

Guide to Using

Evolver
The Genetic Algorithm Solver

for Microsoft Excel

Version 5.7
September, 2010

Palisade Corporation
798 Cascadilla St.
Ithaca, NY USA 14850
(607) 277-8000
(607) 277-8001 (fax)
http://www.palisade.com (website)
sales@palisade.com (e-mail)

Copyright Notice
Copyright © 2010, Palisade Corporation.

Trademark Acknowledgments
Microsoft, Excel and Windows are registered trademarks of Microsoft,
Inc.
IBM is a registered trademark of International Business Machines, Inc.
Palisade, Evolver, TopRank, BestFit and RISKview are registered
trademarks of Palisade Corporation.
RISK is a trademark of Parker Brothers, Division of Tonka
Corporation and is used under license.

Chapter 1: Introduction i

Table of Contents

Chapter 1: Introduction 1

Introduction...3

Installation Instructions ...7

Chapter 2: Background 11

What Is Evolver?...13

Chapter 3: Evolver: Step-by-Step 19

Introduction...21

The Evolver Tour ..23

Chapter 4: Example Applications 41

Introduction...43

Advertising Selection ...45

Alphabetize..47

Assignment of Tasks..49

Bakery..51

Budget Allocation ...53

Chemical Equilibrium...55

Class Scheduler..57

Code Segmenter ...59

Dakota: Routing With Constraints ..63

ii

Job Shop Scheduling... 65

Radio Tower Location.. 67

Portfolio Balancing .. 69

Portfolio Mix.. 71

Power Stations ... 73

Purchasing.. 75

Salesman Problem ... 77

Space Navigator ... 79

Trader .. 81

Transformer .. 83

Transportation .. 85

Chapter 5: Evolver Reference Guide 87

Model Definition Command... 89

Optimization Settings Command.. 113

Start Optimization Command.. 121

Utilities Commands.. 123

Evolver Watcher ... 127

Chapter 6: Optimization 137

Optimization Methods.. 139

Excel Solver .. 145

Types of Problems ... 149

Chapter 7: Genetic Algorithms 153

Introduction .. 155

Chapter 1: Introduction iii

History..155

A Biological Example ...158

A Digital Example ...159

Chapter 8: Evolver Extras 163

Adding Constraints ..165

Improving Speed...175

How Evolver's Optimization is Implemented177

Appendix A: Automating Evolver 181

Appendix B: Troubleshooting / Q&A 183

Troubleshooting / Q&A ..185

Appendix C: Additional Resources 187

Glossary 195

Index 205

iv

Chapter 1: Introduction 1

Chapter 1: Introduction

Introduction...3
Before You Begin..3
What the Package Includes...3
About This Version ...3
Working with your Operating Environment4
If You Need Help ...4

Before Calling ...4
Contacting Palisade..5
Student Versions ..6

Evolver System Requirements...6
Installation Instructions ...7

General Installation Instructions ..7
Removing Evolver from Your Computer7

The DecisionTools Suite...8
Setting Up the Evolver Icons or Shortcuts...9
Macro Security Warning Message on Startup9
Other Evolver Information...10

Evolver Readme ..10
Evolver Tutorial ..10

Learning Evolver ..10

Chapter 1: Introduction 2

Chapter 1: Introduction 3

Introduction
Evolver represents the fastest, most advanced commercial genetic
algorithm-based optimizer ever available. Evolver, through the
application of powerful genetic algorithm-based optimization
techniques, can find optimal solutions to problems which are
"unsolvable" for standard linear and non-linear optimizers. Evolver
is offered in two versions - professional and industrial - to allow you
to select the optimizer with the capacity you need

The Evolver User’s Guide, which you are reading now, offers an
introduction to Evolver and the principles behind it, then goes on to
show several example applications of Evolver’s unique genetic
algorithm technology. This complete manual may also be used as a
fully-indexed reference guide, with a description and illustration of
each Evolver feature.

Before You Begin
Before you install and begin working with Evolver, make sure that
your Evolver package contains all the required items, and check that
your computer meets the minimum requirements for proper use.

What the Package Includes
Evolver may be purchased on its own and also ships with the
DecisionTools Suite Professional and Industrial versions. The Evolver
CD-ROM contains the Evolver Excel add-in, several Evolver
examples, and a fully-indexed Evolver on-line help system. The
DecisionTools Suite Professional and Industrial versions contain all of
the above plus additional applications.

About This Version
This version of Evolver can be installed as a 32-bit program for
Microsoft Excel 2000 or higher.

4 Introduction

Working with your Operating Environment
This User’s Guide assumes that you have a general knowledge of the
Windows operating system and Excel. In particular:

♦ You are familiar with your computer and using the mouse.
♦ You are familiar with terms such as icons, click, double-click, menu,

window, command and object.
♦ You understand basic concepts such as directory structures and file

naming.

If You Need Help
Technical support is provided free of charge for all registered users of
Evolver with a current maintenance plan, or is available on a per
incident charge. To ensure that you are a registered user of Evolver,
please register online at
http://www.palisade.com/support/register.asp.

If you contact us by telephone, please have your serial number and
User’s Guide ready. We can offer better technical support if you are
in front of your computer and ready to work.

Before contacting technical support, please review the following
checklist:
• Have you referred to the on-line help?
• Have you checked this User's Guide and reviewed the on-line

multimedia tutorial?
• Have you read the README.WRI file? It contains current information

on Evolver that may not be included in the manual.
• Can you duplicate the problem consistently? Can you duplicate the

problem on a different computer or with a different model?
• Have you looked at our site on the World Wide Web? It can be found at

http://www.palisade.com. Our Web site also contains the latest FAQ
(a searchable database of tech support questions and answers) and
Evolver patches in our Technical Support section. We recommend
visiting our Web site regularly for all the latest information on Evolver
and other Palisade software.

Before Calling

Chapter 1: Introduction 5

Palisade Corporation welcomes your questions, comments or
suggestions regarding Evolver. Contact our technical support staff
using any of the following methods:
• Email us at support@palisade.com.
• Telephone us at (607) 277-8000 any weekday from 9:00 AM to 5:00 PM,

EST. Follow the prompt to reach technical support.
• Fax us at (607) 277-8001.
• Mail us a letter at:

Technical Support
Palisade Corporation
798 Cascadilla St.
Ithaca, NY 14850 USA

If you want to contact Palisade Europe:
• Email us at support@palisade-europe.com.
• Telephone us at +44 1895 425050 (UK).
• Fax us at +44 1895 425051 (UK).
• Mail us a letter at:

Palisade Europe
31 The Green
West Drayton
Middlesex
UB7 7PN
United Kingdom

If you want to contact Palisade Asia-Pacific:
• Email us at support@palisade.com.au.
• Telephone us at + 61 2 9252 5922 (AU).
• Fax us at + 61 2 9252 2820 (AU).
• Mail us a letter to:

Palisade Asia-Pacific Pty Limited
Suite 404, Level 4
20 Loftus Street
Sydney NSW 2000
Australia

Regardless of how you contact us, please include the product name,
version and serial number. The exact version can be found by
selecting the Help About command on the Evolver menu in Excel.

Contacting
Palisade

6 Introduction

Telephone support is not available with the student version of
Evolver. If you need help, we recommend the following alternatives:

♦ Consult with your professor or teaching assistant.
♦ Log on to http://www.palisade.com for answers to frequently asked

questions.
♦ Contact our technical support department via e-mail or fax.

Evolver System Requirements
System requirements for Evolver include:
• Pentium PC or faster with a hard disk.
• Microsoft Windows 2000 SP4 or higher.
• Microsoft Excel Version 2000 or higher.

Student
Versions

Chapter 1: Introduction 7

Installation Instructions
Evolver is an add-in program to Microsoft Excel. By adding
additional commands to the Excel menu bars, Evolver enhances the
functionality of the spreadsheet program.

General Installation Instructions
The Setup program copies the Evolver system files into a directory
you specify on your hard disk. To run the Setup program in
Windows 2000 or higher:

1) Insert the Evolver or DecisionTools Suite Professional or Industrial
version CD-ROM in your CD-ROM drive

2) Click the Start button, click Settings and then click Control Panel

3) Double-click the Add/Remove Programs icon

4) On the Install/Uninstall tab, click the Install button

5) Follow the Setup instructions on the screen

If you encounter problems while installing Evolver, verify that there
is adequate space on the drive to which you’re trying to install. After
you’ve freed up adequate space, try rerunning the installation.

If you wish to remove Evolver (or the DecisionTools Suite) from your
computer, use the Control Panel’s Add/Remove Programs utility and
select the entry for @RISK or the DecisionTools Suite.

Removing
Evolver from
Your Computer

8 Installation Instructions

The DecisionTools Suite
Evolver can be used with the DecisionTools Suite, a set of products for
risk and decision analysis available from Palisade Corporation. The
default installation procedure of Evolver puts Evolver in a
subdirectory of a main “Program Files\Palisade” directory. This is
quite similar to how Excel is often installed into a subdirectory of a
“Microsoft Office” directory.

One subdirectory of the Program Files\Palisade directory will be the
Evolver directory (by default called Evolver5). This directory
contains the Evolver add-in program file (EVOLVER.XLA) plus
example models and other files necessary for Evolver to run. Another
subdirectory of Program Files\Palisade is the SYSTEM directory
which contains files needed by every program in the DecisionTools
Suite, including common help files and program libraries.

Chapter 1: Introduction 9

Setting Up the Evolver Icons or Shortcuts
In Windows, setup automatically creates a Evolver command in the
Programs menu of the Taskbar. However, if problems are
encountered during Setup, or if you wish to do this manually another
time, follow these directions:

1) Click the Start button, and then point to Settings.

2) Click Taskbar, and then click the Start Menu Programs tab.

3) Click Add, and then click Browse.

4) Locate the file EVOLVER.EXE and double click it.

5) Click Next, and then double-click the menu on which you want the
program to appear.

6) Type the name “Evolver”, and then click Finish.

Macro Security Warning Message on Startup
Microsoft Office provides several security settings (under
Tools>Macro>Security) to keep unwanted or malicious macros from
being run in Office applications. A warning message appears each
time you attempt to load a file with macros, unless you use the lowest
security setting. To keep this message from appearing every time you
run a Palisade add-in, Palisade digitally signs their add-in files. Thus,
once you have specified Palisade Corporation as a trusted source,
you can open any Palisade add-in without warning messages. To do
this:

• Click Always trust macros from this source when a Security
Warning dialog (such as the one below) is displayed when
starting Evolver.

10 Installation Instructions

Other Evolver Information
Additional information on Evolver can be found in the following
sources:

This file contains a quick summary of Evolver, as well as any late-
breaking news or information on the latest version of your software.
View the Readme file by selecting the Windows Start Menu/
Programs/ Palisade DecisionTools/ Readmes and clicking on Evolver
5.0 – Readme. It is a good idea to read this file before using Evolver.

The Evolver on-line tutorial provides first-time users with a quick
introduction of Evolver and genetic algorithms. The presentation
takes only a few minutes to view. See the Learning Evolver section
below for information on how to access the tutorial.

Learning Evolver
The quickest way to become familiar with Evolver is by using the on-
line Evolver Tutorial, where experts guide you through sample
models in movie format. This tutorial is a multi-media presentation
on the main features of Evolver.

The tutorial can be run by selecting the Evolver Help menu Getting
Started Tutorial command.

Evolver Readme

Evolver Tutorial

Chapter 2: Background 11

Chapter 2: Background

What Is Evolver?...13
How does Evolver work? ..14

Genetic Algorithms..14
What Is Optimization? ..15
Why Build Excel Models?...16
Why Use Evolver? ..16

No More Guessing ...16
More Accurate, More Meaningful ...17
More Flexible...17
More Powerful ..17
Easier to Use ..18
Cost Effective...18

Chapter 2: Background 12

Chapter 2: Background 13

What Is Evolver?
The Evolver software package provides users with an easy way to
find optimal solutions to virtually any type of problem. Simply put,
Evolver finds the best inputs that produce a desired output. You can
use Evolver to find the right mix, order, or grouping of variables that
produces the highest profits, the lowest risk, or the most goods from
the least amount of materials. Evolver is most often used as an add-in
to the Microsoft Excel spreadsheet program; users set up a model of
their problem in Excel, then call up Evolver to solve it.

You must first model your problem in Excel, then describe it to the Evolver add-in.

Excel provides all of the formulas, functions, graphs, and macro
capabilities that most users need to create realistic models of their
problems. Evolver provides the interface to describe the uncertainty
in your model and what you are looking for, and provides the engines
that will find it. Together, they can find optimal solutions to virtually
any problem that can be modeled.

14 What Is Evolver?

How does Evolver work?
Evolver uses a proprietary set of genetic algorithms to search for
optimum solutions to a problem.

Genetic algorithms are used in Evolver to find the best solution for
your model. Genetic algorithms mimic Darwinian principles of
natural selection by creating an environment where hundreds of
possible solutions to a problem can compete with one another, and
only the “fittest” survive. Just as in biological evolution, each solution
can pass along its good “genes” through “offspring” solutions so that
the entire population of solutions will continue to evolve better
solutions.

As you may already realize, the terminology used when working with
genetic algorithms is often similar to that of its inspiration. We talk
about how “crossover” functions help focus the search for solutions,
“mutation” rates help diversify the “gene pool”, and we evaluate the
entire “population” of solutions or “organisms”. To learn more about
how Evolver’s genetic algorithm works, see Chapter 7 - Genetic
Algorithms.

Genetic
Algorithms

Chapter 2: Background 15

What Is Optimization?
Optimization is the process of trying to find the best solution to a
problem that may have many possible solutions. Most problems
involve many variables that interact based on given formulas and
constraints. For example, a company may have three manufacturing
plants, each manufacturing different quantities of different goods.
Given the cost for each plant to produce each good, the costs for each
plant to ship to each store, and the limitations of each plant, what is
the optimal way to adequately meet the demand of local retail stores
while minimizing the transportation costs? This is the sort of question
that optimization tools are designed to answer.

Optimization often deals with searching for the
combination that yields the most from given resources.

In the example above, each proposed solution would consist of a
complete list of what goods made by what manufacturing plant get
shipped in what truck to what retail store. Other examples of
optimization problems include finding out how to produce the
highest profit, the lowest cost, the most lives saved, the least noise in a
circuit, the shortest route between a set of cities, or the most effective
mix of advertising media purchases. An important subset of
optimization problems involves scheduling, where the goals may
include maximizing efficiency during a work shift or minimizing
schedule conflicts of groups meeting at different times. To learn more
about optimization, see Chapter 6 - Optimization.

16 What Is Evolver?

Why Build Excel Models?
To increase the efficiency of any system, we must first understand
how it behaves. This is why we construct a working model of the
system. Models are necessary abstractions when studying complex
systems, yet in order for the results to be applicable to the “real-
world,” the model must not oversimplify the cause-and-effect
relationships between variables. Better software and increasingly
powerful computers allow economists to build more realistic models
of the economy, scientists to improve predictions of chemical
reactions, and business people to increase the sensitivity of their
corporate models.

In the last few years computer hardware and software programs such
as Microsoft Excel, have advanced so dramatically that virtually
anyone with a personal computer can create realistic models of
complex systems. Excel’s built-in functions, macro capabilities and
clean, intuitive interface allow beginners to model and analyze
sophisticated problems. To learn more about building a model, see
Chapter 9 - Evolver Extras.

Why Use Evolver?
Evolver’s unique technology allows anyone with a PC and Excel for
Windows to enjoy the benefits of optimization. Before Evolver, those
who wished to increase efficiency or search for optimum solutions
had three choices: guess, use low-powered problem-solving software,
or hire experts in the optimization consulting field to design and
build customized software. Here are a few of the most important
advantages to using Evolver:

When you are dealing with large numbers of interacting variables,
and you are trying to find the best mix, the right order, the optimum
grouping of those variables, you may be tempted to just take an
“educated guess”. A surprising number of people assume that any
kind of modeling and analysis beyond guessing will require
complicated programming, or confusing statistical or mathematical
algorithms. A good optimized solution might save millions of
dollars, thousands of gallons of scarce fuel, months of wasted time,
etc. Now that powerful desktop computers are increasingly
affordable, and software like Excel and Evolver are readily available,
there is little reason to guess at solutions, or waste valuable time
trying out many scenarios by hand.

No More
Guessing

Chapter 2: Background 17

Evolver allows you to use the entire range of Excel formulas and even
macros to build more realistic models of any system. When you use
Evolver, you do not have to “compromise” the accuracy of your
model because the algorithm you are using can not handle real world
complexities. Traditional “baby” solvers (statistical and linear
programming tools) force the user to make assumptions about the
way the variables in their problem interact, thereby forcing users to
build over-simplified, unrealistic models of their problem. By the
time the user has simplified a system enough that these solvers can be
used, the resulting solution is often too abstract to be practical. Any
problems involving large amounts of variables, non-linear functions,
lookup tables, if-then statements, database queries, or stochastic
(random) elements cannot be solved by these methods, no matter how
simply you try to design your model.

There are many solving algorithms which do a good job at solving
small, simple linear and non-linear types of problems, including hill-
climbing, baby-solvers, and other mathematical methods. Even when
offered as spreadsheet add-ins, these general-purpose optimization
tools can only perform numerical optimization. For larger or more
complex problems, you may be able to write specific, customized
algorithms to get good results, but this may require a lot of research
and development. Even then, the resulting program would require
modification each time your model changed.

Not only can Evolver handle numerical problems, it is the only
commercial program in the world that can solve most combinatorial
problems. These are problems where the variables must be shuffled
around (permuted) or combined with each other. For example,
choosing the batting order for a baseball team is a combinatorial
problem; it is a question of swapping players’ positions in the lineup.
Complex scheduling problems are also combinatorial. The same
Evolver can solve all these types of problems, and many more that
nothing else can solve. Evolver’s unique genetic algorithm technology
allows it to optimize virtually any type of model; any size and any
complexity.

Evolver finds better solutions. Most software derives optimum
solutions mathematically and systematically. Too often these
methods are limited to taking an existing solution and searching for
the closest answer that is better. This “local” solution may be far from
the optimal solution. Evolver intelligently samples the entire realm of
possibilities, resulting in a much better “global” solution.

More Accurate,
More
Meaningful

More Flexible

More Powerful

18 What Is Evolver?

In spite of its obvious power and flexibility advantages, Evolver
remains easy to use because an understanding of the complex genetic
algorithm techniques it uses is completely unnecessary. Evolver
doesn’t care about the “nuts and bolts” of your problem; it just needs
a spreadsheet model that can evaluate how good different scenarios
are. Just select the spreadsheet cells that contain the variables and tell
Evolver what you are looking for. Evolver intelligently hides the
difficult technology, automating the “what-if” process of analyzing a
problem.

Although there have been many commercial programs developed for
mathematical programming and model-building, spreadsheets are by
far the most popular, with literally millions being sold each month.
With their intuitive row and column format, spreadsheets are easier
to set up and maintain than other dedicated packages. They are also
more compatible with other programs such as word processors and
databases, and offer more built-in formulas, formatting options,
graphing, and macro capabilities than any of the stand-alone
packages. Because Evolver is an add-in to Microsoft Excel, users have
access to the entire range of functions and development tools to easily
build more realistic models of their system.

Many companies have hired trained consultants to provide
customized optimization systems. Such systems will often perform
quite well, but may require many months and a large investment to
develop and implement. These systems are also difficult to learn, and
therefore require costly training and constant maintenance. If your
system must be altered, you may need to develop a whole new
algorithm to find optimal solutions. For a considerably smaller
investment, Evolver supplies the most powerful genetic algorithms
available and allows for quick and accurate solutions to a wide
variety of problems. Because it works in an intuitive and familiar
environment, there is virtually no costly training and maintenance.

You may even wish to add Evolver’s optimization power to your own
custom programs. In just a few days, you could use Visual Basic to
develop your own scheduling, distribution, manufacturing or
financial management system. See the Evolver Developer Kit for
details on developing an Evolver-based application.

Easier to Use

Cost Effective

Chapter 3: Evolver: Step-by-Step 19

Chapter 3: Evolver:
Step-by-Step

Introduction...21

The Evolver Tour ..23
Starting Evolver..23

The Evolver Toolbar...23
Opening an Example Model...23

The Evolver Model Dialog ...24
Selecting the Target Cell...25
Adding Adjustable Cell Ranges..25

Selecting a Solving Method..27
Constraints ..28

Adding a Constraint...29
Simple Range of Values and Formula Constraints29

Other Evolver Options ..32
Stopping Conditions..32
View Options ..34

Running the Optimization ...35
The Evolver Watcher..36
Stopping the Optimization...37
Summary Report...38
Placing the Results in Your Model..39

20

Chapter 3: Evolver: Step-by-Step 21

Introduction
In this chapter, we will take you through an entire Evolver
optimization one step at a time. If you do not have Evolver installed
on your hard drive, please refer to the installation section of Chapter
1: Introduction and install Evolver before you begin this tutorial.

We will start by opening a pre-made spreadsheet model, and then we
will define the problem to Evolver using probability distributions and
the Evolver dialogs. Finally we will oversee Evolver’s progress as it is
searching for solutions, and explore some of the many options in the
Evolver Watcher. For additional information about any specific topic,
see the index at the back of this manual, or refer to Chapter 5: Evolver
Reference.

NOTE: The screens shown below are from Excel 2007. If you are using
other versions of Excel, your windows may appear slightly different
from the pictures.

The problem-solving process begins with a model that accurately
represents your problem. Your model must be able to evaluate a
given set of input values (adjustable cells) and produce a numerical
rating of how well those inputs solve the problem (the evaluation or
“fitness” function). As Evolver searches for solutions, this fitness
function provides feedback, telling Evolver how good or bad each
guess is, thereby allowing Evolver to breed increasingly better
guesses. When you create a model of your problem you must pay
close attention to the fitness function, because Evolver will be doing
everything it can to maximize (or minimize) this cell.

22 Introduction

Chapter 3: Evolver: Step-by-Step 23

The Evolver Tour

Starting Evolver
To start Evolver, either: 1) click the Evolver icon in your Windows
desktop, or 2) select Palisade DecisionTools then Evolver 5.0 in the
Windows Start menu Programs entries. Each of these methods starts
both Microsoft Excel and Evolver.

When Evolver is loaded, a new Evolver ribbon or toolbar is visible in
Excel. This toolbar contains buttons which can be used to specify
Evolver settings and start, pause, and stop optimizations.

To review the features of Evolver, you'll examine an example model
that was installed when you installed Evolver. To do this:

1) Open the Bakery – Tutorial Walkthrough.XLS worksheet using
the Help menu Example Spreadsheets command.

The Evolver
Toolbar

Opening an
Example Model

24 The Evolver Tour

This example sheet contains a simple profit maximization problem for
a bakery business. Your bakery produces 6 bread products. You are
the bakery manager and track revenues, costs, and profits from
production. You are to determine the number of cases for each type
of bread that maximizes total profit while satisfying production limit
guidelines. The guidelines you face include 1) meeting the production
quota for low calorie bread, 2) maintaining an acceptable ratio of high fiber
to low calorie, 3) maintaining an acceptable ratio of 5 grain to low calorie,
and 4) keeping production time within limits for person hours used.

The Evolver Model Dialog
To set the Evolver options for this worksheet:

1) Click the Evolver Model icon on the Evolver toolbar (the one on
the far left).

This displays the following Evolver Model dialog box:

The Evolver Model Dialog is designed so users can describe their
problem in a simple, straightforward way. In our tutorial example, we
are trying to find the number of cases to produce for the different
bread products in order to maximize overall total profit.

Chapter 3: Evolver: Step-by-Step 25

Selecting the Target Cell
The "total profit" in the example model is what's known as the target
cell. This is the cell whose value you are trying to minimize or
maximize, or the cell whose value you are trying to make as close as
possible to a pre-set value. To specify the target cell:

1) Set the “Optimization Goal” option to “Maximum.”

2) Enter the target cell, I11, in the “Cell” field.

