories, Albuquerque (1980). 

• McKay, M.D, Conover, W.J., and Beckman, R.J. "A Comparison of Three 
Methods for Selecting Values of Input Variables in the Analysis of 
Output from a Computer Code": Technometrics (1979) 211, 239-245. 

• Startzman, R. A. and Wattenbarger, R.A. "An Improved Computation 
Procedure for Risk Analysis Problems With Unusual Probability 
Functions": SPE Hydrocarbon Economics and Evaluation Symposium 
Proceedings, Dallas (1985). 
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Examples and Case Studies Using Simulation 
If you would like to examine case studies showing the use of 
Simulation in real life situations, see the following: 

Hertz, D.B. and Thomas, H. Practical Risk Analysis - An Approach Through 
Case Histories: John Wiley and Sons, New York, NY, 1984. 

* Murtha, James A. Decisions Involving Uncertainty, An @RISK Tutorial for 
the Petroleum Industry: James A. Murtha, Houston, Texas, 1993 

• Newendorp, P.D. Decision Analysis for Petroleum Exploration: Petroleum 
Publishing Company, Tulsa, Okla., 1975. 

• Pouliquen, L.Y. Risk Analysis in Project Appraisal: World Bank Staff 
Occasional Papers Number Eleven. John Hopkins Press, Baltimore, MD, 
1970. 

* Trippi, Robert R. and Truban, Efraim, Neural Networks: In Finance and 
Investing: Probus Publishing Co., 1993 
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For additional information on any term, refer to the Evolver index in 
the following chapter. 

A mathematically based step-by-step method of solving a certain kind 
of problem.  All computer programs are built by combining many 
algorithms. 

A spreadsheet cell whose value can be adjusted by Evolver to try to 
optimize the value of the target cell.  An adjustable cell is a variable 
value and should always contain a simple number, rather than an 
equation. 

slang Simple software programs that find the inputs which produce a 
desired output using a combination of linear programming 
techniques, or basic hill-climbing algorithms.  Baby solvers often take 
guesses, then refine their answer to arrive at a “local” solution rather 
than a “global” solution. 

The cell is the basic unit of a spreadsheet in which data is stored.  
There are up to 256 columns and 16,000 rows, for a total of more than 
4 million cells, in each Excel worksheet. 

Constraints are conditions which should be met (soft constraints) or 
must be met (hard constraints) for a scenario to be considered valid. 

A probability distribution where any value between the minimum 
and maximum is possible (has finite probability). 
See discrete distribution 

In a genetically based context, crossing over is an exchange of 
equivalent genetic material between homologous chromatids during 
meiosis.  In Evolver, the term crossover is used to express the 
computational equivalent to crossing over, where an exchange 
between variables yields new combinations of scenarios. 

A cumulative distribution, or a cumulative distribution function, is 
the set of points, each of which equals the integral of a probability 
distribution starting at the minimum value and ending at the 
associated value of the random variable. 
See cumulative frequency distribution, probability distribution

Algorithm 

Adjustable Cell 

Baby Solver 

Cell 

Constraints 

Continuous 
Distribution 

Crossover 

Cumulative 
Distribution 
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A cumulative frequency distribution is the term for the output and 
the input cumulative distributions of Evolver.  A cumulative 
distribution is constructed by cumulating the frequency 
(progressively adding bar heights) across the range of a frequency 
distribution.  A cumulative distribution can be an "upwardly sloping" 
curve, where the distribution describes the probability of a value less 
than or equal to any variable value.  Alternatively, the cumulative 
curve may be a "downwardly sloping" curve, where the distribution 
describes the probability of a value greater than or equal to any 
variable value. 
See cumulative distribution 

A dependent variable is one that depends in some way on the values 
of other variables in the model under consideration.  In one form, the 
value of an uncertain dependent variable can be calculated from an 
equation as a function of other uncertain model variables.  
Alternatively, the dependent variable may be drawn from a 
distribution based on the random number which is correlated with a 
random number used to draw a sample of an independent variable. 
See independent variable 

The term deterministic indicates that there is no uncertainty 
associated with a given value or variable. 

The window on a computer screen that requests the user to provide 
information.  Also called dialog box.  Evolver contains two major 
dialogs; the Evolver Model Dialog, and the Adjustable Cells Dialog.   

A probability distribution where only a finite number of discrete 
values are possible between the minimum and maximum. 
See continuous distribution 

The basic unit of data entry.  Depending on its field type, a field can 
contain text, pictures, or numbers.  Most fields in the Evolver dialogs 
ask the user to input the location of spreadsheet cells, or options 
regarding how Evolver should behave. 

This is a formula which can calculate how good or bad any proposed 
solution is to a given problem.  The term is often used in the genetic 
algorithm field as an analogy to “fitness” in biological selection.  
Designing an accurate fitness function is critical when using a genetic 
algorithm to solve a problem.  
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In Excel, a function is a pre-defined formula that takes a value, 
performs an operation, and returns a value.  Excel contains hundreds 
of built-in formulas (like “SUM”) that save time, space, and are faster.  
For example, instead of typing A1+ A2+ A3+ A4+ A5+ A6, you can 
type SUM(A1:A6) and get the same result. 

