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This chapter is a follow up from the last chapter on hypothesis testing. As a primer to the more advanced 

applications described here, please first review the materials in the last chapter. Here we continue the 

quest of quality control and sampling to test one and two different variables to see if they are statistically 

significantly similar or different from some hypothesized value. The methodologies introduced in this 

chapter are more advanced than those presented in the last chapter, but build on similar concepts. All the 

statistical tests shown in this chapter are available in the Statistical Tools section of Modeling Toolkit.  

 

A hypothesis test is a statistical test of the characteristics a population by testing a small sample collected. 

In most cases, the population to be studied might be too large, difficult, or expensive to be completely 

sampled (e.g., all 100 million registered voters in the United States in a particular election). Hence, a 

smaller sample (e.g., a random sample of 1,100 voters from 20 cities) is collected, and the sample 

statistics are tabulated. Then, using hypothesis tests, the characteristics of the entire population can be 

inferred from this small sample. Modeling Toolkit allows the user to test one-variable, two-variable, and 

multiple-variable hypotheses tests using t-tests, Z-tests, and analysis of variance (ANOVA) techniques. 

To perform a hypothesis test, first set up the null hypothesis (Ho) and the alternate hypothesis (Ha). Here 

are four quick rules: 

Here are some quick rules: 

a) Always set up the alternate hypothesis first, then the null hypothesis 

b) The alternate hypothesis always has these signs: > or < or ≠  

c) The null hypothesis always has these signs: ≥  or ≤  or =  

d) If the alternate hypothesis is ≠ then it’s a 2-tailed test; if < then it is a left (one) tailed test, if > 

then it is a right (one) tailed test 

 

If the p-value is less than the significance level (the significance level α is selected by the user and is 

usually 0.10, 0.05, or 0.01) tested, reject the null hypothesis and accept the alternate hypothesis.  

 



Two-Tailed Hypothesis Test        

A two-tailed hypothesis tests the null hypothesis of whether the population median of the sample dataset 

is statistically identical to the hypothesized median. The alternative hypothesis is that the real population 

median is statistically different from the hypothesized median when tested using the sample dataset. If the 

calculated p-value is less than or equal to the alpha significance value, then reject the null hypothesis and 

accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha significance value, do 

not reject the null hypothesis. 

   

Right-Tailed Hypothesis Test  

A right-tailed hypothesis tests the null hypothesis such that the population median of the sample dataset is 

statistically less than or equal to the hypothesized median. The alternative hypothesis is that the real 

population median is statistically greater than the hypothesized median when tested using the sample 

dataset. If the calculated p-value is less than or equal to the alpha significance value then reject the null 

hypothesis and accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha 

significance value, do not reject the null hypothesis. 

     

Left-Tailed Hypothesis Test         

A left-tailed hypothesis tests the null hypothesis such that the population median of the sample dataset is 

statistically greater than or equal to the hypothesized median. The alternative hypothesis is that the real 

population median is statistically less than the hypothesized median when tested using the sample dataset. 

If the calculated p-value is less than or equal to the alpha significance value then reject the null hypothesis 

and accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha significance value, 

do not reject the null hypothesis.   

 

Example: A light bulb manufacturing company wants to test the hypothesis that its bulbs can last on 

average, 1000 burning hours. Hence, the company randomly selects 20 sample bulbs. The burning 

hours are shown in Figure 1. At a 5% significance level, what is the conclusion?   

 



         
 

Figure 1: One-variable t-test 

 

Figure 1 illustrates the sample data of 20 light bulbs randomly selected and tested using the One-

Variable T-Test. Figure 2 illustrates the results obtained. The hypothesis tested is, of course, a one-tail 

right-tail test. As the sample size is less than 30, we use a one-variable t-test. Figure 1 also illustrates 

the data set up and requirements to run a one-variable t-test. 

 

Clearly, the null hypothesis tested is such that the population average life of the light bulbs is ≤ 1,000 

hours, while the alternate hypothesis is such that the population life of the light bulbs > 1,000 hours. 

The calculated p-value for the right tail is 0.0220, which is less than the 5% significance (α) level. 

Hence we reject the null hypothesis and conclude that the population average of the life of the light 

bulbs exceed 1,000 hours. 