Cell references can be entered in Evolver dialog fields two ways: 1)
You may click in the field with your cursor, and type the reference
directly into the field, or 2) with your cursor in the selected field, you
may click on Reference Entry icon to select the worksheet cell(s)
directly with the mouse.

Adding Adjustable Cell Ranges
Now you must specify the location of the cells that contain values
which Evolver can adjust to search for solutions. These variables are
added and edited one block at a time through the Adjustable Cells
Ranges section of the Model Dialog. The number of cells you can enter
in Adjustable Cells Ranges depends on the version of Evolver you are
using.

1) Click the “Add” button in the "Adjustable Cell Ranges" section.

2) Select C4:G4 as the cells in Excel you want to add as an
adjustable cell range.

Most of the time you'll want to restrict the possible values for an
adjustable cell range to a specific minimum-maximum range. In
Evolver this is known as a "range" constraint. You can quickly enter
this min-max range when you select the set of cells to be adjusted.
For the Bakery example, the minimum possible value for cases
produced for each of the bread products in this range is 0 and the
maximum is 100,000. To enter this range constraint:

1) Enter 0 in the Minimum cell and 100,000 in the Maximum cell.

2) In the Values cell, select Integer from the drop-down list

Entering the
Min-Max Range
for Adjustable
Cells

26 The Evolver Tour

Now, enter a second cell range to be adjusted:

1) Click Add to enter a second adjustable cell.

2) Select cell B4.

3) Enter 20,000 as the Minimum and 100,000 as the Maximum.

Chapter 3: Evolver: Step-by-Step 27

This specifies the last adjustable cell, B4, representing the production
level for low calorie bread.

If there were additional variables in this problem, we would continue
to add sets of adjustable cells. In Evolver, you may create an
unlimited number of groups of adjustable cells. To add more cells,
click the “Add” button once again.

Later, you may want to check the adjustable cells or change some of
their settings. To do this, simply edit the min-max range in the table.
You may also select a set of cells and delete it by clicking the “Delete”
button.

When defining adjustable cells, you can specify a solving method to be
used. Different types of adjustable cells are handled by different
solving methods. Solving methods are set for a Group of adjustable
cells and are changed by clicking the “Group” button and displaying
the Adjustable Cell Group Settings dialog box. Often you'll use the
default “recipe” solving method where each cell’s value can be
changed independently of the others. Since this is selected as the
default method, you don't have to change it.

The “recipe” and “order” solving methods are the most popular and
they can be used together to solve complex combinatorial problems.
Specifically, the “recipe” solving method treats each variable as an
ingredient in a recipe, trying to find the “best mix” by changing each
variable’s value independently. In contrast, the “order” solving

Selecting a
Solving Method

28 The Evolver Tour

method swaps values between variables, shuffling the original values
to find the “best order.”

For this model, leave the Solving Method as Recipe and simply:

♦ Enter the label "Cases Produced" in the Description field.

Constraints
Evolver allows you to enter constraints which are conditions that
must be met for a solution to be valid. In this example model there
are three additional constraints that must be met for a possible set of
production levels for each of the bread products to be valid. These
are in addition to the range constraints we already entered for the
adjustable cells. They are:

1) Maintaining an acceptable ratio of high fiber to low calorie
bread (high fiber cases produced >= 1.5 * low calorie cases
produced)

2) Maintaining an acceptable ratio of 5 grain to low calorie bread
(5 grain cases produced >= 1.5 * low calorie cases produced)

3) Keeping production time within limits for person hours used
(total person hours used < 50,000)

Each time Evolver generates a possible solution to your model it
checks that the constraints you have entered are valid.

Constraints are displayed in the bottom Constraints section of the
Evolver Model dialog box. Two types of constraints can be specified
in Evolver:

♦ Hard. These are conditions that must be met for a solution to be
valid (i.e., a hard iteration constraint could be C10<=A4; in this
case, if a solution generates a value for C10 that is greater than the
value of cell A4, the solution will be thrown out)

♦ Soft. These are conditions which we would like to be met as
much as possible, but which we may be willing to compromise
for a big improvement in fitness or target cell result. (i.e., a soft
constraint could be C10<100. In this case, C10 could go over 100,
but when that happens the calculated value for the target cell
would be decreased according to the penalty function you have
entered).

Chapter 3: Evolver: Step-by-Step 29

 To add a constraint:

1) Click the Add button in the Constraints section of the main
Evolver dialog.

This displays the Constraint Settings dialog box, where you enter the
constraints for your model.

Two formats – Simple and Formula – can be used for entering
constraints. The Simple Range of Values format allows constraints to
be entered using simple <,<=, >, >= or = relations. A typical Simple
Range of Values constraint would be 0<Value of A1<10, where A1 is
entered in the Cell Range box, 0 is entered in the Min box and 10 is
entered in the Max box. The operator desired is selected from the
drop down list boxes. With a Simple Range of Values format
constraint, you can enter just a Min value, just a Max or both.

A formula constraint, on the other hand, allows you to enter any valid
Excel formula as a constraint, such as A19<(1.2*E7)+E8. For each
possible solution Evolver will check whether the entered formula
evaluates to TRUE or FALSE to see if the constraint has been met. If
you want to use a boolean formula in a worksheet cell as a constraint,
simply reference that cell in the Formula field of the Constraint
Settings dialog box.

Adding a
Constraint

Simple Range of
Values and
Formula
Constraints

30 The Evolver Tour

To enter the constraints for the Bakery model you'll specify three new
hard constraints. These are hard constraints as the entered conditions
must be met or the possible solution will be discarded by Evolver.
First, enter the Simple Range of Values format hard constraints:

1) Enter " Acceptable Total Working Hours" in the description box.

2) In the Range to Constrain box, enter I8.

3) Select the <= operator to the right of the Range to Constrain.

4) Enter 50,000 in the Maximum box.

5) Clear the default value of 0 in the Minimum box.

6) To the left of Range to Constrain, clear the operator by selecting
a blank from the drop down list

7) Click OK to enter this constraint.

Chapter 3: Evolver: Step-by-Step 31

Now, enter the formula format hard constraints:

1) Click Add to display the Constraint Settings dialog box again.

2) Enter "Acceptable ratio of high fiber to low calorie" in the
description box.

3) In the Entry Style box, select Formula.

4) In the Constraint Formula box, enter C4>= 1.5*B4.

5) Click OK.

6) Click Add to display the Constraint Settings dialog box again.

7) Enter "Acceptable ratio of 5-grain to low calorie" in the
description box.

8) In the Entry Style box, select Formula.

9) In the Constraint Formula box, enter D4>= 1.5*B4.

10) Click OK

Your Model dialog with the completed constraints section should
look like this.

32 The Evolver Tour

Other Evolver Options
Options such as Update the Display, Random Number Seed and Stopping
Conditions are available to control how Evolver operates during an
optimization. Let's specify some stopping conditions and display
update settings.

Evolver will run as long as you wish. The stopping conditions allow
Evolver to automatically stop when either: a) a certain number of
scenarios or “trials” have been examined, b) a certain amount of time has
elapsed, c) no improvement has been found in the last n scenarios or d) the
entered Excel formula evaluates to TRUE. To view and edit the stopping
conditions:

1) Click the Optimization Settings icon on the Evolver toolbar.
2) Select the Runtime tab.

In the Optimization Settings dialog you can select any combination of
these optimization stopping conditions, or none at all. If you select
more than one stopping condition, Evolver will stop when any one of
the selected conditions are met. If you do not select any stopping
conditions, Evolver will run forever, until you stop it manually by
pressing the “stop” button in the Evolver toolbar.

Stopping
Conditions

Chapter 3: Evolver: Step-by-Step 33

Trials

Minutes

Change in last

Formula is True
This option sets the
number of “trials”
that you would like
Evolver to run. In
each trial, Evolver
evaluates one
complete set of
variables or one
possible solution to
the problem.

Evolver will stop
after the specified
amount of time has
elapsed. This
number can be a
fraction (4.25).

This stopping
condition is the
most popular
because it keeps
track of the
improvement and
allows Evolver to
run until the rate of
improvement has
decreased. For
example, Evolver
could stop if 100
trials have passed
and we still haven’t
had any change in
the best scenario
found so far.

Evolver will stop if
the entered Excel
formula evaluates to
TRUE in a model
recalculation.

♦ Turn off all stopping conditions to let Evolver run freely.

34 The Evolver Tour

While Evolver runs, a set of options are available on the View Tab to
determine what you will see on-screen.

The During Optimization options include:

Every Trial Every New Best Trial

Never
This option redraws the
screen after each
calculation, allowing you to
see Evolver adjusting the
variables and calculating
the output. We suggest
this option be turned on
while you are learning
Evolver, and also each time
you use Evolver on a new
model, to verify that your
model is calculating
correctly.

This option redraws the
screen each time Evolver
generates a new best
answer, allowing you to
see the current optimal
solution at any time during
the optimization.

This option never redraws
the screen during the
optimization. This results
in the fastest possible
optimizations but provides
little feedback on
calculated results during
the run.

♦ Turn on the “Every Trial”

View Options

Chapter 3: Evolver: Step-by-Step 35

Running the Optimization
Now, all that remains is to optimize this model to maximize total
profit while satisfying production limit guidelines. To do this:

1) Click OK to exit the Optimization Settings dialog.

2) Click the Start Optimization icon

As Evolver begins working on your problem, you will see the current
best values for your adjustable cells – Cases Produced - in your
spreadsheet. The best value for Total Profit is shown in the
highlighted cell.

During the run, the Progress window displays: 1) the best solution
found so far, 2) the original value for the target cell when the Evolver
optimization began, 3) the number of trials of your model that have
been executed and number of those trials which were valid; i.e., all
constraints were met and 4) the time that has elapsed in the
optimization.

Any time during the run you can click the Excel Updating Options
icon to see a live updating of the screen each trial.

36 The Evolver Tour

Evolver can also display a running log of each trial solution. This is
displayed in the Evolver Watcher while Evolver is running. The
Evolver Watcher allows you to explore and modify many aspects of
your problem as it runs. To view a running log of the trials:

1) Click the Watcher (magnifying glass) icon in the Progress
window to display the Evolver Watcher

2) Click the Log tab.

In this report the results of each trial solution is shown. The column
for Result shows by trial the value of the target cell that you are trying
to maximize or minimize - in this case, the Total Profit in I11. The
columns for C4 through G4 identify the values used for your
adjustable cells.

The Evolver
Watcher

Chapter 3: Evolver: Step-by-Step 37

After five minutes, Evolver will stop the optimization. You can also
stop the optimization by:

1) Clicking the Stop icon in the Evolver Watcher or Progress
windows.

When the Evolver process stops, Evolver displays the Stopping
Options tab which offers the following choices:

These same options will automatically appear when any of the
stopping conditions that were set in the Evolver Optimization
Settings dialog are met.

Stopping the
Optimization

38 The Evolver Tour

Evolver can create an optimization summary report that contains
information such as date and time of the run, the optimization
settings used, the value calculated for the target cell and the value for
each of the adjustable cells.

This report is useful for comparing the results of successive
optimizations.

Summary
Report

Chapter 3: Evolver: Step-by-Step 39

To place the new, optimized mix of production levels for the bakery
to each of the six types of bread in your worksheet:

1) Click on the “Stop” button.

2) Make sure the "Update Adjustable Cell Values Shown in
Workbook to" option is set to “Best”

You will be returned to the BAKERY – TUTORIAL
WALKTHROUGH.XLS spreadsheet, with all of the new variable
values that created the best solution.

IMPORTANT NOTE: Although in our example you can see that
Evolver found a solution which yielded a total profit of 3,940,486,
your result may be higher or lower than this. These differences are
due to an important distinction between Evolver and all other
problem-solving algorithms: it is the random nature of Evolver’s
genetic algorithm engine that enables it to solve a wider variety of
problems, and find better solutions.

Placing the
Results in Your
Model

40 The Evolver Tour

When you save any sheet after Evolver has run on it (even if you
“restore” the original values of your sheet after running Evolver), all
of the Evolver settings in the Evolver dialogs will be saved along with
that sheet. The next time that sheet is opened, all of the most recent
Evolver settings load up automatically. All of the other example
worksheets have the Evolver settings pre-filled out and ready to be
optimized.

NOTE: If you want to take a look at the Bakery model with all
optimization settings pre-filled out, open the example model
Bakery.XLS

Chapter 4: Example Applications 41

Chapter 4: Example
Applications

Introduction...43

Advertising Selection ...45

Alphabetize..47

Assignment of Tasks..49

Bakery..51

Budget Allocation ...53

Chemical Equilibrium...55

Class Scheduler..57

Code Segmenter ...59

Dakota: Routing With Constraints ..63

Job Shop Scheduling ...65

Radio Tower Location ..67

Portfolio Balancing...69

Portfolio Mix ..71

Power Stations..73

Purchasing ..75

42

Salesman Problem ... 77

Space Navigator ... 79

Trader .. 81

Transformer .. 83

Transportation .. 85

Chapter 4: Example Applications 43

Introduction
This chapter explains how Evolver can be used in a variety of
applications. These example applications may not include all of the
features you would want in your own models, and are most effective
as idea generators and templates. All examples illustrate how
Evolver finds solutions by relying on the relationships that already
exist in your worksheet, so it is important that your worksheet model
accurately portray the problem you are trying to solve.

All Excel worksheet examples can be found within your EVOLVE32
directory, in a sub-directory called “EXAMPLES". They are listed
alphabetically in this chapter. Examples use the following color-
coding conventions:

♦ blue outlined cells. adjustable cells that Evolver will
be adjusting.

♦ red outlined cells the target or goal cell.

Each example comes with all Evolver settings pre-selected, including
the target cell, adjustable cells, solving methods and constraints. You
are encouraged to examine these dialog settings before optimizing.
By studying the formulas and experimenting with different Evolver
settings, you can get a better understanding of how Evolver is used.
The models also let you replace the sample data with your own
“user” data. If you decide to modify or adapt these example sheets,
you may wish to save them with a new name to preserve the original
examples for reference.

44 Introduction

Chapter 4: Example Applications 45

Advertising Selection

An ad agency must figure out the most efficient way to spend its
advertising dollars to maximize the coverage for its target audience.
It must not spend over its budget, and the amount spent on TV must
be more than the amount spent on radio.

Example file: Advertising Selection.xls

Goal: Allocate advertising purchases, within your
budget, among media which have various
price breaks. Maximize people reached.

Solving method: budget

Similar problems: budget-type problems with additional
constraints.

The first thing we need to do is choose a solving method that tells
Evolver what to do with the variables. See Chapter 5: Complete
Reference for descriptions of the different solving methods.

How The Model
Works

46 Advertising Selection

This is basically a budget-type problem with the additional constraint
that TV spending must be more than radio spending.

The variables to be adjusted by Evolver are in cells C5:C9. We will
ask Evolver to juggle them using the “budget” method, to allow each
variable to be an independent value. The total audience is calculated
with the SUM function in cell G13; this is the cell we will ask Evolver
to maximize. The hard constraints specify that TV spending must be
more than radio spending.

How To Solve It

Chapter 4: Example Applications 47

Alphabetize

This is a list of seven names which we would like Evolver to
alphabetize. Although this example is simple, Evolver could handle
complex sorts where data was interdependent, or names were
weighted more heavily based upon other information in the model.

Example file: Alphabetize.xls

Goal: Alphabetize the list of names.

Solving method: order

Similar problems: Any sorting problem that is beyond the
capability of Excel.

The “Alphabetize.xls” file is a very simple model which illustrates
Evolver’s sorting possibilities. Column B contains the first names of
seven people, and column A contains the corresponding “ID””
number for each person. Column D uses the VLOOKUP function in
Excel to translate whatever number is chosen in Column C into its
corresponding name. Cells E4:E9 use a simple penalty function which
assigns a value of 1 each time an earlier name gets listed after a later
name. The sum of all these errors is in cell E11, our target cell.

How The Model
Works

48 Alphabetize

In this model, the variables to be adjusted are located in column C
(C3:C9). We will ask Evolver to juggle cells C3:C9 using the “order”
solving method. The “order” solving method tells Evolver to
rearrange the order of the selected values, trying different
permutations of those variables rather than trying out new values.
We will ask Evolver to find the value closest to 0 for the total error in
cell E11, because when this target cell hits 0, that means that all the
names are in the correct order.

By not selecting any stopping criteria in the Evolver Options dialog,
you are telling Evolver to keep working forever until it is manually
stopped by clicking the “stop” button on the Evolver toolbar. But in
this model we have selected the “value closest to” option, so Evolver
will automatically stop if it finds a solution that meets your “value
closest to” value of 0.

We are using a smaller population size because although there are no
fast rules about choosing an optimal population size, generally, we
can select a smaller population size when working with problems that
have a smaller number of total possible solutions, so we focus more
quickly on breeding the top performing solutions. In this problem,
there are only 5040 possible orders of the 7 names.

How To Solve It

Chapter 4: Example Applications 49

Assignment of Tasks

This example models a common problem involving resource
allocation. In this problem, a manager has 16 workers to perform 16
tasks. Each worker's ability to perform each task has been rated on a
scale of 1 to 10 (1= cannot do the task, 10= perfect at the task). The
challenge here is to match each worker to a task so that the overall
productivity of the workers is maximized.

Example file: Assignment of Tasks.xls

Goal: Assign 16 workers to 16 tasks so the overall
efficiency is maximized.

Solving method: order

Similar problems: assignment problems, scheduling meetings at
times when the most workers would be
happiest to meet, finding the best machines
for a series of jobs.

50 Assignment of Tasks

The model provides a 16 by 16 grid in cells B4:Q19 where each worker
has been rated for each task. The "chosen task" column (column S) to
the right of the grid arbitrarily assigns each worker to one task. The
next column over (column U) checks what task was assigned, and
enters each worker's rating for that task. Finally, the total score of the
entire solution (in cell U21) is the sum of adding up all the individual
ratings.

There is only one person for each task, so no numbers can be
duplicates, and each number must be used once. Each worker’s
rating at that task is recorded in column U using the INDEX()
function. These scores are summed in cell U21 to figure out the total
score for that set of assignments.

Evolver is asked to juggle the “chosen task” variables, located in
column S (S4:S19). We will ask Evolver to juggle these cells using the
“order” solving method. This method will shuffle the existing values
in those cells around, so be sure that there is only one of each value
represented before you begin the optimization. We will ask Evolver
to find the maximum value for cell U21, the target cell, because the
higher this cell gets, the better the overall assignment.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 51

Bakery

This example illustrates a common problem in production decision
problems, where finding the right amount of each product to produce
becomes very difficult... even with only a few items. A bakery owner
must determine the number of cases to produce for each kind of
bread, in order to maximize the total profit of the bakery. Be sure to
also observe the limitations outlined, such as the total number of
employee hours, and the correct ratios of products to be produced.
(Note: this model is covered in detail in Chapter 3: Evolver Step-by-Step)

Example file: Bakery.xls

Goal: Find the optimal amount of each kind of bread to bake
to satisfy all quotas and maximize profits.

Solving method: recipe

Similar problems: developing portfolios, manufacturing planning

52 Bakery

This problem lists the amount of each bread product to be produced
across the top of the chart in row 4. When we adjust these quantity
variables (B4:G4), the model computes the hours and costs it would
take, as well as the profit that would be generated from baking that
amount. The profit (in cells B11:G11) are added together in cell I11,
which becomes the target cell to maximize.

The model also has three constraints. Each constraint listed is a hard
constraint. One is a Simple Range of Values format constraint and
two are constraints entered as Excel formulas.

Evolver is asked to find the values for cells B4:G4 (the amounts to
make) that will maximize the value in cell I11 (the total profit). Since
each value it finds can be independent of the others, we will use the
“recipe” solving method. We will also ask Evolver to observe the
constraints for cells C4, D4 and I8.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 53

Budget Allocation

A senior executive wants to find the most effective way to distribute
funds among the various departments of the company to maximize
profit. Below is a model of a business and its projected profit for the
next year. The model estimates next year’s profit by examining the
annual budget and making assumptions about, for example, how
advertising affects sales. This is a simple model, but it illustrates how
you can set up any model and use Evolver to feed inputs into it to
find the best output.

Example file: Budget Allocation.xls

Goal: Allocate the annual budget among five
departments to maximize next year’s profits.

Solving method: budget

Similar problems: Allocate any scarce resource (such as labor,
money, gas, time) to entities that can use them
in different ways or with different efficiencies.

54 Budget Allocation

The file “Budget Allocation.xls” models the effects of a company’s
budget on its future sales and profit. Cells C4:C8 (the variables)
contain the amounts to be spent on each of the five departments.
These values total the amount in cell C10, the total annual budget for
the company. This budget is set by the company and is
unchangeable.

Cells F6:F10 compute an estimate of the demand for the company’s
product next year, based on the advertising and marketing budgets.
The amount of actual sales is the minimum of the calculated demand
and the supply. The supply is dependent upon the money allocated
to the production and operations departments.

Maximize the profit in cell I16 by using the “budget” solving method
to adjust the values in cells C4:C8. Set the independent ranges for
each of the adjustable cells for the budget for each department, to
keep Evolver from trying negative numbers, or numbers which would
not make suitable solutions (e.g., all advertising and no production)
for the departmental budget.

The “budget” solving method works like the “recipe” solving
method, in that it is trying to find the right “mix” of the chosen
variables. When you use the budget method, however, you add the
constraint that all variables must sum up to the same number as they
did before Evolver started optimizing.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 55

Chemical Equilibrium

Any process which can be modeled to produce a result given some
initial conditions can be optimized by Evolver. This example shows
how Evolver can find levels of different chemicals (products and
reactants) that minimizes the free energy after a reaction has reached
equilibrium. In complicated chemical processes the ingredients
(reagents) and the products continually re-form into one another until
the concentration of the compounds becomes constant; when
“equilibrium” is reached. At any time after equilibrium is reached, a
steady percentage of the equilibrium chemicals might be reagents
(e.g. 5%), and a steady percentage would be products (95%).

Example file: Chemical Equilibrium.xls

Goal: Compute the free energy of the reaction environment
and find the levels for the chemicals, subject to the soft
constraints (some chemical levels are proportional to
others).

Solving method: recipe

Similar problems: determining conditions of the most stable market
equilibrium.

56 Chemical Equilibrium

The variables of this problem in cells B4:B13 are the chemical levels to
be mixed. Cell B15 calculates the total amount, which must be kept
within a given range, according to the penalties.

Constraints in F20:F22 are soft constraints, meaning that we will not
force Evolver to only accept valid solutions, but instead we will
calculate penalties if certain chemicals are out of the desired
proportion to other chemicals. These soft constraints use penalty
functions built directly in the worksheet model. The penalties are
added to the total free energy cell in F17, so when Evolver is
minimizing the target, it will be looking for solutions that do not
produce the penalties.

Use the recipe solving method for cells B4:B13. Minimize cell F17.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 57

Class Scheduler
A university must assign 25 different classes to 6 pre-defined time
blocks. Each class lasts exactly one time block. Normally, this would
allow us to treat the problem with the “grouping” solving method.
However, there are a number of constraints that must be met while
the classes are being scheduled. For example, biology and chemistry
should not occur at the same time so that pre-medical students can
take both classes in the same semester. To meet such constraints, we
use the “schedule” solving method instead. The “schedule” solving
method is like the “grouping” method, only with the constraint that
certain tasks must (or must not) occur before (or after or during) other
tasks.

Example file: Class Scheduler.xls

Goal: Assign 25 classes to 6 time periods to minimize the
number of students who get squeezed out of their
classes. Meet a number of constraints regarding which
classes can meet when.

Solving method: schedule

Similar problems: Any scheduling problem where all tasks are the same
length and can be assigned to any of a number of
discrete time blocks. Also, any grouping problem
where constraints exist as to which groups certain
items can be assigned.

58 Class Scheduler

The “Class Scheduler.xls” file contains a model of a typical scheduling
problem where many constraints must be met. Cells C5:C29 assign
the 25 classes to the 6 time blocks. There are only five classrooms
available, so assigning more than five classes to one time block means
that at least one of the classes cannot meet.