Frequency distribution is the proper term for the output probability 
distributions  and the input histogram distributions (HISTOGRM) of 
Evolver.  A frequency distribution is constructed from data by 
arranging values into classes and representing the frequency of 
occurrence in any class by the height of the bar.  The frequency of 
occurrence corresponds to probability. 

A procedure for improving results of some operation by repeatedly 
trying several possible solutions and reproducing and mixing the 
components of the better solutions.  The process is inspired by, and 
crudely similar to, the process of evolution in the biological world, 
where the fittest survive to reproduce. 

In the field of genetic algorithms, each completely new population of 
“offspring” solutions is a new “generation”.  Some genetic algorithm 
routines mate all members of a population at once, creating a whole 
new “generation” of offspring organisms that replaces the previous 
population.  Evolver evaluates and replaces one organism at a time 
(rank-ordered) and thus does not use the term “generation” in its 
documentation.  This steady state technique works as well as 
generational replacement.   

In biology, this is the genetic constitution of an individual.  The term 
usually refers to the sum total of the individual’s genes.  In the study 
of GAs, genotype is used to describe the artificial “chromosome” that 
is evaluated as a possible solution to the problem.   

The largest possible value for a given function.  Complex functions or 
models may have many local maxima but only one global maximum. 

Each set of variables, along with the way they will be treated, is one 
group of adjustable cells.  Evolver will list all groups of adjustable 
cells in the variables section of the Evolver Model dialog.  This 
architecture allows complex problems to be built and described as 
several groups of adjustable cells.   

A constraint that must always be met.  For example, the ranges for 
variables in a recipe problem are hard constraints; a variable set to 
range between 10 and 20 can never have a value less than 10 or 
greater than 20.  See also soft constraints. 
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Higher moments are statistics of a probability distribution. The term 
generally refers to the skewness and kurtosis, the third and fourth 
moments respectively.  The first and second moments are the mean 
and the standard deviation respectively.  See skewness, kurtosis, mean, 
standard deviation 

An optimization procedure that starts from a given scenario and 
repeatedly moves the scenario in small steps in the direction that will 
most improve it.  Hill-climbing algorithms are fast and simple, but 
have two drawbacks.  First, much work may be needed to find the 
direction of most improvement.  Second, the algorithms usually climb 
the nearest hill, or local maximum.  This prevents the algorithm from 
finding the global maximum in a difficult problem. 

An independent variable is one that does not depend in any way on 
the values of any other variable in the model under consideration.  
The value of an uncertain independent variable is determined by 
drawing a sample from the appropriate probability distribution.  This 
sample is drawn without regard to any other random sample drawn 
for any other variable in the model. 
See dependent variable 

An iteration is one recalculation of the user's model during a 
simulation.  A simulation consists of many recalculations or iterations.  
During each iteration, all uncertain variables are sampled once 
according to their probability distributions, and the model is 
recalculated using these sampled values. 
Also known as a simulation trial 

Kurtosis is a measure of the shape of a distribution.  Kurtosis 
indicates how flat or peaked the distribution is.  The higher the 
kurtosis value, the more peaked the distribution. 
See skewness 

Latin Hypercube sampling is a relatively new stratified sampling 
technique used in simulation modeling.  Stratified sampling 
techniques, as opposed to Monte Carlo type techniques, tend to force 
convergence of a sampled distribution in fewer samples. 
See Monte Carlo 

The largest possible value for a given function within a given range of 
values.  A local maximum exists at a set of values for variables in a 
function if slightly changing any or all of the variables’ values 
produces a smaller result from the function.  (Compare with global 
maximum). 
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The mean of a set of values is the sum of all the values in the set 
divided by the total number of values in the set.  Synonym:  expected 
value 

For the purposes of this manual, a model is a numeric representation, 
in Excel, of a real-world situation.   
 
Monte Carlo refers to the traditional method of sampling random 
variables in simulation modeling.  Samples are chosen completely 
randomly across the range of the distribution, thus necessitating large 
numbers of samples for convergence for highly skewed or long-tailed 
distributions.  
See Latin Hypercube 
The most likely value or mode is the value that occurs most often in a 
set of values.  In a histogram and a result distribution, it is the center 
value in the class or bar with the highest probability. 

In the biological world, gene mutation is the source of variation 
needed for effective natural selection.  Likewise, a genetic algorithm 
uses mutation techniques to maintain diversity in a population of 
possible scenarios. 

The process of finding values for variables so that the output of a 
function can be maximized (made as large as possible) or minimized 
(made as small as possible).  Optimization by equation solving is easy 
for smoothly changing functions with few variables, but extremely 
difficult for many real-world problems.  Tough problems generally 
need a search mechanism.  Evolver uses an optimizing search 
mechanism based upon a genetic algorithm. 