 



Statistical Summary

Statistics from Dataset: Calculated Statistics:

Observations 20 t-Statistic 2.1582
Sample Mean 1017.55 P-Value (right-tail) 0.0220
Sample Standard Deviation 36.37 P-Value (left-tailed) 0.9780

P-Value (two-tailed) 0.0439
User Provided Statistics:

Null Hypothesis (Ho): μ  = 1000.00
Hypothesized Mean 1000.00 Alternate Hypothesis (Ha): μ  < > 1000.00

Hypothesis Testing Summary

Two-Tailed Hypothesis Test

Right-Tailed Hypothesis Test

Left-Tailed Hypothesis Test

A right-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically less than or equal to the hypothesized mean. The
alternative hypothesis is that the real population mean is statistically greater than the hypothesized mean when tested using the sample dataset. Using a t-
test, the t value calculated is 2.1582 which corresponds to a p-value of 0.0220. This means that the hypothesized mean is significant at 10% and 5%.
Therefore the null hypothesis is rejected, and that the true population mean (tested through the sample mean 1017.55) is found to be statistically significantly
greater than the hypothesized mean of 1000.00.

A left-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically greater than or equal to the hypothesized mean. The
alternative hypothesis is that the real population mean is statistically less than the hypothesized mean when tested using the sample dataset. Using a t-test,
the t value calculated is 2.1582 which corresponds to a p-value of 0.9780. This means that the hypothesized mean is not significant at any of the following
significance levels: 1%, 5%, and 10%. Therefore the null hypothesis is not rejected, and that the true population mean (tested through the sample mean
1017.55) is found to be statistically not significantly less than the hypothesized mean of 1000.00.

Notes: "<>" denotes "greater than" for right-tail, "less than" for left-tail, 
or "not equal to" for two-tail hypothesis tests.

Hypothesis Test (t-Test on the Population Mean of One Variable)

The one-variable t-test is appropriate when the population standard deviation is not known but the sampling distribution is assumed to be approximately
normal (the t-test is used when the sample size is less than 30). This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed
test, and a left-tailed test. All three tests and their respective results are listed below for your reference.

A two-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically identical to the hypothesized mean. The alternative
hypothesis is that the real population mean is statistically different from the hypothesized mean when tested using the sample dataset. Using a t-test, the t
value calculated is 2.1582 which corresponds to a p-value of 0.0439. This means that the hypothesized mean is significant at 10% and 5%. Therefore the null
hypothesis is rejected, and the true population mean (tested through the sample mean 1017.55) is found to be statistically significantly different than the
hypothesized mean of 1000.00.

 
Figure 2: Hypothesis test results 

 

One-Variable Testing for Means (T-Test)  
 

This One-Variable t-Test of Means is appropriate when the population standard deviation is not known 

but the sampling distribution is assumed to be approximately normal. The t-test is used when the sample 

size is less than 30. This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-

tailed test, and a left-tailed test, to examine based on the sample dataset if the population mean is equal to, 

less than, or greater than the hypothesized mean. 

 

If the calculated p-value is less than or equal to the significance level in the test, then reject the null 

hypothesis and conclude that the true population mean is not equal to (two-tail test), less than (left-tail 

test), or greater than (right-tail test) the hypothesized mean based on the sample tested. Otherwise, the 

true population mean is statistically similar to the hypothesized mean. 

 

 



Data Requirements  

For the One-Variable T-Tests, create data tables such as the one in Figure 3, and select the data area in 

blue one variable at a time (e.g., to test Variable One, select the data from A2 to A29, or data points 10 to 

66). Repeat this process for other variables. To extend the data set, just add more observations (rows) or 

more variables (columns), as illustrated in Figures 3 and 4.   

 

 
Figure 3: Data requirements for a one-variable t-test 

 



 
Figure 4: Running a one-variable t-test 

 

One-Variable Testing for Means (Z-Test)  
 

The one-variable Z-test is appropriate when the population standard deviation is known, and the sampling 

distribution is assumed to be approximately normal. This applies when the number of data points exceeds 

30. This Z-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a 

left-tailed test, to examine based on the sample dataset if the population mean is equal to, less than, or 

greater than the hypothesized mean. 

 

If the calculated p-value is less than or equal to the significance level in the test, then reject the null 

hypothesis and conclude that the true population mean is not equal to (two-tail test), less than (left-tail 

test), or greater than (right-tail test) the hypothesized mean based on the sample tested. Otherwise, the 

true population mean is statistically similar to the hypothesized mean. 

 

Data Requirements  

For the One-Variable Z-Test, create data tables such as the one in Figure 5, and select the data area in 

blue one variable at a time (e.g., to test Variable Eleven, select the data from A2 to A34, or data points 10 

to 58). Repeat this process for other variables. To extend the data set, just add more observations (rows) 

or more variables (columns) but make sure that you have at least 30 data points to run a Z-test (Figures 5 

and 6).   