Cells K17:M25 contain the constraints; to the left of the constraints are
English descriptions of the constraints. You can use either the
number code or the english description as the constraint. The list of
constraint codes for scheduling problems can be found in more detail
in the “Solving Methods” section of Chapter 5: Complete Reference.

Each possible schedule is evaluated by calculating both a) the number
of classes which cannot meet, and b) the number of students who
cannot sit at their classes because the capacity of the classrooms is full.
This last constraint keeps Evolver from scheduling all the large classes
at the same time. If only one or two large classes meet during a time
block, the larger classrooms can be used for them.

Cells I8:N8 uses the DCOUNT Excel function to count up how many
classes are assigned to each time block. Right below cells I9:N9 then
compute how many classes did not get assigned a room for that time
block. All the classes that are without rooms are totaled in cell K10.

If the number of seats required by a given class exceeds the number of
seats available, cells I12:N12 calculate by how much, and the total
number of students without seats is calculated in cell K13. In cell F6,
this total number of students without seats is added to the average
class size, and multiplied by the number of classes without rooms.
This way, we have one cell which combines all penalties such that a
lower number in this cell always indicates a better schedule.

Minimize the value of the penalties in F6 by changing cells C5:C29.
Use the “schedule” solving method. When this solving method is
chosen, you will see a number of related options appear in the lower
“options” section of the dialog box. Set the number of time blocks to
6, and set the constraints cells to K17:M25.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 59

Code Segmenter

A Windows programmer wants to break a program up into several
code segments, so that Windows can use memory more efficiently by
only keeping in memory the code segments currently being used.

This is an example of collecting similar items into groups. The items
can interact efficiently with others in the same group, but it is difficult
for items in different groups to interact. When there are natural
barriers to letting every item interact directly with every other (say all
computer users wanted to be directly connected to one printer), it is
necessary to break the items up into groups. An efficient grouping
can have a significant effect on the overall productivity of the system.

Example file: Code Segmenter.xls

Goal: Group program routines into eight different code
segments so that the program executes as quickly as
possible.

Solving method: grouping

Similar problems: Collect workstations into LAN clusters, or circuits into
areas on microchips, so the cost of the communication
between groups is minimized.

Windows programmers often break programs up in this way to
increase program efficiency. When a routine in another segment
needs to run, Windows will throw out the calling segment and read in
the called segment from the disk. If a 2 Mb program is broken up into

How The Model
Works

60 Code Segmenter

80 segments of 20 Kb each, the program can run if only 20 Kb of
memory is available. In order to run with acceptable performance,
however, the code segments must be carefully organized. Calling a
function in another segment takes more time than calling one in the
same segment as the caller. Minimizing the number of cross-segment
calls is referred to as the code segmentation problem.

Since it is possible to optimize some parts of an application at the
expense of the whole application, we will use Evolver to perform a
global optimization.

The “Code Segmenter.xls” example file assumes that an application
has been compiled with a certain segmentation. The application was
run just like a user would run it, while a performance tracing routine
kept track of the number of times each function called every other
function. These results thus represent the nature of calls in the typical
usage of the application. From them we can make predictions about
the speed of the application with different segmentation strategies.

This worksheet uses the custom “SegCost” function. SegCost
computes the time it would take the user to run the program the same
way as when the typical usage statistics were acquired. It does this by
counting the number of inter- and intra-segment calls, and
multiplying each by the cost of each kind of call. Here we assume an
inter-segment call (or near call) takes seven clock cycles, and an intra-
segment call (or far call) takes 34 cycles, which is the case for any 386
computer.

The SegCost function is written as an Excel VBA macro, as shown
here:

Function segCost(segs, calls, inP, outP) As Double

Dim inCost#, outCost#, total#, temp#, tempPtr#
Dim i%, j%, wide%, funcNumber%, ThisSeg%, OtherSeg%
Dim NumCalls%, NumInCall%, NumOutCall%,
SegOrder$, CallOrder$

SegOrder = Application.Names("segs").RefersTo
CallOrder = Application.Names("calls").RefersTo
NumInCall = 0
NumOutCall = 0
inCost = Range("k2")
outCost = Range("k3")
total = 0
wide = Range(CallOrder).Columns.Count
For i = 1 To Range(SegOrder).Rows.Count
 ThisSeg = Range(SegOrder).Rows(i)
 For j = 1 To wide
 temp = Range(CallOrder).Rows(i).Columns(j)

Chapter 4: Example Applications 61

 If temp <> 0 Then
 funcNumber = Int(temp)
 OtherSeg = Range(SegOrder).Rows(funcNumber + 1)
 NumCalls = 10000 * (temp - funcNumber)
 If ThisSeg = OtherSeg Then
 temp = NumCalls * inCost
 NumInCall = NumInCall + 1
 Else
 temp = NumCalls * outCost
 NumOutCall = NumOutCall + 1
 End If
 total = total + temp
 End If
 Next
Next
segCost = total
End Function

The sample application has 80 functions. The number of times each
function calls each other is stored in the “calls” range (C5:I104). We
could create a 80 by 80 matrix to represent the calling pattern, but this
n by n approach would become unusable after about 250 functions,
because Excel has a limit of 256 columns (and because the approach
would need an exponential amount of memory).

Instead, we use a condensed notation to represent the calling pattern.
We first assume that no function calls more than a certain number of
other functions. In the example file, we assume seven is the upper
limit; that is why the calls range is seven columns wide, but this limit
is arbitrary. We also assume that no function is called by any other
function more than 9999 times.

Let us look at function 1, starting at cell C5. Function 1 calls four
functions: 3, 9, 81, and 41. C5:I5, the first row in calls, contains one
real number for each function called (e.g. 3.0023). The integer portion
(e.g. 3) represents the function that is called, and the fraction
multiplied by 10,000 (e.g. .0023 x 10,000 = 23) represents the number
of times function 1 called function 3 in the typical usage of the
application. Thus, 9.1117 means that the function called function #9
1,117 times, and so on. This concise format lets us save memory and
make the best use of the limited number of columns available in
Excel.

Cell A5:A104 (the “segs” range) contains the number of the segment
each function is assigned to. Cell K4 calls “SegCost” to compute the
overall performance of the current segmentation strategy.

62 Code Segmenter

Minimize the value in cell K4 by adjusting the cells in A5:A104. Use
the “grouping” method. The “grouping” solving method tells
Evolver to arrange variables into x groups, where x is the number of
different values in the adjustable cells at the start of an optimization.

How To Solve It

Chapter 4: Example Applications 63

Dakota: Routing With Constraints

A real-estate firm needs to assess each of its properties throughout
North Dakota in a certain order, so that certain properties are visited
before others. Similar to the classic traveling salesman problem, the
goal of this problem is to find the shortest route among a set of cities
that ensures that each city is visited once. However, here we add the
constraint that certain cities must be visited before certain other cities
(such as town #2 coming after town #4). This means that instead of
the “order” solving method we will use the “project” solving method.

A project is an ordering for a set of tasks where certain tasks must
precede other tasks. You could use the “project” solving method, in
conjunction with your own custom functions, to find the best timing
for a project (based on a combination of any number of criteria, such
as time to finish, resource utilization, etc.).

Example file: Dakota.xls

Goal: Plan a route among 41 towns in North Dakota which
finds the shortest route between all cities while
making sure some cities are visited before others.

Solving method: project

Similar problems: Re-schedule a project to balance resource utilization.
Schedule the flow of jobs in a machine shop to reduce
total time while ensuring that some jobs are done
before others.

64 Dakota: Routing With Constraints

Cells F3:F43 contain the order in which the cities will be visited. Cell
H10 calculates the total length of the route, based on the order and the
x,y locations of the cities (in C3:D43). Cell H10 uses the custom
function “BigRouteLength” to speed up the computation of the total
route length.

Cells J3:L43 contain the precedence tasks. This is a table showing
which cities (tasks) must be preceded by other cities. Eight cities
(1,2,3,4,5,7, 11 and 13) must have certain cities that are visited before
them.

Minimize the route length in H10 by changing the cells F3:F43. Use
the “project” solving method and set the precedence tasks to J3:L43.
These precedents are set in the Preceding Tasks field of the Adjustable
Cell Group Settings Dialog:

Precedent
Tasks

How The Model
Works

How To Solve It

Chapter 4: Example Applications 65

Job Shop Scheduling

A metalworking shop needs to find the best way to schedule a set of
jobs that can be broken down into steps that can be run on different
machines. Each job is composed of five tasks, and the tasks must be
completed in order. Each task must be done on a specific machine,
and takes a specific amount of time to complete. There are five jobs
and five machines.

Clicking the Draw Schedule button at the top of the sheet will redraw
the bar chart to show when each of the job tasks is scheduled to run.

Example file: Job Shop Scheduling.xls

Goal: Assign job pieces (tasks) to machines so total time for
all jobs to finish is minimized.

Solving method: order

Similar problems: Scheduling or project-management problems

66 Job Shop Scheduling

Cell D5 computes the makespan, or how much time elapses between
the start of the first scheduled task and the end of the last scheduled
task. This total time is what we wish to minimize. Cells G11:G35
hold the variables (the tasks) to be shuffled to find the best
assignment order. The equations on the sheet figure out how soon
each task can run on the machine that it needs.

Select a set of adjustable cells G11:G35 and select the order solving
method. Minimize cell D5.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 67

Radio Tower Location

A radio network wants to build three radio towers in a region that has
twelve major communities. Each community has a different
population size, and each radio tower has a different strength
broadcast range. The goal is to place the towers so that the maximum
number of potential listeners fall inside the broadcast radii of the
towers.

xy
1 1

A more complicated example of a location problem might be to locate
several factories so that they are a) in the vicinity of both vendors and
customers, b) in affordable, open land, and c) near a large, technically
trained work force. Any number of additional influences on the best
locations, such as tax incentives, can also be added to such a model.
Evolver can then find the best locations in x,y or even x,y,z coordinate
space.

Example file: Radio Tower Location.xls

The Goal: Find the best x,y coordinates for three radio towers so
that the maximum potential listening population falls
inside their broadcasting range.

Solving method: recipe

Similar problems: Find sites for warehouses that minimize the shipping
necessary between warehouses and stores. Locate fire
stations so that populations are best covered with a
limited number of stations, including factors such as
housing density.

68 Radio Tower Location

The file “Radio Tower Location.xls” models a two-dimensional
landscape where the placement of five radio towers determines how
many listeners are reached. Cells C6:D8 contain the x,y coordinates
for the three towers. The illustration in the model consists of two
elements: one is a bitmap picture of the population densities (in
green) pasted from the Windows Paintbrush program; the other is an
Excel scatter graph that re-calculates automatically to show the
locations of the towers.

Ten communities are represented as single-point locations. The Excel
model computes the distance between the communities and the
towers in K4:M15 to determine if each community is covered (yes) or
not covered (no). The total population of all the covered communities
(the number we want to maximize) is calculated in cell O17.

Maximize the population reached in cell O17 by adjusting the tower
location cells C6:D8. Use the “recipe” solving method and set the
ranges for the variables from 0 to 50 (the limits of our location area).

The “recipe” solving method tells Evolver to adjust the variables
chosen in any way it sees fit. As is the case with a recipe for baking,
we are trying to find the right mix of “ingredients” (x,y coordinates)
to produce the optimum solution.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 69

Portfolio Balancing

A broker has a list of 80 securities, each worth a different amount of
money. The broker wants to group these securities into five packages
(portfolios) that are as close to each other in total value as possible.

This is an example of a general class of problems called bin packing
problems. Packing the holds of a cargo ship, so that each hold weighs
as much as the others is another example. If there are millions of
small items to be packaged into a few groups, such as grains of wheat
into ship holds, a roughly equal distribution can be guessed at
without a big difference in weight. However, several dozen packages
of different weights and/or sizes can be packed in very different
ways, and efficient packing can improve the balance that would be
found manually.

Example file: Portfolio Balancing.xls

Goal: Break a list of securities up into five different
portfolios whose total values are as close as possible to
each other.

Solving method: grouping

Similar problems: Create teams that have roughly equivalent collective
skills. Pack containers into holds of a ship so that the
weight is evenly distributed.

70 Portfolio Balancing

The “Portfolio Balancing.xls” file models a typical grouping
assignment. Column A contains identification numbers to specific
securities, and column B contains the dollar value of each security.
Column C assigns each security to one of the five portfolios. When
setting a grouping or bin packing type of problem and using the
grouping solving method, you must be sure that before you start
Evolver each group (1-5) is represented in the current scenario at least
once.

Cells F6:F10 calculate the total value of each of the five portfolios.
This is done with database criteria offscreen (in column I) and
“DSUM()” formulas in cells F6:F10. Thus, cell F6, for example,
calculates DSUM of all the values in column B that have been
assigned to group 5 (in column C).

Cell F12 computes the standard deviation among the total portfolio
values using the “STDEV()” function. This provides a measure of
how close in total value to each other the portfolios are. The graph
shows the total value of each portfolio, with a reference line drawn at
the goal number where each portfolio would be if they were all even.

Minimize the value in cell F12 by adjusting the cells in C5:C104. Use
the “grouping” method and make sure the values 1, 2, 3, 4, and 5 each
appear at least once in column C.

The “grouping” solving method tells Evolver to arrange variables into
x groups, where x is the number of different values in the adjustable
cells at the start of an optimization.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 71

Portfolio Mix

A young couple has assets in many different types of investments,
each with its own yield, potential growth, and risk. By combining
several formulas which multiply various weights, they have
customized a sort of “score” which shows how well any particular
mix of investments satisfies their needs.

Example file: Portfolio Mix.xls

The Goal: Find the optimal mix of investments to maximize your
profit, given your current risk/return needs.

Solving method: budget

This is a classic financial model which attempts to balance the risk of
loss against the return on investment. Each asset listed in column A is
assigned some weight in column C. The model multiplies the return

How The Model
Works

72 Portfolio Mix

percentages by the weight each asset carries in the portfolio to yield a
total return in cell C18. We also calculate a total risk number in cell
C19, which should not be higher than the acceptable risk listed in cell
D19.

The total “score” in cell C22 reflects the total return minus a penalty
for any risk above the acceptable percentage. We maximize this score.

How To Solve It

Chapter 4: Example Applications 73

Power Stations

A radio network buys three abandoned, non-working radio towers in
a region that has ten major communities. The network wants to
purchase brand new broadcast transmitters and install them in the
towers to get them broadcasting again.

Because there is a limited budget, the goal is to spend the least
amount of money on transmitters that will still cover all 9
surrounding communities. We assume a linear pricing model where
the cost of a transmitter is directly related to its power, so we’ll be
looking for the lowest amount of power to purchase, but it would be
just as easy to create a lookup chart of actual transmitter types and
prices.

Example file: Power Stations.xls

The Goal: Find the smallest (cheapest) transmitter for each of the
old towers that will still cover the entire ten
surrounding communities.

Solving method: recipe

Similar problems: set-covering problems, where a bunch of elements
need to be described by a small number of well-
defined sets.

74 Power Stations

This is very similar to the radio tower location example (Radio Tower
Location.xls), except that here the locations are frozen, and it is the
tower’s power ranges in cells E5:E7 that are the variables to be
adjusted. We add up the power cost of the three towers in cell E12,
the target cell to be minimized.

Cells K4:M12 calculate how far away each community is from a
tower, and column N returns a TRUE if a community is near enough
to one of the transmitters to be covered. All of these constraints are
checked in a single hard constraint named All Areas Covered?. This
constraint has the formula AND(N4:N12) which returns TRUE
only if all values in column N are TRUE.

Minimize the power required in cell E12 by adjusting the radii of the
towers in cells E5:E7. Use the "recipe" solving method and set the
ranges for the variables from 0 to 100. The single hard constraint,
entered using the Excel formula format, is described above.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 75

Purchasing

Any time you have many possible ways to order items the quantity
discounts make it difficult to determine the most cost effective way to
buy the items. This model contains a simple price table, listing
quantity discount prices for a special solvent. You must buy at least
155 liters of this solvent, which comes in small, medium, large and
extra-large barrels.

Try to purchase the right number of each barrel size to minimize your
cost.

Example file: Purchasing.xls

The Goal: Spend the least amount of money buying 155 liters of
solvent.

Solving method: recipe

Similar problems: The opposite: create a pricing table that most
consistently and fairly rewards higher quantity orders.

76 Purchasing

This solvent comes in 3, 6, 10 and 14-liter barrels. The table of prices
for each size is listed in cells D6:H9. Cells H13:H16 contain the
amounts to buy of each size. Column K calculates the cost for each
purchase, and cell K18 is the total cost. This model allows you to
change the required amount to be purchased (cell I19) from 155 to
whatever you wish. Cell I18 contains the total liters that were
purchased, and so this cell must be at least the required number in
cell I19 (155). The single hard constraint is that the amount purchased
exceeds the amount required.

Since we need 155 liters, we might just think of buying 11 extra-large
barrels (154 liters), plus one small barrel (3 liters) for a total of 157
liters. According to the price table, that would cost $1,200 total. But
running the optimization will give you an even more cost-effective
combination.

Minimize the cost in cell K18 by adjusting the quantities to buy in cell
H13:H16. Use the recipe solving method to adjust values, and set the
ranges of these variables to be between 1 and 20. You can not buy just
a part of one barrel, so we will ask Evolver to try only integers by
checking the “integers” option in the Adjustable Cells Dialog. Since
we cannot purchase less than 155 liters, enter a single hard constraint
specifying that I18>155.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 77

Salesman Problem
A salesman is required to visit every city in the assigned territory
once. What is the shortest route possible that visits every city? This is
a classic optimization problem and one that is extremely difficult for
conventional techniques to solve if there are a large (>50) number of
cities involved.

A similar problem might be finding the best order to perform tasks in
a factory. For example, it might be much easier to apply black paint
after applying white paint than the other way around. In Evolver,
these types of problems can be best solved by the order solving
method.

Example file: Salesman Problem.xls

Goal: Find the shortest route among n cities that visits each
city once.

Solving method: order

Similar problems: Plan the drilling of circuit board holes in the fastest
way.

78 Salesman Problem

The file “Salesman Problem.xls” calculates the route length of a trip to
various cities by looking up the distances in a table. Column A
contains identifying numbers for specific cities. Column B contains
the names that those numbers represent (with a lookup function).
The order in which the cities (and their numbers) appear from top to
bottom represents the order in which the cities are visited. For
example, if you entered a “9” into cell A3, then Ottawa would be the
first city visited. If A4 contained “6” (Halifax), then Halifax would be
the second city visited.

The distances between cities are represented in the table beginning at
C25. The distances in the table are symmetric (distance from A to B is
the same as from B to A). However, more realistic models may
include non-symmetric distances to represent greater difficulty of
traveling in one direction (because of tolls, available transportation,
headwinds, slope, etc.).

A function now must be used to calculate the length of the route
between these cities. The total route length will be stored in cell G2,
the cell we wish to optimize. To do this, we use the “RouteLength”
function. This is a custom VBA function in Salesman Problem.xls.

Minimize the value in cell G2 by adjusting the cells in A3:A22. Use
the “order” method and make sure the values 1 through 20 exist in
the adjustable cells (A3:A22) before you start optimizing.

The “order” solving method tells Evolver to rearrange the chosen
variables, trying different permutations of existing variables.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 79

Space Navigator

As the launching crew of the space shuttle “Evolver III”, you must
figure out the amount and direction of each rocket thrust to reach
your destination using the least amount of fuel. The better solutions
will probably exploit the gravitational “whip” effect of nearby suns to
conserve fuel.

Example file: Space Navigator.xls

Goal: Get a spaceship to its destination using as little fuel as
possible. Take advantage of the gravity of stars
moving through your neighborhood.

Solving method: recipe

Similar problems: process control problems

Cells Q5:R15 hold the blast size and direction values for each of ten
time steps. Cell Q16, which we want to minimize, is simply the sum
of all the fuel burned in the ten time steps (Q4:Q13).

The hard constraints are: a) that the ship's final position be within 10
horizontal units of its destination, and b) that it be within 10 vertical
units.

How The Model
Works

80 Space Navigator

Minimize cell Q16. Create an adjustable cells group that uses the
recipe solving method using cells Q5:R13. The Blast cells (Q5:Q13)
should range between 0 and 300 and the Direction cells (R5:R13)
should range between -3 and 3, since it uses Radians to represent the
direction of the blasts. One Radian is about 57 degrees.

How To Solve It

Chapter 4: Example Applications 81

Trader

You are trading on the S&P 500, and you have determined that
technical analysis provides more accurate forecasting of stocks than
traditional fundamental analysis, and can save you time once you
build a system. It seems there are an infinite number of possible rules
by which you could trade, but only a few of them would have made
you a tidy profit if you had been following them. An intelligent
computer search could help you determine what rules would have
made the most money over a certain historical period.

Example file: Trader.xls

Goal: Find a set of three rules which would have yielded the
highest return over a certain time period.

Solving method: recipe

Similar problems: find optimal moving averages that would have
yielded the best result; any rule-finding or criteria-
finding problems

82 Trader

This model uses several adjustable cell groups to solve the overall
problem. There are three rules that are evaluated for each trading
day. If the conditions of all three rules are true, then the computer
will buy on that day, otherwise it will sell. (A more realistic trading
system would not just buy or sell, but also sometimes hold onto what
it has.)

Each rule is described by a set of four numbers in cells C5:E8 which
indicate several things: 1) which data source the rule refers to, 2)
whether the data value should be above or below a cutoff value, 3) the
cutoff value that determines if the rule is true, and 4.) a modifier value
that determines if the value itself should be examined, or if the last
day's value or the change since the last day should be examined.

The cutoff values range from 0 to 1, and represent the percentage of
the data source's range. For example, if volume ranges from 5,000 to
10,000, then a cutoff value of 0.0 would match a volume of 5,000, a
cutoff value of 1.0 would match a volume of 10,000, and a cutoff value
of 0.5 would match a volume of 7,500. This system allows the rules to
refer to any data source, regardless of the values it takes on.

Create adjustable cell groups, all using the “recipe” solving method.
Each row in C5:E5, C6:E6, C7:E7, and C8:E8 should be created
separately, so that each group can easily be assigned its own options
such as integer and ranges. The settings for each set of variables are
listed in F5:F8. Maximize on cell E10, which calls a macro to simulate
trading with those rules. The total profit made after simulating
trading on each day in the historical database is returned in cell E10.

How The Model
Works

How To Solve It

Chapter 4: Example Applications 83

Transformer

The 2-winding transformer must be rated at 1080 VA with full load
losses under 28 watts and surface heat dissipation not over 0.16
watts/cm2. Minimize costs while observing the performance criteria.

Example file: Transformer.xls

Goal: Minimize the initial and operating cost of a
transformer.

Solving method: recipe

Similar problems: circuit design, bridge design

The rating, load loss, and heat dissipation constraints are coded as
soft constraints. We create a soft constraint by penalizing those
solutions which do not meet our requirements, and are invalid.
Unlike a hard constraint which must be met, Evolver is allowed to try

How The Model
Works

84 Transformer

out some invalid solutions, but because these invalid solutions are
penalized by a function in your model which checks for violations,
they will produce poor results in your target cell. Thus, over time,
these invalid solutions will be discarded from the evolving
population of possible solutions.

A soft-constraint model may work better than a hard-constraint, if the
problem is less heavily constrained. It also allows Evolver to accept a
really great solution even if it may fall a little short of the constraints,
which could be more valuable than a not-so-great solution that meets
all the constraints.

Compute material cost (initial cost) and operating costs (cost of
electricity * electricity wasted) in cells F11 and F12. Combine these
with penalty functions set in F18:F20 to form a final constrained cost
in cell F22. Minimize this target cell using the recipe solving method.

How To Solve It

Chapter 4: Example Applications 85

Transportation

How cheaply can we truck objects around the country? This standard
problem was expanded from an older Microsoft Solver example.

“Minimize the costs of shipping goods from production plants to
warehouses near metropolitan demand centers, while not exceeding
the supply available from each plant and meeting the demand from
each metropolitan area.”