A block of memory in a population that stores a set of variable values 
(scenario). 

A spreadsheet equation that Evolver can use to penalize scenarios that 
fail to meet some criteria.  Penalty functions are used to help 
minimize side effects from scenarios or to achieve multiple goals.  
Unlike a hard constraint, a penalty function does allow invalid 
solutions to be explored; it just makes those solutions look bad so the 
population will evolve away from those solutions.  Boolean penalties 
are either on or off, penalizing all invalid solutions by the same 
amount.  Scaling penalties are more fluid, assigning a penalty in 
proportion to how badly a constraint is violated. 

A percentile is an increment of the values in a data set.  Percentiles 
divide the data into 100 equal parts, each containing one percent of 
the total values.  The 60th percentile, for example, is the value in the 
data set for which 60% of the values are below it and 40% are above. 
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In biology, this is an observable trait of an individual which arises 
from interactions between genes, and between genes and the 
environment.  In the study of GAs, phenotype is used to describe the 
individual variables or “genes” that make up one complete solution 
or “chromosome”.  (see Genotype) 

The entire set of scenarios that Evolver keeps in memory from which 
new scenarios are generated.  Evolver keeps one population of 
possible solutions for each group of adjustable cells in a system.   

Probability is a measure of how likely a value or event is to occur.  It 
can be measured from simulation data as frequency by calculating the 
number of occurrences of the value or event divided by the total 
number of occurrences.  This calculation returns a value between 0 
and 1 which then can be converted to percentage by multiplying by 
100. 
See frequency distribution, probability distribution 

A probability distribution or probability density function is the 
proper statistical term for a frequency distribution constructed from 
an infinitely large set of values where the class size is infinitesimally 
small. 
See frequency distribution 

A random number generator is an algorithm for choosing random 
numbers, typically in the range of 0 to 1.  These random numbers are 
equivalent to samples drawn from a uniform distribution with a 
minimum of 0 and a maximum of 1.  Such random numbers are the 
basis for other routines that convert them into samples drawn from 
specific distribution types. 
See random sample, seed 

A random sample is a value that has been chosen from a probability 
distribution describing a random variable.  Such a sample is drawn 
randomly according to a sampling "algorithm".  The frequency 
distribution constructed from a large number of random samples 
drawn by such an algorithm will closely approximate the probability 
distribution for which the algorithm was designed. 

   In Evolver: 

The user sets the range, or the highest and lowest value that Evolver 
is allowed to try when adjusting a certain variable.  Although this is 
not necessary to solve a problem, setting these ranges limits the 
possibilities and hence narrows Evolver’s search. 

   In Excel: 
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A block of contiguous cells in a worksheet that is defined by the 
upper left cell and the lower right cell (e.g. A5:C9 describes a range of 
15 cells). 
A set of values for the variables in a spreadsheet model.  Each 
scenario most often represents one possible solution. 

Simulation is a technique whereby a model, such as a Excel 
worksheet, is calculated many times with different input values with 
the intent of getting a complete representation of all possible scenarios 
that might occur in an uncertain situation. 

Skewness is a measure of the shape of a distribution.  Skewness 
indicates the degree of asymmetry in a distribution.  Skewed 
distributions have more values to one side of the peak or most likely 
value — one tail is much longer than the other.  A skewness of 0 
indicates a symmetric distribution, while a negative skewness means 
the distribution is skewed to the left.  Positive skewness indicates a 
skew to the right.  See kurtosis 

Any given system contains many input variables producing an 
output.  In Evolver, a “solution” will more often refer to one of the 
possible combinations of variables rather than the best combination.   

When constraints do not necessarily have to be met, they can be made 
soft instead of hard.  This is done by specifying a penalty function in 
Evolver or adding a penalty function to the target cell’s fitness 
function. 

It is often better for constraints to be soft if possible.  This is because: 
1.  Evolver can usually solve softly-constrained problems faster, and 
2. a soft-constraint model often will find a great solution that almost 
meets the soft constraints, which can be more valuable than a not-so-
great solution that does meet hard constraints. 

Evolver includes six of these methods, each using a customized 
algorithm to solve a specific type of problem.  For each set of variables 
selected in a problem, the user must assign the solving method to be 
used on those variables.  The six solving methods are: grouping, 
order, recipe, budget, project, and schedule.   

The standard deviation is a measure of how widely dispersed the 
values are in a distribution.  Equals the square root of the variance. 
See variance 

Stochastic is a synonym for uncertain, risky. 
See risk, deterministic 

The status bar appears at the bottom of the Excel window, and 
displays Evolver’s current activity.  
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The idea that organisms better suited to an environment are more 
likely to live long enough to reproduce and spread their genes 
through the population’s next generation. 

The spreadsheet cell whose value we want to minimize or maximize.  
This cell is set in the Evolver Model dialog (select Evolver Model 
Definition command or the Model icon). 

The process of Evolver generating a value for each variable in the 
problem, then recalculating the scenario for evaluation. 
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