To make the problem more realistic, the shipping costs were changed
so they are no longer linear, but depend on how many trucks are
needed. A truck can carry up to 6 objects, so shipping 14 objects
requires 3 trucks (carrying 6 + 6 + 2 objects).

Example file: Transportation.xls

Goal: Truck objects from three plants to five warehouses in
the cheapest way possible.

Solving method: recipe

Similar problems: design communications networks

86 Transportation

Cells C5:G7 contain the number of objects shipped from each plant to
each warehouse. C13:G13 compute the number of trucks that would
be needed to ship those objects. The hard constraints are: 1) that the
total shipped from each plant is less than or equal to the supply on
hand at the plant, and 2) that the total shipped from all plants to each
warehouse is greater than or equal the amount that warehouse
requires. This ensures that every warehouse will get what it needs,
and no plant is overtaxed.

Use the recipe solving method on cells C5:G7, using integers between
0 and 500. A set of hard constraints are entered for each plant
specifying that plant shipments<=plant supply. A second set of hard
constraints are entered for each warehouse specifying that total
shipments to warehouse>=warehouse demands. Minimize the
shipping cost in cell B22.

How The Model
Works

How To Solve It

Chapter 5: Evolver Reference Guide 87

Chapter 5: Evolver
Reference Guide

Model Definition Command ...89
Adjustable Cell Ranges...91
Adjustable Cell Groups ..93

Recipe Solving Method ...95
Order Solving Method...96
Grouping Solving Method..96
Budget Solving Method ..97
Project Solving Method...99
Schedule Solving Method...100
Crossover and Mutation Rate...103
Number of Time Blocks and Constraint Cells104
Preceding Tasks ..104
Operators..105

Constraints ..107
Add - Adding Constraints...107
Simple and Formula Constraints...108
Soft Constraints ..109

Optimization Settings Command ..113
Optimization Settings Command – General Tab...........................113
Optimization Settings Command – Runtime Tab115

Optimization Runtime Options...116
Optimization Settings Command – View Tab118
Optimization Settings Command – Macros Tab............................119

Start Optimization Command ..121

Utilities Commands ..123
Application Settings Command ..123
Constraint Solver Command..124

Evolver Watcher..127
Evolver Watcher – Progress Tab ..128
Evolver Watcher – Summary Tab..130
Evolver Watcher – Log Tab...131

88 Transportation

Evolver Watcher – Population Tab... 132
Evolver Watcher – Diversity Tab.. 133
Evolver Watcher – Stopping Options Tab 134

Chapter 5: Evolver Reference Guide 89

Model Definition Command
Defines the goal, adjustable cells and constraints for a model
Selecting the Evolver Model Definition command (or clicking the
Model icon on the Evolver toolbar) displays the Model Dialog.

The Evolver Model Dialog.

The Evolver Model Dialog is used to specify or describe an
optimization problem to Evolver. This dialog starts empty with each
new Excel workbook, but saves its information with each workbook.
That means that when the sheet is opened again, it will be filled out
the same way. Each component of the dialog is described in this
section.

90 Model Definition Command

Options in the Model dialog include:

• Optimization Goal. The Optimization Goal option determines
what kind of answer Evolver is to search for. If Minimum is
selected, Evolver will look for variable values that produce the
smallest possible value for the target cell (all the way down to -
1e300). If Maximum is selected, Evolver will search for the
variable values that result in the largest possible value for the
target cell (up to +1e300).

If Target Value is selected, Evolver will search for variable values
that produce a value for the target cell as close as possible to the
value you specify. When Evolver finds a solution which produces
this result, it will automatically stop. For example, if you specify
that Evolver should find the result that is closest to 14, Evolver
might find scenarios that result in a value such as 13.7 or 14.5.
Note that 13.7 is closer to 14 than 14.5; Evolver does not care
whether the value is greater or less than the value you specify, it
only looks at how close the value is.

• Cell. The cell or target cell contains the output of your model. A
value for this target cell will be generated for each "trial solution"
that Evolver generates (i.e., each combination of possible
adjustable cell values). The target cell should contain a formula
which depends (either directly or through a series of calculations)
on the adjustable cells. This formula can be made with standard
Excel formulas such as SUM() or user-defined VBA macro
functions. By using VBA macro functions you can have Evolver
evaluate models that are very complex.

As Evolver searches for a solution it uses value of the target cell as
a rating or “fitness function” to evaluate how good each possible
scenario is, and to determine which variable values should
continue cross-breeding, and which should die. In biological
evolution, death is the “fitness function” that determines what
genes continue to flourish throughout the population. When you
build your model, your target cell must reflect the fitness or
“goodness” of any given scenario, so as Evolver calculates the
possibilities, it can accurately measure its progress.

Chapter 5: Evolver Reference Guide 91

Adjustable Cell Ranges
The Adjustable Cell Ranges table displays each range which contains
the cells or values that Evolver can adjust, along with the description
entered for those cells. Each set of adjustable cells is listed in a
horizontal row. One or more adjustable cell ranges can be included in
an Adjustable Cell Group. All cell ranges in an Adjustable Cell
Group share a common solving method, crossover rate, mutation rate
and operators.

Because the adjustable cells contain the variables of the problem, you
must define at least one group of adjustable cells to use Evolver. Most
problems will be described with only one group of adjustable cells,
but more complex problems may require different blocks of variables
to be solved with different solving methods simultaneously. This
unique architecture allows for highly complex problems to be easily
built up from many groups of adjustable cells.

The following options are available for entering Adjustable Cell
Ranges:

• Add. You can add new adjustable cells by clicking on the “Add”
button next to the Adjustable Cells list box. Select the cell or cell
range to be added, and a new row will appear in the Adjustable
Cell Ranges table. In the table, you can enter a Minimum and
Maximum value for the cells in the range, along with the type of
Values to test – Integer values across the range, or Any values.

• Minimum and Maximum. After you have specified the location
of the adjustable cells, the Minimum and Maximum entries set the
range of acceptable values for each adjustable cell. By default,
each adjustable cell takes on a real-number (double-precision
floating point) value between -infinity and +infinity.

92 Model Definition Command

Range settings are constraints that are strictly enforced. Evolver
will not allow any variable to take on a value outside the set
ranges. You are encouraged to set more specific ranges for your
variables whenever possible to improve Evolver’s performance.
For example, you may know that the number cannot be a
negative, or that Evolver should only try values between 50 and
70 for a given variable.

• Range. The reference for the cell(s) to be adjusted is entered in
the Range field. This reference can be entered by selecting the
region in the spreadsheet with the mouse, entering a range name
or typing in a valid Excel reference such as Sheet1!A1:B8. The
Range field is available for all solving methods. For recipe and
budget methods, however, Minimum, Maximum and Values
options can be added to allow the entry of a range for the
adjustable cells.

NOTE: By assigning tight ranges to your variables, you can limit
the scope of the search, and speed up Evolver’s convergence on a
solution. But be careful not to limit the ranges of your variables
too tightly; this may prevent Evolver from finding optimal
solutions.

• Values. The Values entry allows you to specify that Evolver
should treat all of the variables in the specified range as integers
(e.g., 22), rather than as real numbers (e.g., 22.395). This option is
only available when using the “recipe” and “budget” solving
methods. The default is to treat the variables as real numbers.

Be sure to turn on the Integers setting if your model uses variables to
lookup items from tables (HLOOKUP(), VLOOKUP(), INDEX(),
OFFSET(), etc.). Note that the Integers setting affects all of the
variables in the selected range. If you want to treat some of your
variables as reals and some as integers, you can create two groups of
adjustable cells instead of one, and treat one block as integers and the
other block as reals. Simply “Add” a recipe group of adjustable cells,
and leave the Values entry as Any. Next, “Add” another cell range,
this time selecting the Integers setting and selecting only the integer
adjustable cells.

Chapter 5: Evolver Reference Guide 93

Adjustable Cell Groups
Each group of adjustable cells can contain multiple cell ranges. This
allows you to build a "hierarchy" of groups of cell ranges that are
related. Within each group, each cell range can have its own Min-Max
range constraint.

All cell ranges in an Adjustable Cell Group share a common solving
method, crossover rate, mutation rate and operators. These are
specified in the Adjustable Cell Group Settings dialog. This dialog
is accessed by clicking the Group button next to the Adjustable Cell
Ranges table. You may create a new Group to which you can add
adjustable cell ranges or edit the settings for an existing group.

94 Model Definition Command

Options on the General tab in the Adjustable Cell Group Settings
dialog include:

• Description. Describes the group of adjustable cell ranges in
dialogs and reports.

• Solving Method. Selects the Solving Method to be used for each
of the adjustable cell ranges in the group.

When you select a range of cells to be adjusted by Evolver, you also
are specifying a “solving method” you wish to apply when adjusting
those adjustable cells. Each solving method is, in essence, a
completely different genetic algorithm, with its own optimized
selection, crossover and mutation routines. Each solving method
juggles the values of your variables a different way.

The “recipe” solving method, for example, treats each variable
selected as an ingredient in a recipe; each variable’s value can be
changed independently of the others’. In contrast, the “order” solving
method swaps values between the adjustable cells, reordering the
values that were originally there.

There are six solving methods that come with Evolver. Three of the
solving methods (recipe, order, and grouping) use entirely different
algorithms. The other three are descendants of the first three, adding
additional constraints.

The following section describes the function of each solving method.
To get a better understanding of how each solving method is used,
you are also encouraged to explore the example files included with
the software (see Chapter 4: Example Applications).

Chapter 5: Evolver Reference Guide 95

The “recipe” solving method is the most simple and most popular
type of solving method. Use recipe whenever the set of variables that
are to be adjusted can be varied independently of one another. Think
of each variable as the amount of an ingredient in a cake; when you
use the “recipe” solving method, you are telling Evolver to generate
numbers for those variables in an effort to find the best mix. The only
constraint you place on recipe variables is to set the range (the highest
and lowest value) that those values must fall between. Set these
values in the Min and Max fields in the Adjustable Cells dialog (e.g. 1
to 100), and also indicate whether or not Evolver should be trying
integers (1, 2, 7) or real numbers (1.4230024, 63.72442).
Below are examples of a set of variable values as they might be in a
sheet before Evolver is called, and what two new scenarios might look
like after using the recipe solving method.

Original Set of
Variable Values

One Set of Possible
Recipe Values

Another Set of
Possible Recipe Values

23.472 15.344 37.452

145 101 190

9 32.44 7.073

65,664 14,021 93,572

Recipe Solving
Method

96 Model Definition Command

The “order” solving method is the second most popular type, after
“recipe”. An order is a permutation of a list of items, where you are
trying to find the best way to arrange a set of given values. Unlike
“recipe” and “budget” solving methods, which ask Evolver to
generate values for the chosen variables, this solving method asks
Evolver to use the existing values in your model.

An order could represent the order in which to perform a set of tasks.
For example, you might wish to find the order in which to accomplish
five tasks, numbered 1,2,3,4, and 5. The “order” solving method
would scramble those values, so one scenario might be 3,5,2,4,1.
Because Evolver is just trying variable values from your initial sheet,
there is no Min - Max range entered for adjustable cells when the
Order solving method is used.

Below are examples of a set of variable values as they might be in a
sheet before Evolver is called, and what two new scenarios might look
like after using the order solving method.

Original Set of
Variable Values

One Set of Possible
Order Values

Another Set of Possible
Order Values

23.472 145 65,664

145 23.472 9

9 65,664 145

65,664 9 23.472

The “grouping” solving method should be used whenever your
problem involves multiple variables to be grouped together in sets.
The number of different groups that Evolver creates will be equal to
the number of unique values present in the adjustable cells at the start
of an optimization. Therefore, when you build a model of your
system, be sure that each group is represented at least once.

For example, suppose a range of 50 cells contains only the values 2,
3.5, and 17. When you select the 50 cells and adjust the values using
the “grouping” solving method, Evolver will assign each of the fifty
cells to one of the three groups, 2, 3.5 or 17. All of the groups are
represented by at least one of the adjustable cells; just like tossing
each of the 50 variables in one of several “bins”, and making sure
there is at least one variable in each bin. Another example would be
assigning 1s, and 0s, and -1s to a trading system to indicate buy, sell
and hold positions. Like the “order” solving method, Evolver is
arranging existing values, so there is no min-max range or integers
option to define.

Order Solving
Method

Grouping
Solving Method

Chapter 5: Evolver Reference Guide 97

NOTE: When using the “grouping” solving method, do not leave any
cells blank, unless you would like 0.0 to be considered one of the
groups.

You may realize that the “grouping” solving method could be
approximated by using the “recipe” solving method with the integers
option “on” and the ranges set from 1 to 3 (or whatever number of
groups there are). The difference lies in the way a recipe and a
grouping perform their search. Their selection, mutation and crossover
routines are different; a grouping is much more concerned with the
values of all the variables, because it can swap a set of variables from
one group with a set of variables from another group.

Below are examples of a set of variable values as they might be in a
sheet before Evolver is called, and what two new scenarios might look
like after using the grouping solving method.

Original Set of
Variable Values

One Set of Possible
Grouping Values

Another Set of
Possible Grouping
Values

6 6 8

7 6 7

8 8 6

8 7 7

When using the Grouping solving method, there are 2 additional
settings in the Adjustable Cell Group Settings dialog:

• Group Names (Optional). This setting allows a user to specify a
range containing numeric group IDs. Normally Evolver reads
group IDs from the adjustable range. For example, if the
adjustable range is A1:D1, and it contains numbers 1, 1, 3, 2, then
Evolver with use 1, 2, and 3 as group IDs. However, there may
be more groups than there are adjustable cells; for example, we
may want to assign items represented by cells A1:D1 to groups
numbered 1 to 5. In this case, the Group Names setting will
allow the user to specify a range containing five cells with
numbers 1 to 5 be used as group IDs during optimization.

• All Groups Must Be Used. If this option is checked, every
solution will have members from every group. For example, if
the adjustable cells are A1:D1, and group IDs are 1, 2, and 3, then
Evolver will not try a solution with 1 assigned to all four cells
(with 2 and 3 missing). On the other hand this solution may be
tried if the check box is not selected.

98 Model Definition Command

A “budget” is similar to a “recipe” except that all of the variables’
values must total to a certain number. That number is the total of the
variables’ values at the time an optimization is started.

For example, you might want to find the best way to distribute an
annual budget among a number of departments. The “budget”
solving method will take the total of the current values for the
departments, and use that sum as the total budget to be optimally
distributed. Below are examples of what two new scenarios might
look like after using the budget solving method.

Original
Set of Budget Values

One Set of
Possible Budget

Values

Another Set of
Possible Budget

Values

200 93.1 223.5

3.5 30 0

10 100 -67

10 .4 67

Many values are being tried, but the sum of all values remains 223.5.

Budget Solving
Method

Chapter 5: Evolver Reference Guide 99

The “project” solving method is similar to the “order” solving method
except that certain items (tasks) must precede others. The “project”
solving method can be used in project management to rearrange the
order in which tasks are carried out, but the order will always meet
the precedence constraints.

A problem modeled using the Project solving method will be much
easier to work with and understand if the adjustable cells containing
the task order are in a single column, rather than in a row. This is
because the solving method expects the preceding tasks cells to be
arranged vertically rather than horizontally, and it will be easier to
examine your worksheet if the adjustable cells are also vertical.

After you have specified the location of the adjustable cells, you
should specify the location of the preceding tasks cells in the Preceding
Tasks section of the dialog. This is a table of cells that describes which
tasks must be preceded by which other tasks. The solving method
uses this table to rearrange the order of variables in a scenario until
the precedence constraints are met. There should be one row in the
preceding tasks range for each task in the adjustable cells. Starting in
the first column of the preceding tasks range, the identifying number
of each task on which that row’s task depends should be listed in
separate columns.

Example of how to set up precedents for Project solving method.
The precedence tasks range should be specified as being n rows by m
columns, where n is the number of tasks in the project (adjustable
cells), and m is the largest number of preceding tasks that any one
task has.

Project Solving
Method

100 Model Definition Command

Below are examples of a set of variable values as they might be in a
sheet before Evolver is called, and what two new scenarios might look
like after using the Project solving method, with the constraint that 2
must always come after 1, and 4 must always come after 2.

Original Set of
Variable Values

One Set of Possible
Project Values

Another Set of
Possible Project
Values

1 1 1

2 3 2

3 2 4

4 4 3

A schedule is similar to a grouping; it is an assignment of tasks to
times. Each task is assumed to take the same amount of time, much
as classes at a school are all of the same length. Unlike a grouping,
however, the Adjustable Cell Group Settings Dialog for the
“schedule” solving method lets you directly specify the number of
time blocks (or groups) to be used. Notice when you select the
“schedule” method, several related options appear in the lower
portion of the dialog box.

In the Optimization Parameters section, you will notice that you can
also have a constraint cell range attached to it. This range can be of
any length, but must be exactly three columns wide. Eight kinds of
constraints are recognized:
1) (with) The tasks in the 1st & 3rd columns must occur in the same time

block.
2) (not with) The tasks in the 1st & 3rd columns must not occur in the

same time block.
3) (before) The task in the 1st column must occur before the task in the 3rd

column.
4) (at) The task in the 1st column must occur in the time block in the 3rd

column.

Schedule
Solving Method

Chapter 5: Evolver Reference Guide 101

5) (not after) The task in 1st column must occur at the same time or before
the task in the 3rd column.

6) (not before) The task in 1st column must occur at the same time or after
the task in the 3rd column.

7) (not at) The task in the 1st column must not occur in the time block in
the 3rd column.

8) (after) The task in the 1st column must occur after the task in the 3rd
column.

Either a numeric code (1 through 8) or the English description (after,
not at, etc.) can be entered for a constraint. (Note: All language
versions of the Evolver will recognize the English description entered
for a constraint as well as the its translated form). All of the
constraints specified in your problem will be met. To create
constraints, find an empty space on your worksheet and create a table
where the left and right columns represent tasks, and the middle
column represents the type of constraints. A number from 1 to 8
represents the kind of constraint listed above. The cells in the
constraint range must have the constraint data in them before you
start optimizing.

This Task Constraint This Task

5 4 2

12 2 8

2 3 1

7 1 5

6 2 4

9 3 1

102 Model Definition Command

Below are examples of a set of variable values as they might be in a
sheet before Evolver is called, and what two new scenarios might look
like after using the Schedule solving method.

Original Set of
Variable Values

One Set of Possible
Schedule Values

Another Set of
Possible Schedule
Values

1 1 1

2 1 3

3 3 1

1 1 2

2 2 2

3 3 2

NOTE: When you select the schedule solving method, integers
starting from 1 are always used (1,2,3...), regardless of the original
values in the adjustable cells.

Chapter 5: Evolver Reference Guide 103

One of the most difficult problems with searching for optimal
solutions, when your problem has seemingly endless possibilities, is
in determining where to focus your energy. In other words, how
much computational time should be devoted to looking in new areas
of the “solution space”, and how much time should be devoted to
fine-tuning the solutions in our population that have already proven
to be pretty good?

A big part of the genetic algorithm success has been attributed to its
ability to preserve this balance inherently. The structure of the GA
allows good solutions to “breed”, but also keeps “less fit” organisms
around to maintain diversity in the hopes that maybe a latent “gene”
will prove important to the final solution.

Crossover and Mutation are two parameters that affect the scope of the
search, and Evolver allows users to change these parameters before,
and also during the evolutionary process. This way, a knowledgeable
user can help out the GA by deciding where it should focus its
energy. For most purposes, the default crossover and mutation
settings (.5 and .1 respectively) do not need adjustment. In the event
that you wish to fine-tune the algorithm to your problem, conduct
comparative studies, or just to experiment, here is a brief introduction
to these two parameters:

• Crossover. The crossover rate can be set to between 0.01 and 1.0,
and reflects the likelihood that future scenarios or “organisms”
will contain a mix of information from the previous generation of
parent organisms. This rate can be changed by experienced users
to fine-tune Evolver’s performance on complex problems.

In other words, a rate of 0.5 means that an offspring organism will
contain roughly 50% of its variable values from one parent and
the remaining values from the other parent. A rate of 0.9 means
that roughly 90% of an offspring organism’s values will come
from the first parent and 10% will come from the second parent.
A Crossover rate of 1 means that no crossover will occur, so only
clones of the parents will be evaluated.

The default rate used by Evolver is 0.5. Once Evolver has started
solving a problem, you can change the crossover rate by using the
Evolver Watcher (see the Evolver Watcher section in this chapter).

Crossover and
Mutation Rate

104 Model Definition Command

• Mutation Rate. The mutation rate can be set to between 0.0 and
1.0, and reflects the likelihood that future scenarios will contain
some random values. A higher mutation rate simply means that
more mutations or random “gene” values will be introduced into
the population. Because mutation occurs after crossover, setting
the mutation rate to 1 (100% random values) will effectively
prevent the crossover from having any effect, and Evolver will
generate totally random scenarios.

If all the data of the optimal solution was somewhere in the
population, then the crossover operator alone would be enough to
eventually piece together the solution. Mutation has proven to be
a powerful force in the biological world for many of the same
reasons that it is needed in a genetic algorithm: it is vital to
maintaining a diverse population of individual organisms,
thereby preventing the population from becoming too rigid, and
unable to adapt to a dynamic environment. As in a genetic
algorithm, it is often the genetic mutations in animals which
eventually lead to the development of critical new functions.

For most purposes, the default mutation setting does not need
adjustment, but can, however, be changed by experienced users to
fine-tune Evolver’s performance on complex problems. The user
may wish to boost the mutation rate if Evolver’s population is
fairly homogenous, and no new solutions have been found in the
last several hundred trials. Typical setting changes are from .06 to
.2. Once Evolver has started solving a problem, you can change
the mutation rate dynamically by using the Evolver Watcher (see
the Evolver Watcher section later in this chapter).

By selecting Auto from the drop down list in the Mutation rate
field, auto-mutation rate adjustment is selected. Auto-mutation
rate adjustment allows Evolver to increase the mutation rate
automatically when an organism "ages" significantly; that is, it has
remained in place over an extended number of trials. For many
models, especially where the optimal mutation rate is not known,
selecting Auto can give better results faster.

For more information on these options, see the Schedule Solving
method in the Solving Methods section of this chapter.

For more information on these options, see the Project Solving method
in the Solving Methods section of this chapter.

Number of Time
Blocks and
Constraint Cells
Preceding
Tasks

Chapter 5: Evolver Reference Guide 105

Evolver includes selectable genetic operators when used with the
Recipe solving method. Clicking the Operators tab in the Adjustable
Cell Group Settings Dialog allows you to select a specific genetic
operator (such as heuristic crossover or boundary mutation) to be
used when generating possible values for a set of adjustable cells. In
addition, you can have Evolver automatically test all available
operators and identify the best performing one for your problem.

Genetic algorithms use genetic operators to create new members of
the population from current members. Two of the types of genetic
operators Evolver employs are mutation and crossover. The mutation
operator determines if random changes in “genes” (variables) will
occur and how they occur. The crossover operator determines how
pairs of members in a population swap genes to produce “offspring”
that may be better answers than either of their “parents”.

Evolver includes the following specialized genetic operators:

♦ Arithmetic Crossover – Creates new offspring by arithmetically
combining the two parents (as opposed to swapping genes).

♦ Heuristic Crossover – Uses values produced by the parents to
determine how the offspring is produced. Searches in the most
promising direction and provides fine local tuning.

♦ Cauchy Mutation – Designed to produce small changes in
variables most of the time, but can occasionally generate large
changes.

Operators

106 Model Definition Command

♦ Boundary Mutation – Designed to quickly optimize variables that
affect the result in a monotonic fashion and can be set to the
extremes of their range without violating constraints.

♦ Non-uniform Mutation – Produces smaller and smaller
mutations as more trials are calculated. This allows Evolver to
“fine tune” answers.

♦ Linear – Designed to solve problems where the optimal solution
lies on the boundary of the search space defined by the
constraints. This mutation and crossover operator pair is well
suited for solving linear optimization problems.

♦ Local search - Designed to search the solution space in the
neighborhood of a previous solution, expanding in directions that
provide improvement, and contracting in directions that produce
a worse result.

Depending on the type of optimization problem, different
combinations of mutation and crossover operators may produce
better results than others. In the Operators tab of the Adjustable Cell
Group Settings dialog, when using the Recipe solving method, any
number of operators may be selected. When multiple selections are
made, Evolver will test valid combinations of the selected operators to
identify the best performing ones for your model. After a run, the
Optimization summary worksheet ranks each of the selected operators
by their performance during the run. For subsequent runs of the
same model, selecting just the top performing operators may lead to
faster, better performing optimizations.

NOTE: When creating multiple groups of adjustable cells, check to be
sure that no spreadsheet cell is included in several different groups of
adjustable cells. Each group of adjustable cells should contain
unique adjustable cells because the values in the first group of
adjustable cells would be ignored and overwritten by the values in
the second group of adjustable cells. If you think a problem needs to
be represented by more than one solving method, consider how to
break up the variables into two or more groups.

Chapter 5: Evolver Reference Guide 107

Constraints
Evolver allows you to enter constraints, or conditions that must be
met for a solution to be valid. Constraints you have entered are
shown in the Constraints table in the Model Definition dialog box.

Clicking the Add button next to the Constraints table displays the
Constraint Settings dialog box where constraints are entered. Using
this dialog box the type of constraint desired, along with its
description, type, definition and evaluation time can be entered.

Add - Adding
Constraints

108 Model Definition Command

Two types of constraints can be specified in Evolver:

• Hard, or conditions that must be met for a solution to be valid
(i.e., a hard constraint could be C10<=A4; in this case, if a solution
generates a value for C10 that is greater than the value of cell A4,
the solution will be thrown out).

• Soft, or conditions which we would like to be met as much as
possible, but which we may be willing to compromise for a big
improvement in fitness or target cell result (i.e., a soft constraint
could be C10<100; however, C10 could go over 100, but when
that happened the calculated value for the target cell would be
decreased based on the penalty function you have entered).

Two formats – Simple and Formula -- can be used for entering
constraints. The type of information you can enter for a constraint
depends on the format you select.

• Simple Format - The Simple format allows constraints to be
entered using simple <, <=, >, >= or = relations where a cell is
compared with an entered number. A typical Simple constraint
would be:

0<Value of A1<10
where A1 is entered in the Cell Range box, 0 is entered in the Min
box and 10 is entered in the Max box. The operator desired is
selected from the drop down list boxes. With a simple range of
values format constraint, you can enter just a Min value, just a
Max or both. The entered Min and Max values must be numeric
in the simple range of values constraint format.

• Formula Format - The Formula format allows you to enter any
valid Excel formula as a constraint, such as A19<(1.2*E7)+E8.
Evolver will check whether the entered formula evaluates to
TRUE or FALSE to see if the constraint has been met

Constraint Type

Simple and
Formula
Constraints

Chapter 5: Evolver Reference Guide 109

Soft Constraints are conditions which we would like to be met as
much as possible, but which we may be willing to compromise for a
big improvement in fitness or target cell result. When a soft
constraint is not met it causes a change in the target cell result away
from its optimal value. The amount of change caused by an unmet
soft constraint is calculated using a penalty function that is entered
when you specify the soft constraint.

More information about penalty functions is as follows:

• Entering a Penalty Function. Evolver has a default penalty
function which is displayed when you first enter a soft constraint.
Any valid Excel formula, however, may be entered to calculate
the amount of penalty to apply when the soft constraint is not
met. An entered penalty function should include the keyword
deviation which represents the absolute amount by which the
constraint has gone beyond its limit. With each recalculation
Evolver checks if the soft constraint has been met; if not, it places
the amount of deviation in the entered penalty formula and then
calculates the amount of penalty to apply to the target cell.

The penalty amount is either added or subtracted from the
calculated target cell value in order to make it less "optimal". For
example, if Maximum is selected in the Optimization Goal field in
the Evolver Model Dialog, the penalty is subtracted from the
calculated target cell value.

Soft Constraints

110 Model Definition Command

• Viewing the Effects of an Entered Penalty Function. Evolver
includes an Excel worksheet PENALTY.XLS which can be used to
evaluate the effects of different penalty functions on specific soft
constraints and target cell results.

PENALTY.XLS allows you to select a soft constraint from your model
whose effects you wish to analyze. You can then change the penalty
function to see how the function will map a specific value for the
unmet soft constraint into a specific penalized target value. For
example, if your soft constraint is A10<100, you could use
PENALTY.XLS to see what the target value would be if a value of 105
was calculated for cell A10.

• Viewing the Penalties Applied. When a penalty is applied to the
target cell due to an unmet soft constraint, the amount of penalty
applied can be viewed in the Evolver Watcher. In addition,
penalty values are shown in Optimization Log worksheets,
created optionally after optimization.

NOTE: If you place a solution in your worksheet using the Update
Adjustable Cell Values options in the Stop dialog, the calculated
target cell result shown in the spreadsheet will not include any
penalties applied due to unmet soft constraints. Check the
Optimization Log worksheet to see the penalized target cell result
and the amount of penalty imposed due to each unmet soft
constraint.

Chapter 5: Evolver Reference Guide 111

• Implementing Soft Constraints in Worksheet Formulas. Penalty
functions can be implemented directly in the formulas in your
worksheet. If soft constraints are implemented directly in the
worksheet they should not be entered in the main Evolver dialog.
For more information on implementing penalty functions in your
worksheet, see the section Soft Constraints in Chapter 9: Evolver
Extras.

112 Model Definition Command

Chapter 5: Evolver Reference Guide 113

Optimization Settings Command

Optimization Settings Command – General Tab
Defines the general settings for an optimization

The Optimization Settings dialog General tab displays settings for
population size, display update, and random number generator seed.

Optimization Parameter Options on the General tab include:

• Population Size. The population size tells Evolver how many
organisms (or complete sets of variables) should be stored in
memory at any given time. Although there is still much debate
and research regarding the optimal population size to use on
different problems, generally we recommend using 30-100
organisms in your population, depending on the size of your
problem (bigger population for larger problems). The common
view is that a larger population takes longer to settle on a
solution, but is more likely to find a global answer because of its
more diverse gene pool.

114 Optimization Settings Command

• Random Number Generator Seed. The Random Number
Generator Seed option allows you to set the starting seed value
for the random number generator used in Evolver. When the
same seed value is used, an optimization will generate the exact
same answers for the same model as long as the model has not
been modified. The seed value must be an integer in the range 1
to 2147483647.

Chapter 5: Evolver Reference Guide 115

Optimization Settings Command – Runtime Tab
Defines the runtime settings for an optimization
The Optimization Settings dialog Runtime tab displays Evolver
settings that determine the runtime of the optimization. These
stopping conditions specify how and when Evolver will stop during
an optimization. Once you select the Start Optimization command,
Evolver will continuously run, searching for better solutions and
running trials until the selected stopping criteria are met. You can
turn on any number of these conditions, or none at all if you want
Evolver to search indefinitely (until you stop it). When multiple
conditions are checked, Evolver stops as soon as one of the chosen
conditions is met. You may also override these selections and stop
Evolver at any time manually using the stop button in the Evolver
Watcher or Progress windows.

116 Optimization Settings Command

Optimization Runtime options on the Runtime tab include:

• Trials - This option, when set, stops Evolver when the given
number of trial solutions are generated by Evolver.

The Trials setting is particularly useful when comparing Evolver’s
efficiency when trying different modeling methods. By changing
the way you model a problem, or by choosing a different solving
method, you may increase Evolver’s efficiency. Having a model
run a specified number of trials will indicate how efficiently
Evolver is converging on a solution, regardless of any differences
in the number of variables chosen, the speed of the computer
hardware being used, or the screen re-drawing time. The Evolver
optimization summary worksheet is also useful in comparing
results between runs. For more information on Optimization
Summary worksheets, see the Evolver Watcher – Stopping
Options section in this chapter.

• Time - This option, when set, stops Evolver from optimizing
scenarios after the given number of hours, minutes or seconds has
elapsed. This entry can be any positive real number (600, 5.2,
etc.).

• Progress - This option, when set, stops Evolver from optimizing
scenarios when the improvement in the target cell is less than the
specified amount (change criterion). You can specify, as an
integer, the number of trials over which to check the
improvement. A percentage value - such as 1% - can be entered
as the maximum change value in the Maximum Change field.

Suppose that we are trying to maximize the mean of the target
cell, and after 500 trials, the best answer found so far is 354.8. If
the “Progress” option is the only stopping condition selected,
Evolver will pause at trial #600 and will only continue if it is able
to find an answer of at least 354.9 during those last 100 trials. In
other words, Evolver’s answers have not improved at least 0.1
over the last 100 trials, so it assumes there is little more
improvement to be found, and stops the search. For more
complex problems, you may want to boost the number of trials
that Evolver runs through (500) before deciding whether there is
still sufficient improvement to go on.

This is the most popular stopping condition, because it gives
the user an effective way to stop Evolver after the
improvement rate is slowing down, and Evolver is not
seeming to find any better solutions. If you are viewing the
graphs of the best results on the Progress tab of the Evolver

Optimization
Runtime
Options

Chapter 5: Evolver Reference Guide 117

Watcher, you will see the graphs plateau or flatten out for a
while before this condition is met and Evolver stops.
“Progress” is really just an automatic way to do what you
could do yourself with the graph -- let it run until the
improvement levels off.

• Formula is True. This stopping condition causes the
optimization to stop whenever the entered (or referenced)
Excel formula evaluates to TRUE during the optimization.

• Stop on Error. This stopping condition causes the
optimization to stop whenever an Error value is calculated for
the target cell.

NOTE: You can also select no stopping conditions, and Evolver will
run forever until you press the stop button on the Evolver Watcher
window.

118 Optimization Settings Command

Optimization Settings Command – View Tab
Defines the view settings for an optimization
The Optimization Settings dialog View tab displays Evolver settings
that determine what will be shown during an optimization.

Options on the View tab include:

• Minimize Excel at Start. This option selects to minimize Excel
when an optimization starts.

• Show Excel Recalculations. This specifies to update Excel either
with Every New Best Trial, or at the end of Every Trial.

• Keep Log of Trials. This option specifies that Evolver keeps a
running log of each new trial performed. This log can be viewed
in the Evolver Watcher Window.

Chapter 5: Evolver Reference Guide 119

Optimization Settings Command – Macros Tab
Defines macros to be run during an optimization
VBA macros can be run at different times during an optimization and
during each trial solution. This allows the development of custom
calculations that will be invoked during an optimization.

Macros may be executed at the following times during an
optimization:

• At the Start of the Optimization - macro runs after the Run icon
is clicked; prior to the first trial solution being generated.

• Before Recalculation of Each Trial - macro runs before
recalculation of each trial that is executed.

• After Recalculation of Each Trial- macro runs after recalculation
of each trial that is executed

• After Storing Output - macro runs after each trial that is
executed and after the value for the target cell's is stored.

• At the End of the Optimization - macro runs when the
optimization is completed.

This feature allows calculations which only can be performed through
the use of a macro to be made during an optimization. Examples of
such macro-performed calculations are iterative "looping" calculations
and calculations which require new data from external sources.

The Macro Name defines the macro to be run.

120 Optimization Settings Command

Chapter 5: Evolver Reference Guide 121

Start Optimization Command
Starts an optimization
Selecting the Start Optimization command or clicking the Start
Optimization icon starts an optimization of the active model and
workbook. As soon as Evolver is running, you will see the following
Evolver Progress window.

The Progress window displays:

• Trial or the total number of trials that have been executed and
#Valid indicates the number of those trials for which all
constraints were met.

• Runtime or the elapsed time in the run

• Original or the original value for the target cell.

• Best or the current best value for the target cell that is being
minimized or maximized.

122 Start Optimization Command

Options on the Evolver Toolbar of the Progress window include:

• Display Excel Updating Options. Selects to update the Excel
display Every Trial, on Every New Best Trial or Never. Note
that in some situations the screen will be updated independently
of these settings, for example when optimization has been
paused.

• Display Evolver Watcher. Displays the full Evolver Watcher
window.

• Run. Clicking the Run icon causes Evolver to begin searching for
a solution based on the current description in the Evolver Model
Dialog. If you pause Evolver you will still be able to click the Run
icon to continue the search for better solutions.

• Pause. If you would like to pause the Evolver process, just click
the Pause icon, and you temporarily “freeze” the Evolver process.
While paused, you may wish to open and explore the Evolver
Watcher and change parameters, look at the whole population,
view a status report, or copy a graph.

• Stop. Stops the optimization.

Chapter 5: Evolver Reference Guide 123

Utilities Commands

Application Settings Command
Displays the Application Settings dialog where program
defaults can be set
A wide variety of Evolver settings can be set at default values that
will be used each time Evolver runs. These include Stopping
Defaults, Default Crossover and Mutation Rates and others.

124 Utilities Commands

Constraint Solver Command
Runs the Constraint Solver

The Constraint Solver enhances Evolver's ability to handle model
constraints. When Evolver runs an optimization, it is assumed that
the original adjustable cell values meet all the hard constraints, i.e.
that the original solution is valid. If that is not the case, the algorithm
may run very many trials before finding a first valid solution.
However, if a model contains multiple constraints, then it may not be
obvious what adjustable cell values will meet all of them.

If a Evolver model contains multiple hard constraints, and
optimizations fail with all solutions invalid, you will be notified and
the Constraint Solver can be run. The Constraint Solver runs an
optimization in a special mode, in which the objective is to find a
solution meeting all the hard constraints. The optimization progress
is shown to the user in the same way as in regular optimizations. The
Progress Window shows the number of constraints that are met in the
original and best solutions.

Chapter 5: Evolver Reference Guide 125

A button in the Progress Window allows the user to switch to the
Evolver Watcher. In the Constraint Solver mode the details of
optimization progress are available like in regular mode
optimizations, in Progress, Summary, Log, Population and Diversity
tabs. In the Constraint Solver mode the Watcher contains an
additional tab, entitled Constraint Solver. This tab shows the status
of each hard constraint (Met or Not Met) for the Best, Original, and
Last solution.

 A Constraint Solver optimization stops automatically when a
solution meeting all the hard constraints is found; it can also be
stopped by clicking a button in the progress window or in the Evolver
Watcher. After a Constraint Solver run, in the Evolver Watcher
Stopping Options tab you can choose to keep the Best, Original, or
Last solution, like in regular-mode optimizations.

Note there is no need to set up the Constraint Solver before a run. It
uses the settings specified in the model, only changing the
optimization objective: the new objective is to find a solution meeting
all the hard constraints.

126 Utilities Commands

Chapter 5: Evolver Reference Guide 127

Evolver Watcher
The magnifying glass icon on the Evolver Progress window toolbar
displays the Evolver Watcher. Evolver Watcher is responsible for
regulating and reporting on all Evolver activity.

From Evolver Watcher, you can change parameters and analyze the
progress of the optimization. You can also see real-time information
about the problem and information on Evolver’s progress in the status
bar across the bottom of Evolver Watcher.

128 Evolver Watcher

Evolver Watcher – Progress Tab
Displays progress graphs for target cell value
The Progress Tab in the Evolver Watcher graphically shows how
results are changing, by trial, for the selected target cell.

Progress graphs show the trial count on the X-axis and target cell
value on the Y-axis. Progress graphs can be rescaled by clicking on
the axis limits and dragging the axis to the new scale value.
Alternatively, right-clicking on the Progress graph can display the
Graph Options dialog where further customization of the graphs is
allowed.

Chapter 5: Evolver Reference Guide 129

The Graph Options dialog displays settings that control the titles,
legends, scaling and fonts used on the displayed graph.

Graph Options
Dialog

130 Evolver Watcher

Evolver Watcher – Summary Tab
Displays details for adjustable cell values
The Summary Tab in the Evolver Watcher displays a summary table
of adjustable cell values tested during the optimization, along with
tools for adjusting the crossover and mutation rate for each
Adjustable Cell Group in the model.

The Adjustable Cell Group Settings allows you to change the
Crossover and Mutation rates of the genetic algorithm as the problem
is in progress. Any changes made here will override the original
setting of these parameters and will take place immediately, affecting
the population (or group of adjustable cells) that was selected in the
Group Shown field.

We almost always recommend using the default crossover of 0.5. For
mutation, in many models you may turn it up as high as about 0.4 if
you want to find the best solution and are willing to wait longer for it.
Setting the mutation value to 1 (the maximum) will result in
completely random guessing, as Evolver performs mutation after it
performs crossover. This means that after the two selected parents
are crossed over to create an offspring solution, 100% of that
solution’s “genes” will mutate to random numbers, effectively
rendering the crossover meaningless (see “crossover rate, what it
does” and “mutation rate, what it does” in the index for more
information).

Chapter 5: Evolver Reference Guide 131

Evolver Watcher – Log Tab
Displays a log of each trial run during the optimization
The Log Tab in the Evolver Watcher displays a summary table of each
trial run during the optimization. The log includes the results for the
target cell, each adjustable cell and entered constraints. A log is only
available if the option Keep a Log of All Trials is selected in the
Otimization Settings dialog View tab.

The Show options select to show a log of All Trials or only those
Trials where there was a Progress Step (i.e. where the optimization
result improved). The log includes:

1) Elapsed Time, or the start time of the optimization

2) Iters, or the number of iterations run

3) Result, or the value of the target cell that you are trying to
maximize or minimize, including penalties for soft constraints

4) Input columns, or the values used for your adjustable cells

5) Constraint columns showing whether your constraints were met

132 Evolver Watcher

Evolver Watcher – Population Tab
Lists all the variables of each organism (each possible
solution) in the current population
The population table is a grid which lists all the variables of each
organism (each possible solution) in the current population. These
organisms (“Org n”) are ranked in order from worst to best. Since
this table lists all organisms in the population, the “population size”
setting in the Evolver Settings dialog determines how many
organisms will be listed here (default 50). In addition, the first
column of the chart shows the resulting value of the target cell for
each organism.

Chapter 5: Evolver Reference Guide 133

Evolver Watcher – Diversity Tab
Displays a color plot of all variables in the current population
The plot on the Diversity tab assigns colors to adjustable cell values,
based on how much the value of a given cell differs across the
population of organisms (solutions) that are stored in memory at a
given point. (Using the genetic optimization terminology, this is an
indication of the diversity that exists in the gene pool.) Each vertical
bar in the plot corresponds to one adjustable cell. Horizontal stripes
within each bar represent the values of that adjustable cell in different
organisms (solutions). The colors of the stripes are assigned by
dividing the range between the minimum and maximum value for a
given adjustable cell into 16 equal-length intervals; each of the
intervals is represented by a different color. For example, in the
picture the fact that the vertical bar representing the second adjustable
cell is single-color means that the cell has the same value in each
solution in memory.

134 Evolver Watcher

Evolver Watcher – Stopping Options Tab
Displays stopping options for the optimization
When you click the Stop button, the Evolver Watcher dialog
Stopping Options tab is displayed. This includes the options
available for updating your worksheet with the best calculated values
for adjustable cells, restoring original values, and generating an
optimization summary report.

Clicking OK destroys Evolver’s population of solutions and places the
selected values in your spreadsheet. If you wish to save any
information about the Evolver session, including the population
values, the time and number of trials run, be sure to select to create an
optimization summary report.

This dialog will also appear if one of the user specified stopping
conditions has been met (number of requested trials have been
evaluated, minutes requested have elapsed, etc.). The stop alert offers
three choices for updating the adjustable cell values in your
spreadsheet: Best, Original and Last.

• Best . This accepts Evolver’s results and ends Evolver’s search for
better solutions. When you choose this option, the values of the
best scenario Evolver has found in its search are placed into the
adjustable cells of your spreadsheet.

Chapter 5: Evolver Reference Guide 135

• Original. This restores the adjustable cells to their original values
before Evolver was run, and ends Evolver’s search for better
solutions.

• Last. This causes Evolver to place the last calculated values in the
optimization in the worksheet. The Last Calculated Values option
is particularly useful when debugging models.

The Reports to Generate options can generate optimization summary
worksheets that can be used for reporting on the results of a run and
comparing the results between runs. Report options include:

• Optimization Summary. This summary report contains
information such as date and time of the run, the optimization
settings used, the value calculated for the target cell and the value
for each of the adjustable cells.

This report is useful for comparing the results of successive
optimizations.

136 Evolver Watcher

• Log of All Trials. This report logs the results of all trials
performed.

• Log of Progress Steps. This report logs the results of all trials that

improved the result for the target cell.

Chapter 6: Optimization 137

Chapter 6: Optimization

Optimization Methods ..139
About Hill Climbing Algorithms..141

Excel Solver ..145
Evolver vs. Solver...146
When to Use Evolver ...147

Types of Problems..149
Linear Problems..149
Non-linear Problems..149
Table-based problems ...151
Combinatorial problems ...151

138

Chapter 6: Optimization 139

Optimization Methods
We have already seen a few examples of optimization problems in the
tutorials. Some optimization problems are much harder than others
to solve. For tough problems, such as finding the shortest route
between 1000 cities, it is not feasible to examine every possible
solution. Such an approach would require years of calculations on the
fastest computers.

To solve such problems, it is necessary to search through a subset of
all possible solutions. By examining these solutions, we can get an
idea of how to find better solutions. This is accomplished with an
algorithm. An algorithm is simply a step-by-step description of how to
approach a problem. All computer programs, for example, are built
by combining numerous algorithms.

Let us start by exploring how most problem-solving algorithms
represent a problem. Most problems can be divided into three basic
components: inputs, a function of some kind, and a resulting output.

 Looking for: Given this: To get the best:

Problem
Components

Inputs Function Output

In Evolver/Excel Variables Model Goal

Let us assume that our optimization problem involves two variables,
X and Y. When placed in an equation, these two variables produce a
result =Z. Our problem is to find the value for X and Y that produces
the largest Z value. We can think of Z as a “rating”, which indicates
how good any particular X,Y pairing is.

 Looking for: Given this: To get the best:

In this example X and Y Equation Z

140 Optimization Methods

A plot of every single set of Xs,Ys, and the resulting Zs would
produce a three-dimensional surface graph such as the one shown
below.

A “landscape” of possible scenarios or solutions.

Each intersection of an X and Y value produces a Z height. The peaks
and valleys of this “landscape” represent good and bad solutions
respectively. Searching for the maximum or highest point on this
function by examining each solution would take far too much time,
even with a powerful computer and the fastest program.* Remember
that we are giving Excel just the function itself, not a graph of the
function, and that we could just as easily be dealing with a 200-
dimensional problem as with this two-dimensional problem. Thus,
we need a method that will let us do fewer calculations and still find
the maximum productivity.

* In our diagram, the function is shown as a smooth landscape. In the
rare cases where we deal with simple, smooth (differentiable)
functions, it is possible to use calculus to find minima and maxima.
However, most realistic problems are not described by such smooth
functions.

Chapter 6: Optimization 141

About Hill Climbing Algorithms
Let us look at a simple algorithm called hill-climbing. Hill-climbing is
an algorithm that works like this:

1) Start at a random point on the landscape (take a random guess).
2) Walk a small distance in some arbitrary direction.
3) If you have walked to a new point that is higher, stay and repeat

step 2. If your new point is lower, go back to your original point
and try again.

Hill-climbing tries only one solution or scenario at a time. We will
use a black dot (•) to represent one possible solution (a set of X, Y and
Z values). If we place the dot at the random starting point, we hope
that our hill-climbing method will bring the dot to the highest point
on the graph.

From the diagram above we can clearly see that we want the dot to go
up the high hill to the right. However, we only know that because we
have already seen the entire landscape. As the algorithm runs, it sees
the landscape immediately around it, but not the entire landscape; it
sees the trees but not the forest.

142 Optimization Methods

In most real-world problems, the landscape is not so smooth, and
would require years to calculate, so we only calculate the current
scenario and the immediately surrounding scenarios. Imagine that
the dot is a blindfolded man standing amidst smooth, rolling hills. If
the man employed the hill-climbing algorithm, this man would put
one foot in each direction, and only move when he felt higher ground.
This man would successfully step his way upwards, and eventually
would come to rest on the hilltop where the ground all around him
was lower than the ground he was on. This seems simple enough.
However, we get into a very serious problem if the man starts out in
another place... he climbs up the wrong hill! (see the diagram below).

Even with a smooth function, hill climbing can fail

 if you start from a slightly different position (right).
Hill-climbing only finds the nearest hilltop, or local maximum. Thus, if
your problem has a very rough and hilly solution landscape, as most
realistic models do, hill-climbing is not likely to find the highest hill,
or even one of the highest.

Hill-climbing has another problem; how do we actually find the
terrain around our current location? If the landscape is described by a
smooth function, it may be possible to use differentiation (a calculus
technique) to find out which direction has the steepest slope. If the
landscape is discontinuous or not differentiable (as is more likely in
real-world problems), we need to calculate the “fitness” of
surrounding scenarios.

Chapter 6: Optimization 143

For example, lets say a bank hires one security guard from 9:00am to
5:00pm to guard the bank, but the bank must give the officer two (2)
half-hour breaks. We must try to find the optimum break times,
given general rules about performance/fatigue ratios, and
considering the different levels of customer activity throughout the
day. We may start by trying out different combinations of duty
breaks and evaluate them. If we currently use a schedule where the
breaks are timed at 11:00am and 3:00pm, we might calculate the
productivity of the surrounding scenarios:

Direction Break 1 (x) Break 2 (y) –Score” (z)
Current Solution 11:00am 3:00pm = 46.5
West Scenario 10:45am 3:00pm = 44.67
East Scenario 11:15am 3:00pm = 40.08
North Scenario 11:00am 3:15pm = 49.227
South Scenario 11:00am 2:45pm = 43.97

If we had three adjustable cells (breaks) instead of two, we would
need to look at eight different directions. In fact, if we had just fifty
variables, (quite realistic for a medium-sized problem), we would
need to calculate productivity for 250, or over one quadrillion
scenarios, just for one guard!!

There are modifications that can be made to hill-climbing to improve
its ability to find global maxima (the highest hills on the entire
landscape). Hill-climbing is most useful for dealing with unimodal
(one-peak) problems, and that is why some analysis programs use the
technique. Nevertheless, it is very limited for complex and/or large
problems.

144 Excel Solver

Chapter 6: Optimization 145

Excel Solver
Excel includes an optimization utility called Solver. It serves a
somewhat similar purpose as Evolver: to find optimal solutions.
Solver can solve two kinds of problems: linear problems and simple
non-linear problems. It solves linear problems using a linear
programming routine. This classic mathematical technique is often
called the Simplex method, and it will always find perfect answers to
small, purely linear problems.

Like most other baby solvers, the Microsoft Solver also solves non-
linear problems, using a hill climbing routine (specifically, the GRG2
routine). A hill climbing routine starts with the current variable
values and slowly adjusts them until the output of the model does not
improve anymore. This means that problems with more than one
possible solution may be impossible for Solver to solve well, because
Solver ends up at a local solution and cannot jump over to the global
solution (see figure below).

Landscape of possible solutions.

In addition, Solver requires that the function represented by your
model be continuous. This means the output should change smoothly
as the inputs are adjusted. If your model uses lookup tables, acquires
noisy, real-time data from another program, contains random
elements, or involves if-then rules, your model will be jumpy and
discontinuous. Solver would not be able to solve such a problem.

Solver also puts a limit on the number of variables and the number of
constraints in your problem (200) above which you must turn to a
more powerful technique.

146

Evolver vs. Solver
The Excel Solver and Evolver each has its strengths and weaknesses.
Generally speaking, Solver is faster for solving small and simple
problems, while Evolver is the only way to solve many other kinds of
problems. In addition, you may find Evolver will find much better
answers than Solver for larger, more complex problems, the kind
often seen in the “real world”.

Evolver can find answers for many more kinds of problems than
Solver. Almost any numerical situation that you can model in Excel
can be optimized with Evolver.

Specifically, Evolver finds optimal solutions to linear, non-linear,
table-based, or stochastic (random) numerical problems. It can solve
problems with any combination of these qualities. Evolver can also
generate permutations of existing values, re-order the values, or
group the values together in different ways to find the optimum
solution. In fact, wherever you have a spreadsheet model with
variables that you can adjust to influence the model’s output, Evolver
can automate the search process for you by intelligently crunching
through thousands of scenarios and keeping track of the best ones.

Evolver’s genetic algorithm process is more suitable than Solver to
interruptions; you may stop the Evolver process at any time and see
the best solution Evolver has found so far. You can then make
changes to the problem itself, and continue the process right from
where you left off. For example, in a job scheduling problem, you
may wish to find the best tasks to assign your machines. When one
machine is available, you may stop the genetic algorithm process to
find the optimal task to assign to that machine. Then the task may be
omitted from the problem, and the optimization can continue with the
remaining jobs.

The genetic algorithm that gives Evolver the ability to handle all of
those kinds of problems will usually be slower than the Solver and
other traditional mathematical or statistical methods. Some classes of
problems have well-known and finely-tuned optimization routines
available. In such cases, you will find answers faster by using the
custom methods, rather than the general-purpose method used in
Evolver.

Chapter 6: Optimization 147

When to Use Evolver
Generally speaking, Evolver should be used when:

1) Traditional algorithms fail to produce good, global solutions.

2) The problem is too large and/or contains more variables than your
algorithm can handle.

3) Your problem is too complex to be solved by any other method.

4) Your model involves random numbers, lookup tables, if-then statements or
any other discontinuous functions which prohibit the use of traditional
solvers.

5) You have no idea what the solution could be, and therefore have no
starting guess from which a traditional solver must begin its search.

6) You want the option of making some “hard” constraints in your problem
(X must equal Y) more “soft”, and therefore more accurate (X should equal
Y, because otherwise I lose some Z), exploring a much wider range of
possibly better solutions, even if a few constraints are violated to get them.

7) You would rather get a pretty good solution to your problem quickly than
to wait a long time for the absolute best solution.

8) You need many alternative solutions that are near to the best solution.

9) You wish to imbed a simple, robust search algorithm into your own
custom application (see the Evolver Developer Kit for details).

NOTE: When time permits, Evolver can always be used in addition to
other methods to double-check their accuracy. Although it may take
more time than other methods, the better solution that Evolver may
find is most likely worth the investment.

Remember, because Evolver does not need to know the “nuts and
bolts” of your problem, Evolver can solve problems where the user
has no knowledge of linear programming techniques, optimization
theory, mathematics or statistics. Using Evolver requires only that the
user set the variables (the cells which contain values that can be
adjusted), the goal (the cell that contains the output), and a
description of what values Evolver may use when searching for
optimal solutions.

148

Chapter 6: Optimization 149

Types of Problems
Several different types of problems are typically optimized. If you
understand these types of problems, you'll be better equipped to
apply Evolver to your own models.

In linear problems, all the outputs are simple linear functions of the
inputs, as in y=mx+b. When problems only use simple arithmetic
operations such as addition, subtraction, and Excel functions such as
TREND() and FORCAST() it indicates there are purely linear
relationships between the variables.

Linear problems have been fairly easy to solve since the advent of
computers and the invention by George Dantzig of the Simplex
Method. A simple linear problem can be solved most quickly and
accurately with a linear programming utility. The Solver utility
included with Excel becomes a linear programming tool when you set
the “Assume Linear Model” checkbox.* Solver then uses a linear
programming routine to quickly find the perfect solution. If your
problem can be expressed in purely linear terms, you should use
linear programming. Unfortunately, most real-world problems
cannot be described linearly.

If the cost to manufacture and ship out 5,000 widgets was $5,000,
would it cost $1 to manufacture and ship 1 widget? Probably not. The
assembly line in the widget factory would still consume energy, the
paperwork would still need to be filled out and processed through the
various departments, the materials would still be bought in bulk, the
trucks would require the same amount of gas to deliver the widgets,
and the truck driver would still get paid a full day’s salary no matter
how full the load was. Most real-world problems do not involve
variables with simple linear relationships. These problems involve
multiplication, division, exponents, and built-in Excel functions such
as SQRT() and GROWTH(). Whenever the variables share a
disproportional relationship to one another, the problem becomes
non-linear.

* For more specifics on Microsoft’s Solver utility, see the Excel User’s
Guide.

Linear Problems

Non-linear
Problems

150 Types of Problems

A perfect example of a non-linear problem is the management of a
manufacturing process at a chemical plant. Imagine that we want to
mix some chemical reactants together and get a chemical product as
the result. The rate of this reaction may vary non-linearly with the
amount of reactants available; at some point the catalyst becomes
saturated and excess reactant just gets in the way. The following
diagram shows this relationship:

If we simply need to find the minimum level of reactants that will
give us the highest rate of reaction, we can just start anywhere on the
graph and climb along the curve until we reach the top. This method
of finding an answer is called hill climbing.

Hill climbing will always find the best answer if a) the function being
explored is smooth, and b) the initial variable values place you on the
side of the highest mountain. If either condition is not met, hill
climbing can end up in a local solution, rather than the global
solution.

Highly non-linear problems, the kind often seen in practice, have
many possible solutions across a complicated landscape. If a problem
has many variables, and/or if the formulas involved are very noisy or
curvy, the best answer will probably not be found with hill climbing,
even after trying hundreds of times with different starting points.
Most likely, a sub-optimal, and extremely local solution will be found
(see figure below).

Chapter 6: Optimization 151

Hill climbing finds the local, but not
global maximum.

Noisy data: Hill climbing
not effective, even with
multiple tries.

Evolver does not use hill climbing. Rather, it uses a stochastic,
directed search technique, dubbed a genetic algorithm. This lets
Evolver jump around in the solution space of a problem, examining
many combinations of input values without getting stuck in local
optima. In addition, Evolver lets good scenarios “communicate” with
each other to gain valuable information as to what the overall solution
landscape looks like, and then uses that information to better guess
which scenarios are likely to be successful. If you have a complex or
highly non-linear problem, you should, and often must, use Evolver.

Evolver generates many possible scenarios, then
refines the search based on the feedback it receives.

Many problems require the use of lookup tables and databases. For
example, in choosing the quantities of different materials to buy, you
might need to look up the prices charged for different quantities.

Tables and databases make problems discontinuous (non-smooth).
That makes it difficult for hill-climbing routines like Solver to find
optimal solutions. Evolver, however, does not require continuity in
the functions it evaluates, and it can find good solutions for table-
based problems, even problems that use many large, interrelated
tables.

If your problem involves looking up values from a database, or a table
of data in Excel, where the index of the table item is a variable or a
function of a variable, you need to use Evolver. If you only look up a
single, constant item in a table (the same record is retrieved from the
table regardless of the input variables’ values), then you are really
only dealing with a constant, and you can probably use Solver
effectively.

There is a large class of problems that are very different from the
numerical problems examined so far. Problems where the outputs
involve changing the order of existing input variables, or grouping

Table-based
problems

Combinatorial
problems

152 Types of Problems

subsets of the inputs are called combinatorial problems. These
problems are usually very hard to solve, because they often require
exponential time; that is, the amount of time needed to solve a
problem with 4 variables might be 4 x 3 x 2 x 1, and doubling the
number of variables to 8 raises the solving time to 8 x 7 x 6 x 5 x 4 x 3 x
2 x 1, or a factor of 1,680. The number of variables doubles, but the
number of possible solutions that must be checked increases 1,680
times. For example, choosing the starting lineup for a baseball team is
a combinatorial problem. For 9 players, you can choose one out of the
9 as the first batter. You can then choose one out of the remaining 8 as
the second batter, one of the remaining 7 will be the third, and so on.
There are thus 9x8x7x6x5x4x3x2x1 (9 factorial) ways to choose a
lineup of 9 players. This is about 362,880 different orderings. Now if
you double the number of players, there are 18 factorial possible
lineups, or 6,402,373,705,000,000 possible lineups!

Evolver’s genetic algorithm intelligently searches through the possible
permutations. This is much more practical than searching through all
possibilities, and it is much more efficient than examining purely
random permutations; sub-orders from good scenarios can be
retained and used to create even better scenarios.

Chapter 7: Genetic Algorithms 153

Chapter 7: Genetic
Algorithms

Introduction...155

History..155

A Biological Example ...158

A Digital Example ...159

154 Introduction

Chapter 7: Genetic Algorithms 155

Introduction
Evolver uses genetic algorithms to search for optimal answers for
models. The genetic algorithms used are adapted from Evolver, an
optimization add-in to Excel from Palisade Corporation. This chapter
provides background information on genetic algorithms to give
insights on how they are used for optimizing models.

History
The first genetic algorithms were developed in the early 1970s by John
Holland at the University of Michigan. Holland was impressed by
the ease in which biological systems could perform tasks which
eluded even the most powerful super-computers; animals can
flawlessly recognize objects, understand and translate sounds, and
generally navigate through a dynamic environment almost
instantaneously.

For decades, scientists have promised to replicate these capabilities in
machines, but we are beginning to recognize just how difficult this
task is. Most scientists agree that any complex biological system that
exhibits these qualities has evolved to get that way.
Evolution, so the theory goes, has produced systems with amazing
capabilities through relatively simple, self-replicating building blocks
that follow a few simple rules:

1) Evolution takes place at the level of the chromosome. The
organism doesn’t evolve, but only serves as the vessel in which the
genes are carried and passed along. It is the chromosomes which are
dynamically changing with each re-arrangement of genes.

2) Nature tends to make more copies of chromosomes which produce
a more “fit” organism. If an organism survives long enough, and is
healthy, its genes are more likely to be passed along to a new
generation of organisms through reproduction. This principle is often
referred to as “survival of the fittest”. Remember that “fittest” is a
relative term; an organism only needs to be fit in comparison to others
in the current population to be “successful”.

3) Diversity must be maintained in the population. Seemingly
random mutations occur frequently in nature that ensure variation in
the organisms. These genetic mutations often result in a useful, or
even vital feature for a species’ survival. With a wider spectrum of
possible combinations, a population is also less susceptible to a
common weakness that could destroy them all (virus, etc.) or other
problems associated with inbreeding.

Evolution
Theory

156 History

Once we break down evolution into these fundamental building
blocks, it becomes easier to apply these techniques to the
computational world, and truly begin to move towards more fluid,
more naturally behaving machines.

Holland began applying these properties of evolution to simple
strings of numbers that represented chromosomes. He first encoded
his problem into binary strings (rows of “1s” and “0s”) to represent
the chromosomes, and then had the computer generate many of these
“bit” strings to form a whole population of them. A fitness function
was programmed that could evaluate and rank each bit string, and
those strings which were deemed most “fit” would exchange data
with others through a “crossover” routine to create “offspring” bit
strings. Holland even subjected his digital chromosomes to a
“mutation” operator, which injected randomness into the resulting
“offspring” chromosomes to retain diversity in the population. This
fitness function replaced the role of death in the biological world;
determining which strings were good enough to continue breeding
and which would no longer be kept in memory.

The program kept a given number of these “chromosomes” in
memory, and this entire “population” of strings continued to evolve
until they maximized the fitness function. The result was then de-
coded back to its original values to reveal the solution. John Holland
remains an active pioneer in this field, and is now joined by hundreds
of scientists and scholars who have devoted the majority of their time
toward this promising alternative to traditional linear programming,
mathematical, and statistical techniques.

Holland’s original genetic algorithm was quite simple, yet remarkably
robust, finding optimal solutions to a wide variety of problems.
Many custom programs today solve very large and complex real-
world problems using only slightly modified versions of this original
genetic algorithm.

Chapter 7: Genetic Algorithms 157

As interest swelled in academic circles, as serious computational
power began moving its way into mainstream desktop machines,
standards like Microsoft Windows and Excel made design and
maintenance of complex models easier. The use of real numbers
rather than bit string representations eliminated the difficult task of
encoding and decoding chromosomes.

The popularity of the genetic algorithm is now growing
exponentially, with seminars, books, magazine articles, and
knowledgeable consultants popping up everywhere. The
International Conference of Genetic Algorithms is already focusing on
practical applications, a sign of maturity that eludes other “artificial
intelligence” technologies. Many Fortune 500 companies employ
genetic algorithms regularly to solve real-world problems, from
brokerage firms to power plants, phone companies, restaurant chains,
automobile manufacturers and television networks. In fact, there is a
good chance that you have already indirectly used a genetic algorithm
before!

Modern
Adaptations of
Genetic
Algorithms

158 A Biological Example

A Biological Example
Let us look at a simple example of evolution in the biological world
(on a small scale). By “evolution” here we mean any change in the
distribution or frequency of genes in a population. Of course, the
interesting thing about evolution is that it tends to lead to populations
that are constantly adapting to their environments.

Imagine that we are looking at a population of mice. These mice
exhibit two sizes, small and large, and they exhibit two colors, light or
dark. Our population consists of the following eight mice:

One day, cats move into the neighborhood and start eating mice. It
turns out that darker mice and smaller mice are harder for the cats to
find. Thus, different mice have different odds of avoiding the cats
long enough to reproduce. This affects the nature of the next
generation of mice. Assuming the old mice die soon after
reproducing, the next generation of mice looks like this:

Notice that large mice, light mice, and especially large, light mice, are
having trouble surviving long enough to reproduce. This continues in
the next generation.

Now the population consists mostly of small, dark mice, because
these mice are better suited for survival in this environment than
other kinds of mice. Similarly, as the cats begin to go hungry with
less mice to eat, perhaps those cats who prefer a lunch of grass will be
better adapted, and pass along their grass-loving gene to a new

Chapter 7: Genetic Algorithms 159

generation of cats. This is the central concept of “survival of the
fittest”. More precisely, it could be phrased “survival until
reproduction”. In evolutionary terms, being the healthiest bachelor in
the population is worthless, since you must reproduce in order for
your genes to influence future generations.

A Digital Example
Imagine a problem with two variables, X and Y, that produce a result
Z. If we calculated and plotted the resulting Z for every possible X
and Y values, we would see a solution “landscape” emerge (discussed
also in Chapter 6: Optimization). Since we are trying to find the
maximum “Z”, the peaks of the function are “good” solutions, and
the valleys are “bad” ones.

When we use a genetic algorithm to maximize our function, we start
by creating several possible solutions or scenarios at random (the
black dots), rather than just one starting point. We then calculate the
function’s output for each scenario and plot each scenario as one dot.
Next we rank all of the scenarios by altitude, from best to worst. We
keep the scenarios from the top half, and throw out the others.

First, create a whole “population” of
possible solutions. Some will be better
(higher) than others.

Next we rank them all and
keep the solutions which yield
better results.

160 A Digital Example

Each of the three remaining scenarios duplicates itself, bringing the
number of scenarios back up to six. Now comes the interesting part:
Each of the six scenarios is made up of two adjustable values (plotted
as an X and a Y coordinate). The scenarios pair off with each other at
random. Now each scenario exchanges the first of its two adjustable
values with the corresponding value from its partner. For example:

 Before After

Scenario 1 3.4, 5.0 2.6, 5.0

Scenario 2 2.6, 3.2 3.4, 3.2

This operation is called crossing over, or crossover. When our six
scenarios randomly mate and perform crossover, we may get a new
set of scenarios such as this:

In the above example, we assume that the original three scenarios, a,
b, and c, paired up with the duplicates, A, B, C, to form the pairs aB,
bC, bA. These pairs then switched values for the first adjustable cell,
which is equivalent in our diagram to exchanging the x and y
coordinates between pairs of dots. The population of scenarios has
just lived through a generation, with its cycle of “death” and “birth”.

Chapter 7: Genetic Algorithms 161

Notice that some of the new scenarios result in lower output (lower
altitude) than any we saw in the original generation. However, one
scenario has moved high up on the tallest hill, indicating progress. If
we let the population evolve for another generation, we may see a
scene like the following:

You can see how the average performance of the population of
scenarios increases over the last generation. In this example, there is
not much room left for improvement. This is because there are only
two genes per organism, only six organisms, and no way for new
genes to be created. This means there is a limited gene pool. The gene
pool is the sum of all the genes of all organisms in the population.

Genetic algorithms can be made much more powerful by replicating
more of the inherent strength of evolution in the biological world;
increasing the number of genes per organism, increasing the number
of organisms in a population, and allowing for occasional, random
mutations. In addition, we can choose the scenarios that will live and
reproduce more like they occur naturally: with a random element that
has a slight bias towards those that perform better, instead of simply
choosing the best performers to breed (even the biggest and strongest
lion may get hit with lightning)!

All of these techniques stimulate genetic refinement, and help to
maintain diversity in the gene pool, keeping all kinds of genes
available in case they turn out to be useful in different combinations.
Evolver automatically implements all of these techniques.

162 A Digital Example

Chapter 8: Evolver Extras 163

Chapter 8: Evolver
Extras

Adding Constraints ..165
Range Constraints ..166
Hard Constraints - customized ..167
Soft Constraints ..168

Penalty Functions ...169
Entering a Penalty Function ...169
Viewing the Effects of an Entered Penalty Function170
Viewing the Penalties Applied..170
Entering Soft Constraints In Your Worksheet171
More Examples of Penalty Functions172
Using Penalty Functions ...172

Multiple Goal Problems ...173
Improving Speed...175

How Evolver's Optimization is Implemented177
Selection ...177
Crossover..177
Mutation...178
Replacement ..178
Constraints...179

164

Chapter 8: Evolver Extras 165

Adding Constraints
Realistic problems often have a number of constraints that must be
met while we search for optimal answers. For example, in the tutorial
which seeks the transformer design with the lowest cost, one of the
constraints is that the transformer must remain cool, radiating no
more than 0.16 watts/cm2.

A scenario which meets all the constraints in a model is said to be a
viable or “valid” solution. Sometimes it is difficult to find viable
solutions for a model, much less to find the optimal viable solution.
This may be because the problem is very complex, and only has a few
viable solutions, or because the problem is over-specified (there are
too many constraints, or some constraints conflict with others), and
there are no viable solutions.

There are three basic kinds of constraints: range constraints, or min-
max ranges placed on adjustable cells, hard constraints, which must
always be met, and soft constraints which we would like to be met as
much as possible, but which we may be willing to compromise for a
big improvement in fitness.

166 Adding Constraints

Range Constraints
The simplest hard constraints are the ones that are placed on the
variables themselves. By setting a certain range on each variable, we
can limit the overall number of possible solutions Evolver will search
through, resulting in a more efficient search. Enter Min and Max
values in the Model window’s Adjustable Cell Ranges section to tell
Evolver the range of values that are acceptable for each variable.

Evolver will only try values between 0 and 5,000 for the specified cells.

A second type of hard constraint placed on the variables is built in to
each of Evolver’s solving methods (recipe, order, grouping, etc.). For
example, when we adjust variables using the budget solving method,
that means Evolver is hard constrained to try only sets of values that
add up the same amount. Like the Ranges setting, this hard
constraint also reduces the number of possible scenarios that must be
searched.

The integer option in the Model dialog box is also a hard constraint,
telling Evolver to try only integer values (1, 2, 3 etc.) instead of real
numbers (1.34, 2.034, etc.) when adjusting the variable values.

Chapter 8: Evolver Extras 167

Hard Constraints - customized
Any constraint that falls outside the Evolver variable constraints can
be entered using the Constraint Settings dialog.

NOTE: Like evolution in nature, a genetic algorithm’s problem-
solving power lies primarily in its ability to freely explore many
combinations of likely solutions, and naturally lean towards the best
ones. If we forbid Evolver to even look at solutions that do not meet
our demands, the genetic algorithm optimization process can be
crippled.

It is always easier for Evolver to find solutions that meet the hard
constraints if the initial scenario in the worksheet does itself meet the
constraints. That lets Evolver know a starting point in the space of
valid solutions. If you do not know of a scenario which meets the
constraints, run Evolver with any initial scenario and it will do its best
to find scenarios which meet the constraints.

168 Adding Constraints

Soft Constraints
Forcing a program to find only solutions that meet all constraints can
result in no viable solutions being found. Often, it is more useful to
have an approximately viable solution, where maybe a few solutions
fall short of meeting the constraints.

An alternative to the use of “hard constraints” that must be met is to
reconfigure the problem with “soft constraints”; constraints that
Evolver will tend to meet. These soft constraints are often more
realistic, and allow Evolver to try many more options. In the case of a
highly constrained problem (where there are not very many possible
solutions that would meet all your requirements), Evolver’s genetic
algorithm will be more likely to find the best solution if it is allowed
to get feedback on some solutions that are close to satisfying the
constraints.

When constraints are design goals, such as “produce twice as many
forks as knives”, it is often not so important to meet them exactly:
especially if getting a perfectly balanced production schedule
required a day-long optimization process. In this case, a good
solution to the problem, that almost meets the constraint (production
is 40% forks, 23% knives, 37% spoons), is usually better than waiting
all day to find out that maybe there is no solution, because all the
constraints could not possibly be met.

Chapter 8: Evolver Extras 169

Soft constraints can easily be implemented in Excel through the use of
penalty functions. Instead of telling Evolver that it absolutely cannot
use certain values when looking for solutions, we allow those
“invalid” values to be explored, but we will penalize such solutions
accordingly. For example, your problem may involve finding the
most efficient way to distribute goods with the constraint that you use
only three trucks. A more accurate model would include a penalty
function that allowed you to use more trucks, but added the
tremendous cost to the bottom line. Penalty functions can be
specified in the Constraint Settings dialog or entered directly in your
model by adding formulas to represent the penalty functions.

Evolver has a default penalty function which is displayed when you
first enter a soft constraint. Any valid Excel formula, however, may
be entered to calculate the amount of penalty to apply when the soft
constraint is not met. An entered penalty function should include the
keyword deviation which represents the absolute amount by which the
constraint has gone beyond its limit. At the end of a trial solution
Evolver checks if the soft constraint has been met; if not, it places the
amount of deviation in the entered penalty formula and then
calculates the amount of penalty to apply to the target cell value that
is being minimized or maximized.

The penalty amount is either added or subtracted from the value for
the target cell in order to make it less "optimal." For example, if
Maximum is selected in the Find the field in the Evolver Model Dialog,
the penalty is subtracted from the value for the target cell.

Penalty
Functions

Entering a
Penalty
Function

170 Adding Constraints

Evolver includes an Excel worksheet PENALTY.XLS which can be
used to evaluate the effects of different penalty functions on specific
soft constraints and target cell results.

PENALTY.XLS allows you to select a soft constraint from your model
whose effects you wish to analyze. You can then change the penalty
function to see how the function will map a specific value for the
unmet soft constraint into a value for the target cell. For example, if
your soft constraint is A10<100, you could use PENALTY.XLS to see
what the target value would be if a value of 105 was calculated for cell
A10.

When a penalty is applied to the target cell due to an unmet soft
constraint, the amount of penalty applied can be viewed in the
Evolver Watcher. In addition, penalty values are shown in
Optimization Log worksheets, created optionally after optimization.

Viewing the
Effects of an
Entered Penalty
Function

Viewing the
Penalties
Applied

Chapter 8: Evolver Extras 171

Penalty functions may also be entered directly in your worksheet. A
Boolean penalty function will assign a set penalty on any scenario
which does not meet the specified constraint. For example, if you
wanted the value in cell B1(supply) to be at least as great as the value
in cell A1(demand), you could create this penalty function in another
cell: =IF(A1>B1, -1000, 0). If the result of this cell were added to the
value for the target cell, than every time Evolver tried a solution
which violated that constraint (i.e. the supply did not meet the
demand), the value for the target cell being maximized would show a
value 1,000 lower than the real result. Any solution which violated
this constraint would produce a low value for the value for the target
cell, and eventually Evolver would “breed out” these organisms.

You can also use a scaling penalty function, which more accurately
penalizes the solution relative to how badly it violates the constraint.
This is often more practical in the real world, because a solution
where supply did not quite meet demand would be better than a
solution where supply didn’t even come close to the demand. A
simple scaling penalty function computes the absolute difference
between the constraint’s goal value and it’s actual value. For
example, in the same problem where A1(demand) should not exceed
B1(supply), we could assign the following penalty function:
=IF(A1>B1, (A1-B1)^2, 0). This kind of penalty function measures
how close a constraint is to being met, and exaggerates that difference
by squaring it. Now our penalty changes based on how badly a
solution violates the constraint.

Entering Soft
Constraints In
Your Worksheet

172 Adding Constraints

For example, suppose you have created a manufacturing model
where one of the constraints is that the amount of wood used should
be equal to the amount of plastic used. This constraint is met when
“AmountWood” = “AmountPlastic”. We want to find solutions that
include the same amount of both materials, so we create a penalty
function to discourage solutions that stray from our goal. The
formula “=ABS(AmountWood-AmountPlastic)” computes the absolute
(non-negative) difference between the amount of wood and the
amount of plastic being used. By using the ABS() function, we arrive
at the same penalty value if AmountWood is 20 greater than
AmountPlastic, or if AmountPlastic is 20 less than AmountWood.
Now when we optimize the model, our goal is to minimize this
absolute difference.

Suppose instead we impose the following constraint: The amount of
wood must be twice the amount of plastic. The penalty function
would then be:

 =ABS(AmountWood-AmountPlastic*2)

A different possible constraint is that the amount of wood should be
no less than twice the amount of plastic. While the previous example
produced a penalty if there was too much wood, in this case we only
care if there is not enough wood; if AmountWood is ten times
AmountPlastic, we want no penalty to be applied. The appropriate
penalty function would then be:

=IF(AmountWood<AmountPlastic*2,
ABS(AmountPlastic*2-AmountWood),0)

If AmountWood is at least twice as great as AmountPlastic, the
penalty function returns 0. Otherwise, it gives a measure of how
much less than twice AmountPlastic the AmountWood value is.

After you have created penalty functions to describe the soft
constraints in your model, you can combine them with your normal
target cell formula to obtain a constrained target cell formula. In the
example illustrated below, if cell C8 computes the total cost of a
project, and cells E3:E6 contain five penalty functions, then you can
create a formula in cell C10 such as =SUM(C8, E3:E6).

More Examples
of Penalty
Functions

Using Penalty
Functions

Chapter 8: Evolver Extras 173

Create a cell that adds the constraints to your total, and minimize the values for this

cell.

This adds the penalties in column E to the cost in C8 to obtain a
constrained or penalized cost function in C10. Note that if this were a
maximization problem, you would subtract, rather than add, the
penalties to the original target cell. Now when you use Evolver, you
simply select this constrained cell, C10, as the target cell to be whose
value will be optimized.

When Evolver tries to optimize a constrained value for the target cell,
the penalty functions will tend to force the search towards scenarios
that meet the constraints. Eventually Evolver will end up with
solutions that are good answers and that meet or nearly meet all
constraints (the penalty functions will have values near 0).

Multiple Goal Problems
You may only specify one cell in the target cell field of Evolver, but
you can still solve for multiple goals by creating a function that
combines the two goals into one goal. For example, as a polymer
scientist, you may be trying to create a substance that is flexible, but
also strong. Your model computes the resulting strength, flexibility
and weight that would result from a given mix of chemical
combinations. The amounts of each chemical to use are the adjustable
variables of the problem.

Since you want to maximize the Strength of the substance (in cell S3)
but also maximize its Flexibility (in cell F3), you would create a new
cell with the formula: =(S3+F3). This would be your new target cell,
for the higher this number went, the better the overall solution.

174 Adding Constraints

If the flexibility was more important than the strength, we could
change the formula in the target cell to read =(S3+(F3*2)). This way,
scenarios which increased the flexibility by a certain amount would
look better (produce a higher fitness “score”) than scenarios which
increased the strength by the same amount.

If you wanted to maximize the Strength of a substance (in cell S5) but
also minimize its Weight (in cell W5), you would create a new cell
with the following formula: =(S5^2)-(W5^2). This formula would
produce a higher number when the structure was both strong-and-
light, a lower number when the structure was weak-and-heavy, and
equally average numbers for weak-but-light and strong-but-heavy
scenarios. You would therefore use this new cell as your target, and
maximize its mean to satisfy both goals.

Chapter 8: Evolver Extras 175

Improving Speed
When you use Evolver to solve a problem, you are using both the
Evolver library of compiled routines to control the process and Excel’s
spreadsheet evaluation function to examine different scenarios. A
large percentage of the time used by Evolver is actually used by Excel
as it recalculates your spreadsheet. There are a number of things that
can be done to speed up Evolver optimization and Excel’s
recalculation process.

♦ The speed of Evolver is directly related to the speed of your
computer processor. A Pentium/2.0ghz will be roughly twice as
fast as the Pentium/1.0ghz. This means that Evolver will be able
to evaluate twice as many trials in the same amount of time.

♦ Try to avoid re-drawing in your window. Drawing graphics and
numbers on the screen takes time, sometimes more than half the
time spent optimizing! If you have charts or graphs on the sheet,
they will slow down the re-calculate time significantly. You can
tell Excel not to spend time drawing while Evolver is solving a
problem by turning off the Update Display option in the Evolver
Model Dialog or by minimizing the Excel sheet. You can see how
much faster your problem is working by watching the status bar.

♦ Once Evolver has more or less converged on a solution, and there
has been no improvement on the best solution in a while (e.g. last
1000 trials), you may want to increase the mutation rate to allow
Evolver to broaden its search for solutions, rather than continuing
to refine solutions in the current population using primarily
crossover. You can increase mutation rate through the Evolver
Watcher using the Population Settings command.

♦ Set more tightly the ranges that the adjustable cells must fall
between; this will create a smaller area in which Evolver must
search for solutions, and should therefore speed up the process.
Make sure that your ranges allow enough freedom for Evolver to
explore all realistic solutions.

176 Improving Speed

Chapter 8: Evolver Extras 177

How Evolver's Optimization is
Implemented
In this section we describe more specifically how Evolver’s
optimization algorithms are implemented.

NOTE: You do not need to know this material in order to use Evolver.

The majority of Evolver’s genetic algorithm technology such as the
recipe and order solving methods are based on academic work in the
genetic algorithm field over the last ten years. However, most of the
descendant solving methods included with Evolver, and the multiple
groups of adjustable cells, backtracking, strategy, and probability
features are unique to Evolver.

Evolver uses a steady-state approach. This means that only one
organism is replaced at a time, rather than an entire “generation”
being replaced. This steady state technique has been shown to work
as well or better than the generational replacement method. To find
out the equivalent number of “generations” Evolver has run, take the
number of individual trials it has explored and divide that by the size
of the population.

When a new organism is to be created, two parents are chosen from
the current population. Organisms that have high fitness scores are
more likely to be chosen as parents.

In Evolver, parents are chosen with a rank-based mechanism. Instead
of some genetic algorithm systems, where a parent's chance to be
selected for reproduction is directly proportional to its fitness, a
ranking approach offers a smoother selection probability curve. This
prevents good organisms from completely dominating the evolution
from an early point.

Since each solving method adjusts the variables in different ways,
Evolver employs a different crossover routine optimized for that type
of problem.

The basic recipe solving method performs crossover using a uniform
crossover routine. This means that instead of chopping the list of
variables in a given scenario at some point and dealing with each of
the two blocks (called “single-point” or “double-point” crossover),
two groups are formed by randomly selecting items to be in one
group or another. Traditional x-point crossovers may bias the search
with the irrelevant position of the variables, whereas the uniform

Selection

Crossover

178 How Evolver's Optimization is Implemented

crossover method is considered better at preserving schema, and can
generate any schema from the two parents.

The order solving method performs crossover using a similar
algorithm to the order crossover operator described in L. Davis’
Handbook of Genetic Algorithms.* This selects items randomly from
one parent, finds their place in the other parent, and copies the
remaining items into the second parent in the same order as they
appear in the first parent. This preserves some of the sub-orderings in
the original parents while creating some new sub-orderings.

Like crossover, mutation methods are customized for each of the
different solving methods. The basic recipe solving method performs
mutation by looking at each variable individually. A random number
between 0 and 1 is generated for each of the variables in the organism,
and if a variable gets a number that is less than or equal to the
mutation rate (for example, 0.06), then that variable is mutated. The
amount and nature of the mutation is automatically determined by a
proprietary algorithm. Mutating a variable involves replacing it with
a randomly generated value (within its valid min-max range).

To preserve all the original values, the order solving method performs
mutation by swapping the positions of some variables in the
organism. The number of swaps performed is increased or decreased
proportionately to the increase and decrease of the mutation rate
setting (from 0 to 1).

Since Evolver uses a rank-ordered rather than generational
replacement method, the worst-performing organisms are always
replaced with the new organism that is created by selection,
crossover, and mutation, regardless of its fitness “score”.

* Davis, Lawrence (1991). Handbook of Genetic Algorithms. New
York: Van Nostrand Reinhold.

Mutation

Replacement

Chapter 8: Evolver Extras 179

Hard constraints are implemented with Palisade’s proprietary
“backtracking” technology. If a new offspring violates some
externally imposed constraints, Evolver backtracks towards one of the
parents of the child, changing the child until it falls within the valid
solution space.

Constraints

180 How Evolver's Optimization is Implemented

Appendix A: Automating Evolver 181

Appendix A: Automating
Evolver

VBA
Evolver comes with a complete macro language for building custom
applications which use Evolver's capabilities. Evolver's custom
functions can be used in Visual Basic for Applications (VBA) for
setting up and running optimizations and displaying the results from
optimizations. For more information on this programming interface,
see the Evolver Developer Kit help document, available via the
Evolver Help menu.

182 VBA

Appendix B: Troubleshooting / Q&A 183

Appendix B:
Troubleshooting / Q&A

184 Troubleshooting / Q&A

Appendix B: Troubleshooting / Q&A 185

Troubleshooting / Q&A
This section answers some commonly asked questions regarding
Evolver and keeps you up to date on common questions, problems
and suggestions. After reading through this section, you may call
Palisade customer support at the numbers listed in the beginning
chapter of this manual.

Q: Why am I having trouble getting a valid answer from Evolver?
A: Make sure that the Evolver dialog is set up correctly. Most of the

problems are associated with the setting of the variables. Each
group of adjustable cells should be exclusive, in that no single cell
or range of cells is being treated with more than one solving
method.

Q: Can Evolver deal with concepts or categories instead of just
numbers?

A: Evolver can indirectly deal with any kind of data, since numbers
are just symbols. Use a lookup table in Excel to translate between
integers and strings of text. Evolver (like all computer programs)
ultimately can only deal with numbers, but your interface may
use those numbers to represent and display any strings.

Q: Even though I’m filling in the dialogs the same way, and letting
Evolver run the same amount of time, why does Evolver
sometimes find different solutions?

A: As is the case with natural selection in the biological world, the
Evolver genetic algorithm will not always follow the same path
when searching for solutions (unless you use a fixed random
number generator seed). Ironically it is this “unpredictability”
that allows Evolver to solve more types of problems, and often
find better solutions than traditional techniques. Evolver’s
genetic algorithm engine is not just executing a series of pre-
programmed commands, or plugging values through a
mathematical formula, but it is efficiently experimenting with
many random hypothetical scenarios simultaneously, and then
refining the search through many “survival-of-the-fittest”
operators which also contain random elements.

186 Troubleshooting / Q&A

Q: Why is the best solution found not changing?
A: You may have specified the wrong target cell in the Evolver

Model Dialog. Evolver is looking at this blank cell and the value
does not change because there is no formula. To fix this, display
the Evolver Model Dialog and select a proper target cell; i.e. one
that accurately reflects how good/bad each possible solution is.
A proper target cell has a formula which depends, directly or
indirectly, on the variables Evolver is adjusting (adjustable cells).

Q: Some of the cells in my spreadsheet model contain “####”
symbols.

A: If the cell is too small to display all of its contents, it will display
several #### signs. Increase the size of the cell.

Q: Evolver is working OK, but is there any simple way to get better
results?

A: Consider loosening the constraints in the problem, including
variable ranges. Change some of your hard constraints to soft
constraints via penalty functions (see Adding Constraints in
Chapter 8: Evolver Extras). Too many restrictions on what
Evolver can try may be preventing Evolver from exploring an
area of possibilities that may yield better results. Remember, the
longer you let Evolver explore the possibilities, the more likely it
is to find the optimal solution. For more ideas on how to fine-
tune Evolver, see Chapter 8: Evolver Extras.

 The more scenarios Evolver can run through, the better. Speed up
the Evolver process by turning off the “Every Recalculation”
option for display update.

Appendix C: Additional Resources 187

Appendix C: Additional
Resources

188

Appendix C: Additional Resources 189

Additional Learning Resources
The following list represents a select sampling of genetic algorithm
and artificial-life-related materials. A star (*) indicates a Palisade
favorite.

Books
• Bolles, R.C., & Beecher, M.D. (Eds.). (1988). Evolution and Learning.

Lawrence Erlbaum.

• Beer, R.D. (1990). Intelligence as Adaptive Behavior: An Experiment in
Computational Neuroethology. Academic Press.

• Davis, Lawrence (1987). Genetic Algorithms and Simulated Annealing.
Palo Alto, CA: Morgan Kaufman.

* Davis, Lawrence (1991). Handbook of Genetic Algorithms. New York: Van
Nostrand Reinhold.

• Darwin, Charles (1985). On The Origin of Species. London: Penguin
Classics. (originally 1859)

* Dawkins, Richard. (1976). The Selfish Gene. Oxford University Press.

• Eldredge, N. (1989). Macroevolutionary Dynamics: Species, Niches, and
Adaptive Peaks. McGraw-Hill.

• Fogel, L., Owens, J., and Walsh, J. (1966). Artificial Intelligence through
Simulated Evolution. New York: John Wiley and Sons.

• Goldberg, David (1989). Genetic Algorithms in Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley Publishing.

• Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: University of Michigan Press.

• Koza, John (1992). Genetic Programming. Cambridge, MA: MIT Press.

* Langton, C.L. (1989). Artificial Life. MIT Press. [ALife I]

• Levy, Steven (1992). Artificial Life. New York: Pantheon.

• Meyer, J.-A., & S.W. Wilson (Eds.). (1991). Proceedings of the First
International Conference on Simulation of Adaptive Behavior: From
Animals to Animats. MIT Press/Bradford Books.

* Proceedings of the Sixth International Conference (ICGA) on Genetic
Algorithms (1995). San Mateo, CA: Morgan Kaufman Publishing. (Also
available; the first five ICGA proceedings).

• Proceedings of the Workshop on Artificial Life (1990). Christopher G.
Langton, Senior Editor. Reading, MA: Addison-Wesley Publishing.

190

• Rawlins, Gregory (1991). Foundations of Genetic Algorithms. San Mateo,
CA: Morgan Kaufman Publishing.

• Richards, R.J. (1987). Darwin and the Emergence of Evolutionary Theories
of Mind and Behavior. U. Chicago Press.

• Williams, G.C. (1966). Adaptation and Natural Selection. Princeton U.
Press.

Articles
* Antonoff, Michael (October, 1991). Software by Natural Selection. Popular

Science, p. 70-74.

• Arifovic, Jasmina (January, 1994). Genetic Algorithm Learning and the
Cobweb Model. In Journal of Economic Dynamics & Control v18 p.3

* Begley, S (May 8, 1995). “Software au Naturel” In Newsweek p. 70

• Celko, Joe (April, 1993). Genetic Algorithms and Database Indexing. In Dr.
Dobb’s Journal p.30

• Ditlea, Steve (November, 1994). Imitation of Life. In Upside Magazine p.48

• Gordon, Michael (June, 1991). User-based Document Clustering by
Redescribing Subject Descriptions with a Genetic Algorithm. In Journal
of the American Society for Information Science v42 p.311

• Hedberg, Sara (September, 1994). Emerging Genetic Algorithms. In AI
Expert, p. 25-29.

• Hinton, G.E., & Nowlan, S.J. (1987). How Learning Can Guide Evolution.
In Complex Systems 1: p.495-502.

* Kennedy, Scott (June, 1995). Genetic Algorithms: Digital Darwinism. In
Hitchhicker’s Guide to Artificial Intelligence Miller Freeman Publishers

• Kennedy, Scott (December, 1993). Five Ways to a Better GA. In AI Expert,
p. 35-38

• Lane, A (June, 1995). The GA Edge in Analyzing Data. In AI Expert p.11

• Lee, Y.C. (Ed.). (1988). Evolution, learning, and cognition. In World
Scientific.

• Levitin, G and Rubinovitz, J (August, 1993). Genetic Algorithm for Linear
and Cyclic Assignment Problem. In Computers & Operations Research
v20 p.575

• Marler, P., & H.S. Terrace. (Eds.). (1984). The Biology of Learning.
Springer-Verlag.

• Mendelsohn, L. (December, 1994) Evolver Review In Technical Analysis of
Stocks and Commodities. p.33

• Maynard Smith, J. (1987). When Learning Guides Evolution. In Nature
329: p.761-762.

Appendix C: Additional Resources 191

• Murray, Dan (June, 1994). Tuning Neural Networks with Genetic
Algorithms. In AI Expert p.27

• Wayner, Peter (January, 1991). Genetic Algorithms: Programming Takes a
Valuable Tip from Nature. In Byte Magazine v16 p.361

Magazines & Newsletters
• Advanced Technology for Developers (monthly newsletter). Jane

Klimasauskas, Ed., High-Tech Communications, 103 Buckskin Court,
Sewickley, PA 15143 (412) 741-7699

• AI Expert (monthly magazine). Larry O’Brien, Ed., 600 Harrison St., San
Francisco, CA 94107 (415) 905-2234. *Although AI Expert ceased
publishing in the spring of 1995, its back issues contain many useful
articles. Miller-Freeman, San Francisco.

• Applied Intelligent Systems (bimonthly newsletter). New Science
Associates, Inc. 167 Old Post Rd., Southport, CT 06490 (203) 259-1661

• Intelligence (monthly newsletter). Edward Rosenfeld, Ed., PO Box 20008,
New York, NY 10025-1510 (212) 222-1123

• PC AI Magazine (monthly magazine). Joseph Schmuller, Ed., 3310 West
Bell Rd., Suite 119, Phoenix, AZ 85023 (602) 971-1869

• Release 1.0 (monthly newsletter). Esther Dyson, Ed., 375 Park Avenue,
New York, NY 10152 (212) 758-3434

• Sixth Generation Systems (monthly newsletter). Derek Stubbs, Ed., PO Box
155, Vicksburg, MI, 49097 (616) 649-3592

192

Introduction to Simulation
If you are new to Simulation or if you would just like some more
background information on the technique, the following books and
articles might be helpful:

* Baird, Bruce F. Managerial Decisions Under Uncertainty: John Wiley & Sons,
Inc. 1989.

* Clemen, Robert T. Making Hard Decisions: Duxbury Press, 1990.

• Hertz, D.B. "Risk Analysis in Capital Investment": HBR Classic, Harvard
Business Review, September/October 1979, pp. 169-182.

• Hertz, D.B. and Thomas, H. Risk Analysis and Its Applications: John Wiley
and Sons, New York, NY, 1983.

• Megill, R.E. (Editor). Evaluating and Managing Risk: PennWell Books,
Tulsa, OK, 1984.

• Megill, R.E. An Introduction to Risk Analysis, 2nd Ed.: PennWell Books,
Tulsa, OK, 1985.

• Morgan, M. Granger and Henrion, Max, with a chapter by Mitchell Small,
Uncertainty: Cambridge University Press, 1990.

• Newendorp, P.D. Decision Analysis for Petroleum Exploration: Petroleum
Publishing Company, Tulsa, Okla., 1975.

• Raiffa, H. Decision Analysis: Addison-Wesley, Reading, Mass., 1968.

Appendix C: Additional Resources 193

Technical References to Simulation and Monte
Carlo Techniques
If you would like a more in depth examination of simulation,
sampling techniques and statistical theory, the following books may
be useful:

• Iman, R. L., Conover, W.J. "A Distribution-Free Approach To Inducing Rank
Correlation Among Input Variables": Commun. Statist.-Simula.
Computa.(1982) 11(3), 311-334

* Law, A.M. and Kelton, W.D. Simulation Modeling and Analysis: McGraw-
Hill, New York, NY, 1991,1982.

Rubinstein, R.Y. Simulation and the Monte Carlo Method: John Wiley and
Sons, New York, NY, 1981.

Technical References to Latin Hypercube
Sampling Techniques
If you are interested in the relatively new technique of Latin
Hypercube sampling, the following sources might be helpful:

• Iman, R.L., Davenport, J.M., and Zeigler, D.K. "Latin Hypercube Sampling
(A Program Users Guide)": Technical Report SAND79-1473, Sandia
Laboratories, Albuquerque (1980).

• Iman, R.L. and Conover, W.J. "Risk Methodology for Geologic Displosal of
Radioactive Waste: A Distribution - Free Approach to Inducing
Correlations Among Input Variables for Simulation Studies": Technical
Report NUREG CR 0390, Sandia Laboratories, Albuquerque (1980).

• McKay, M.D, Conover, W.J., and Beckman, R.J. "A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of
Output from a Computer Code": Technometrics (1979) 211, 239-245.

• Startzman, R. A. and Wattenbarger, R.A. "An Improved Computation
Procedure for Risk Analysis Problems With Unusual Probability
Functions": SPE Hydrocarbon Economics and Evaluation Symposium
Proceedings, Dallas (1985).

194

Examples and Case Studies Using Simulation
If you would like to examine case studies showing the use of
Simulation in real life situations, see the following:

Hertz, D.B. and Thomas, H. Practical Risk Analysis - An Approach Through
Case Histories: John Wiley and Sons, New York, NY, 1984.

* Murtha, James A. Decisions Involving Uncertainty, An @RISK Tutorial for
the Petroleum Industry: James A. Murtha, Houston, Texas, 1993

• Newendorp, P.D. Decision Analysis for Petroleum Exploration: Petroleum
Publishing Company, Tulsa, Okla., 1975.

• Pouliquen, L.Y. Risk Analysis in Project Appraisal: World Bank Staff
Occasional Papers Number Eleven. John Hopkins Press, Baltimore, MD,
1970.

* Trippi, Robert R. and Truban, Efraim, Neural Networks: In Finance and
Investing: Probus Publishing Co., 1993

Glossary 195

Glossary

Glossary 196

Glossary 197

For additional information on any term, refer to the Evolver index in
the following chapter.

A mathematically based step-by-step method of solving a certain kind
of problem. All computer programs are built by combining many
algorithms.

A spreadsheet cell whose value can be adjusted by Evolver to try to
optimize the value of the target cell. An adjustable cell is a variable
value and should always contain a simple number, rather than an
equation.

slang Simple software programs that find the inputs which produce a
desired output using a combination of linear programming
techniques, or basic hill-climbing algorithms. Baby solvers often take
guesses, then refine their answer to arrive at a “local” solution rather
than a “global” solution.

The cell is the basic unit of a spreadsheet in which data is stored.
There are up to 256 columns and 16,000 rows, for a total of more than
4 million cells, in each Excel worksheet.

Constraints are conditions which should be met (soft constraints) or
must be met (hard constraints) for a scenario to be considered valid.

A probability distribution where any value between the minimum
and maximum is possible (has finite probability).
See discrete distribution

In a genetically based context, crossing over is an exchange of
equivalent genetic material between homologous chromatids during
meiosis. In Evolver, the term crossover is used to express the
computational equivalent to crossing over, where an exchange
between variables yields new combinations of scenarios.

A cumulative distribution, or a cumulative distribution function, is
the set of points, each of which equals the integral of a probability
distribution starting at the minimum value and ending at the
associated value of the random variable.
See cumulative frequency distribution, probability distribution

Algorithm

Adjustable Cell

Baby Solver

Cell

Constraints

Continuous
Distribution

Crossover

Cumulative
Distribution

198

A cumulative frequency distribution is the term for the output and
the input cumulative distributions of Evolver. A cumulative
distribution is constructed by cumulating the frequency
(progressively adding bar heights) across the range of a frequency
distribution. A cumulative distribution can be an "upwardly sloping"
curve, where the distribution describes the probability of a value less
than or equal to any variable value. Alternatively, the cumulative
curve may be a "downwardly sloping" curve, where the distribution
describes the probability of a value greater than or equal to any
variable value.
See cumulative distribution

A dependent variable is one that depends in some way on the values
of other variables in the model under consideration. In one form, the
value of an uncertain dependent variable can be calculated from an
equation as a function of other uncertain model variables.
Alternatively, the dependent variable may be drawn from a
distribution based on the random number which is correlated with a
random number used to draw a sample of an independent variable.
See independent variable

The term deterministic indicates that there is no uncertainty
associated with a given value or variable.

The window on a computer screen that requests the user to provide
information. Also called dialog box. Evolver contains two major
dialogs; the Evolver Model Dialog, and the Adjustable Cells Dialog.

A probability distribution where only a finite number of discrete
values are possible between the minimum and maximum.
See continuous distribution

The basic unit of data entry. Depending on its field type, a field can
contain text, pictures, or numbers. Most fields in the Evolver dialogs
ask the user to input the location of spreadsheet cells, or options
regarding how Evolver should behave.

This is a formula which can calculate how good or bad any proposed
solution is to a given problem. The term is often used in the genetic
algorithm field as an analogy to “fitness” in biological selection.
Designing an accurate fitness function is critical when using a genetic
algorithm to solve a problem.

Cumulative
Frequency
Distribution

Dependent
Variable

Deterministic

Dialog

Discrete
Distribution

Field

Fitness
Function

Glossary 199

In Excel, a function is a pre-defined formula that takes a value,
performs an operation, and returns a value. Excel contains hundreds
of built-in formulas (like “SUM”) that save time, space, and are faster.
For example, instead of typing A1+ A2+ A3+ A4+ A5+ A6, you can
type SUM(A1:A6) and get the same result.

Frequency distribution is the proper term for the output probability
distributions and the input histogram distributions (HISTOGRM) of
Evolver. A frequency distribution is constructed from data by
arranging values into classes and representing the frequency of
occurrence in any class by the height of the bar. The frequency of
occurrence corresponds to probability.

A procedure for improving results of some operation by repeatedly
trying several possible solutions and reproducing and mixing the
components of the better solutions. The process is inspired by, and
crudely similar to, the process of evolution in the biological world,
where the fittest survive to reproduce.

In the field of genetic algorithms, each completely new population of
“offspring” solutions is a new “generation”. Some genetic algorithm
routines mate all members of a population at once, creating a whole
new “generation” of offspring organisms that replaces the previous
population. Evolver evaluates and replaces one organism at a time
(rank-ordered) and thus does not use the term “generation” in its
documentation. This steady state technique works as well as
generational replacement.

In biology, this is the genetic constitution of an individual. The term
usually refers to the sum total of the individual’s genes. In the study
of GAs, genotype is used to describe the artificial “chromosome” that
is evaluated as a possible solution to the problem.

The largest possible value for a given function. Complex functions or
models may have many local maxima but only one global maximum.

Each set of variables, along with the way they will be treated, is one
group of adjustable cells. Evolver will list all groups of adjustable
cells in the variables section of the Evolver Model dialog. This
architecture allows complex problems to be built and described as
several groups of adjustable cells.

A constraint that must always be met. For example, the ranges for
variables in a recipe problem are hard constraints; a variable set to
range between 10 and 20 can never have a value less than 10 or
greater than 20. See also soft constraints.

Functions

Frequency
Distribution

Genetic
Algorithm

Generation

Genotype

Global
Maximum

Group of
Adjustable cells

Hard
Constraints

200

Higher moments are statistics of a probability distribution. The term
generally refers to the skewness and kurtosis, the third and fourth
moments respectively. The first and second moments are the mean
and the standard deviation respectively. See skewness, kurtosis, mean,
standard deviation

An optimization procedure that starts from a given scenario and
repeatedly moves the scenario in small steps in the direction that will
most improve it. Hill-climbing algorithms are fast and simple, but
have two drawbacks. First, much work may be needed to find the
direction of most improvement. Second, the algorithms usually climb
the nearest hill, or local maximum. This prevents the algorithm from
finding the global maximum in a difficult problem.

An independent variable is one that does not depend in any way on
the values of any other variable in the model under consideration.
The value of an uncertain independent variable is determined by
drawing a sample from the appropriate probability distribution. This
sample is drawn without regard to any other random sample drawn
for any other variable in the model.
See dependent variable

An iteration is one recalculation of the user's model during a
simulation. A simulation consists of many recalculations or iterations.
During each iteration, all uncertain variables are sampled once
according to their probability distributions, and the model is
recalculated using these sampled values.
Also known as a simulation trial

Kurtosis is a measure of the shape of a distribution. Kurtosis
indicates how flat or peaked the distribution is. The higher the
kurtosis value, the more peaked the distribution.
See skewness

Latin Hypercube sampling is a relatively new stratified sampling
technique used in simulation modeling. Stratified sampling
techniques, as opposed to Monte Carlo type techniques, tend to force
convergence of a sampled distribution in fewer samples.
See Monte Carlo

The largest possible value for a given function within a given range of
values. A local maximum exists at a set of values for variables in a
function if slightly changing any or all of the variables’ values
produces a smaller result from the function. (Compare with global
maximum).

Higher Moments

Hill-Climbing
Algorithm

Independent
Variable

Iteration

Kurtosis

Latin Hypercube

Local Maximum

Glossary 201

The mean of a set of values is the sum of all the values in the set
divided by the total number of values in the set. Synonym: expected
value

For the purposes of this manual, a model is a numeric representation,
in Excel, of a real-world situation.

Monte Carlo refers to the traditional method of sampling random
variables in simulation modeling. Samples are chosen completely
randomly across the range of the distribution, thus necessitating large
numbers of samples for convergence for highly skewed or long-tailed
distributions.
See Latin Hypercube
The most likely value or mode is the value that occurs most often in a
set of values. In a histogram and a result distribution, it is the center
value in the class or bar with the highest probability.

In the biological world, gene mutation is the source of variation
needed for effective natural selection. Likewise, a genetic algorithm
uses mutation techniques to maintain diversity in a population of
possible scenarios.

The process of finding values for variables so that the output of a
function can be maximized (made as large as possible) or minimized
(made as small as possible). Optimization by equation solving is easy
for smoothly changing functions with few variables, but extremely
difficult for many real-world problems. Tough problems generally
need a search mechanism. Evolver uses an optimizing search
mechanism based upon a genetic algorithm.

A block of memory in a population that stores a set of variable values
(scenario).

A spreadsheet equation that Evolver can use to penalize scenarios that
fail to meet some criteria. Penalty functions are used to help
minimize side effects from scenarios or to achieve multiple goals.
Unlike a hard constraint, a penalty function does allow invalid
solutions to be explored; it just makes those solutions look bad so the
population will evolve away from those solutions. Boolean penalties
are either on or off, penalizing all invalid solutions by the same
amount. Scaling penalties are more fluid, assigning a penalty in
proportion to how badly a constraint is violated.

A percentile is an increment of the values in a data set. Percentiles
divide the data into 100 equal parts, each containing one percent of
the total values. The 60th percentile, for example, is the value in the
data set for which 60% of the values are below it and 40% are above.

Mean

Model

Monte Carlo

Most Likely
Value

Mutation

Optimization

Organism

Penalty
Function

Percentile

202

In biology, this is an observable trait of an individual which arises
from interactions between genes, and between genes and the
environment. In the study of GAs, phenotype is used to describe the
individual variables or “genes” that make up one complete solution
or “chromosome”. (see Genotype)

The entire set of scenarios that Evolver keeps in memory from which
new scenarios are generated. Evolver keeps one population of
possible solutions for each group of adjustable cells in a system.

Probability is a measure of how likely a value or event is to occur. It
can be measured from simulation data as frequency by calculating the
number of occurrences of the value or event divided by the total
number of occurrences. This calculation returns a value between 0
and 1 which then can be converted to percentage by multiplying by
100.
See frequency distribution, probability distribution

A probability distribution or probability density function is the
proper statistical term for a frequency distribution constructed from
an infinitely large set of values where the class size is infinitesimally
small.
See frequency distribution

A random number generator is an algorithm for choosing random
numbers, typically in the range of 0 to 1. These random numbers are
equivalent to samples drawn from a uniform distribution with a
minimum of 0 and a maximum of 1. Such random numbers are the
basis for other routines that convert them into samples drawn from
specific distribution types.
See random sample, seed

A random sample is a value that has been chosen from a probability
distribution describing a random variable. Such a sample is drawn
randomly according to a sampling "algorithm". The frequency
distribution constructed from a large number of random samples
drawn by such an algorithm will closely approximate the probability
distribution for which the algorithm was designed.

 In Evolver:

The user sets the range, or the highest and lowest value that Evolver
is allowed to try when adjusting a certain variable. Although this is
not necessary to solve a problem, setting these ranges limits the
possibilities and hence narrows Evolver’s search.

 In Excel:

Phenotypes

Population

Probability

Probability
Distribution

Random
Number
Generator

Random Sample

Ranges

Glossary 203

A block of contiguous cells in a worksheet that is defined by the
upper left cell and the lower right cell (e.g. A5:C9 describes a range of
15 cells).
A set of values for the variables in a spreadsheet model. Each
scenario most often represents one possible solution.

Simulation is a technique whereby a model, such as a Excel
worksheet, is calculated many times with different input values with
the intent of getting a complete representation of all possible scenarios
that might occur in an uncertain situation.

Skewness is a measure of the shape of a distribution. Skewness
indicates the degree of asymmetry in a distribution. Skewed
distributions have more values to one side of the peak or most likely
value — one tail is much longer than the other. A skewness of 0
indicates a symmetric distribution, while a negative skewness means
the distribution is skewed to the left. Positive skewness indicates a
skew to the right. See kurtosis

Any given system contains many input variables producing an
output. In Evolver, a “solution” will more often refer to one of the
possible combinations of variables rather than the best combination.

When constraints do not necessarily have to be met, they can be made
soft instead of hard. This is done by specifying a penalty function in
Evolver or adding a penalty function to the target cell’s fitness
function.

It is often better for constraints to be soft if possible. This is because:
1. Evolver can usually solve softly-constrained problems faster, and
2. a soft-constraint model often will find a great solution that almost
meets the soft constraints, which can be more valuable than a not-so-
great solution that does meet hard constraints.

Evolver includes six of these methods, each using a customized
algorithm to solve a specific type of problem. For each set of variables
selected in a problem, the user must assign the solving method to be
used on those variables. The six solving methods are: grouping,
order, recipe, budget, project, and schedule.

The standard deviation is a measure of how widely dispersed the
values are in a distribution. Equals the square root of the variance.
See variance

Stochastic is a synonym for uncertain, risky.
See risk, deterministic

The status bar appears at the bottom of the Excel window, and
displays Evolver’s current activity.

Scenario

Simulation

Skewness

Solution

Soft Constraints

Solving Method

Standard
Deviation

Stochastic

Status Bar

204

The idea that organisms better suited to an environment are more
likely to live long enough to reproduce and spread their genes
through the population’s next generation.

The spreadsheet cell whose value we want to minimize or maximize.
This cell is set in the Evolver Model dialog (select Evolver Model
Definition command or the Model icon).

The process of Evolver generating a value for each variable in the
problem, then recalculating the scenario for evaluation.

Survival of the
Fittest

Target Cell

Trials

Index 205

Index

A

Add - Adding Constraints 107
adjustable cells 25, 91
advertising selection example 45
algorithm, defined 139
alphabetize example 47
Application Settings command 123
assignment of tasks example 49

B

backtracking 179
bakery example 51
budget allocation example 53
budget solving method

description 98
example 45, 53, 71, 73

C

chemical equilibrium example 55
class scheduler example 57
code segmenter example 59
combinatorial problems 139–52, 139–52
Constraint Solver command 124
constraints 165–73

implementation 179
continuous models 145
crossover rate 130, 160

how it is implemented 177
what it does 103

D

databases 151

206

E

Evolver
Tutorial 10
what is it? 13

Evolver
why use it? 16

Evolver
vs. Microsoft Solver 146

Evolver
when to use it 147

Evolver
capabilities 139–52

Evolver Watcher 36, 127
Excel Solver (see Solver 145

F

fitness function 21, 90

G

gene pool 161
generations

why they aren’t used 177
genetic algorithms

why use them? 16
genetic operator 105
global solution

vs. local solution 145
Glossary 196
Graph progress

picture 34
graphs 36, 128
GRG routines 145
grouping solving method

description 96
example 59, 69

H

hard constraints 28, 108
hill climbing 141

an example 150
described 149–50
Solver’s use 145

Index 207

I

integers 92

J

job shop example 65

L

landscape of solutions 140
Learning Evolver 10
linear problems 149
local solution

vs. global solution 145

M

minutes 116
Model dialog 24, 89
multiple goal problems 173
mutation rate 130

how it is implemented 178
what it does 104

N

non-linear problems 149–50

O

Operators 105
optimization

example 143
methods 139
what is it? 15

Optimization Goal 25, 90
Optimization Runtime options 116
order solving method

description 96
example 49, 65, 77

208

P

Palisade Corporation 5
penalty functions

examples 172
explained 169
using 172

Percentile 201
portfolio balancing example 69
portfolio mix example 71
power stations example 73
problems

combinatorial 151–52, 151–52
linear 149
non-linear 149–50
table-based 151

Progress window 121
project solving method

description 99
example 63

purchasing example 75

R

radio tower location example 67
Readme file 10
recipe solving method

description 95
example 47, 51, 55, 67, 75, 79, 81, 83, 85

redraw screen
picture 34

Removing Evolver from your computer 7
replacement method 178
routing example 63

S

salesman problem example 77
schedule solving method

description 100
example 57

selection routine 177
Simplex Method 149
soft constraints 28, 108, 109, 168
Solver 145

vs. Evolver 146

Index 209

solving methods
as constraints 166
budget 98

example 45, 53, 71, 73
grouping 96

example 59, 69
order 96

example 49, 65, 77
project 99

example 63
recipe 95

example 47, 51, 55, 67, 75, 79, 81, 83, 85
schedule 100

example 57
space navigator example 79
speed, improving 175
status bar 127, 203
stopping conditions 116
Stopping conditions

introduction 32

T

table-based problems 151
target cell 25, 90, 204
technical specifications 177
trader example 81
transformer example 83
transportation example 85
traveling salesman example 77
tutorial 10

V

Values 92

W

Watcher 36, 127

	Chapter 1: Introduction
	Introduction
	Before You Begin
	What the Package Includes
	About This Version
	Working with your Operating Environment
	If You Need Help
	Before Calling
	Contacting Palisade
	Student Versions

	Evolver System Requirements

	Installation Instructions
	General Installation Instructions
	Removing Evolver from Your Computer

	The DecisionTools Suite
	Setting Up the Evolver Icons or Shortcuts
	Macro Security Warning Message on Startup
	Other Evolver Information
	Evolver Readme
	Evolver Tutorial

	Learning Evolver

	Chapter 2: Background
	What Is Evolver?
	How does Evolver work?
	Genetic Algorithms

	What Is Optimization?
	Why Build Excel Models?
	Why Use Evolver?
	No More Guessing
	More Accurate, More Meaningful
	More Flexible
	More Powerful
	Easier to Use
	Cost Effective

	Chapter 3: Evolver: Step-by-Step
	Introduction
	The Evolver Tour
	Starting Evolver
	The Evolver Toolbar
	Opening an Example Model

	The Evolver Model Dialog
	Selecting the Target Cell
	Adding Adjustable Cell Ranges
	Selecting a Solving Method

	Constraints
	Adding a Constraint
	Simple Range of Values and Formula Constraints

	Other Evolver Options
	Stopping Conditions
	View Options

	Running the Optimization
	The Evolver Watcher
	Stopping the Optimization
	Summary Report
	Placing the Results in Your Model

	Chapter 4: Example Applications
	Introduction
	Advertising Selection
	Alphabetize
	Assignment of Tasks
	Bakery
	Budget Allocation
	Chemical Equilibrium
	Class Scheduler
	Code Segmenter
	Dakota: Routing With Constraints
	Job Shop Scheduling
	Radio Tower Location
	Portfolio Balancing
	Portfolio Mix
	Power Stations
	Purchasing
	Salesman Problem
	Space Navigator
	Trader
	Transformer
	Transportation

	Chapter 5: Evolver Reference Guide
	Model Definition Command
	Adjustable Cell Ranges
	Adjustable Cell Groups
	Recipe Solving Method
	Order Solving Method
	Grouping Solving Method
	Budget Solving Method
	Project Solving Method
	Schedule Solving Method
	Crossover and Mutation Rate
	Number of Time Blocks and Constraint Cells
	Preceding Tasks
	Operators

	Constraints
	Add - Adding Constraints
	Simple and Formula Constraints
	Soft Constraints

	Optimization Settings Command
	Optimization Settings Command – General Tab
	Optimization Settings Command – Runtime Tab
	Optimization Runtime Options

	Optimization Settings Command – View Tab
	Optimization Settings Command – Macros Tab

	Start Optimization Command
	Utilities Commands
	Application Settings Command
	Constraint Solver Command

	Evolver Watcher
	Evolver Watcher – Progress Tab
	Evolver Watcher – Summary Tab
	Evolver Watcher – Log Tab
	Evolver Watcher – Population Tab
	Evolver Watcher – Diversity Tab
	Evolver Watcher – Stopping Options Tab

	Chapter 6: Optimization
	Optimization Methods
	About Hill Climbing Algorithms

	Excel Solver
	Evolver vs. Solver
	When to Use Evolver

	Types of Problems
	Linear Problems
	Non-linear Problems
	Table-based problems
	Combinatorial problems

	Chapter 7: Genetic Algorithms
	Introduction
	History
	A Biological Example
	A Digital Example

	Chapter 8: Evolver Extras
	Adding Constraints
	Range Constraints
	Hard Constraints - customized
	Soft Constraints
	Penalty Functions
	Entering a Penalty Function
	Viewing the Effects of an Entered Penalty Function
	Viewing the Penalties Applied
	Entering Soft Constraints In Your Worksheet
	More Examples of Penalty Functions
	Using Penalty Functions

	Multiple Goal Problems

	Improving Speed
	How Evolver's Optimization is Implemented
	Selection
	Crossover
	Mutation
	Replacement
	Constraints

	Appendix A: Automating Evolver
	VBA

	Appendix B: Troubleshooting / Q&A
	Troubleshooting / Q&A

	Appendix C: Additional Resources
	Books
	Articles
	Magazines & Newsletters
	Introduction to Simulation
	Technical References to Simulation and Monte Carlo Technique
	Technical References to Latin Hypercube Sampling Techniques
	Examples and Case Studies Using Simulation

	Glossary
	Algorithm
	Adjustable Cell
	Baby Solver
	Cell
	Constraints
	Continuous�Distribution
	Crossover
	Cumulative�Distribution
	Cumulative�Frequency�Distribution
	Dependent�Variable
	Deterministic
	Dialog
	Discrete �Distribution
	Field
	Fitness Function
	Functions
	Frequency�Distribution
	Genetic Algorithm
	Generation
	Genotype
	Global Maximum
	Group of Adjustable cells
	Hard Constraints
	Higher Moments
	Hill-Climbing Algorithm
	Independent �Variable
	Iteration
	Kurtosis
	Latin Hypercube
	Local Maximum
	Mean
	Model
	Monte Carlo
	Most Likely Value
	Mutation
	Optimization
	Organism
	Penalty Function
	Percentile
	Phenotypes
	Population
	Probability
	Probability �Distribution
	Random �Number Generator
	Random Sample
	Ranges
	Scenario
	Simulation
	Skewness
	Solution
	Soft Constraints
	Solving Method
	Standard�Deviation
	Stochastic
	Status Bar
	Survival of the Fittest
	Target Cell
	Trials

	Index