 



 
 

Figure 5: Data requirements for a one-variable z-test 

 

 
 

Figure 6: Running a one-variable z-test 

 



One-Variable Testing for Proportions (Z-Test)  
 

The one-variable Z-test for proportions is appropriate when the sampling distribution is assumed to be 

approximately normal. This applies when the number of data points exceeds 30, and when the number of 

data points, N, multiplied by the hypothesized population proportion mean, P, is greater than or equal to 

five, NP ≥ 5. The data used in the analysis have to be proportions and be between 0 and 1. This Z-test can 

be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-tailed test, to 

examine based on the sample dataset if the population mean is equal to, less than, or greater than the 

hypothesized mean.  

 

If the calculated p-value is less than or equal to the significance level in the test, then reject the null 

hypothesis and conclude that the true population mean is not equal to (two-tail test), less than (left-tail 

test), or greater than (right-tail test) the hypothesized mean based on the sample tested. Otherwise, the 

true population mean is statistically similar to the hypothesized mean. 

 

For data requirements, see One Variable Testing for Means (Z-Test). However, make sure that the data 

are proportions between 0 and 1 (not including 1). 

 

Two Variables with Dependent Means (T-Test)  
 

The two-variable dependent t-test is appropriate when the population standard deviation is not known but 

the sampling distribution is assumed to be approximately normal. The t-test is used when the sample size 

is less than 30. In addition, this test is specifically formulated for testing the same or similar samples 

before and after an event (e.g., measurements taken before a medical treatment are compared against 

those measurements taken after the treatment to see if there is a difference). This t-test can be applied to 

three types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-tailed test.   

 

Suppose that a new heart medication was administered to 100 patients (N = 100) and the heart rates 

before and after the medication was administered were measured. The Two Dependent Variables t-Test 

can be applied to test if the new medication is effective by testing to see if there is a statistically different 

"before and after" averages. The Dependent Variables test is used here because there is only a single 

sample collected (the heartbeats of the same patients were measured before and after administration of the 

new drug). 

 



The two-tailed null hypothesis tests that the true population’s mean of the difference between the two 

variables is zero, versus the alternate hypothesis that the difference is statistically different from zero. The 

right-tail null hypothesis test is such that the differences in the population means (first mean less second 

mean) is statistically less than or equal to zero (which is identical to saying that the mean of the first 

sample is less than or equal to the mean of the second sample). The alternative hypothesis is that the mean 

difference of the real populations is statistically greater than zero when tested using the sample dataset 

(which is identical to saying that the mean of the first sample is greater than the mean of the second 

sample). The left-tail null hypothesis test is such that the differences in the population means (first mean 

less second mean) is statistically greater than or equal to zero (which is the same as saying that the mean 

of the first sample is greater than or equal to the mean of the second sample). The alternative hypothesis is 

that the mean difference of the real population is statistically less than zero when tested using the sample 

dataset (which is identical to saying that the mean of the first sample is less than the mean of the second 

sample).  

 

If the calculated p-value is less than or equal to the significance level in the test, reject the null hypothesis 

and conclude that the true population difference of the population means is not equal to (two-tail test), 

less than (left-tail test), or greater than (right-tail test) zero based on the sample tested. Otherwise, the true 

population mean is statistically similar to the hypothesized mean. 

 

Data Requirements  

For the Two-Variable T-Tests, create data tables such as the one shown in Figure 7, and select the data 

area in blue two variables at a time (e.g., to test Variables Eight and Nine together, select the data from 

H2 to I29 or the data points 10 to 66). Repeat this process for other pairs of variables. To extend the 

existing data set, just add more observations (rows) or more variables (columns). See Figures 7 and 8.  

 



 
Figure 7: Data requirements for a two-variable dependent means t-test 

 

 
Figure 8: Running a two-variable dependent means t-test 



Two Variables that are Independent with Equal Variances (T-Test)  
 

The two-variable t-test with equal variances is appropriate when the population standard deviation is not 

known but the sampling distribution is assumed to be approximately normal. The t-test is used when the 

sample size is less than 30. In addition, the two independent samples are assumed to have similar 

variances.  

 

For illustration, suppose that a new engine design is tested against an existing engine design to see if there 

is a statistically significant different between the two. The t-Test on Two (Independent) Variables with 

Equal Variances can be applied. This test is used here because there are two distinctly different samples 

collected here (new engine and existing engine) but the variances of both samples are assumed to be 

similar (the means may or may not be similar but the fluctuations around the mean are assumed to be 

similar). 

 

This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-

tailed test. A two-tailed hypothesis tests the null hypothesis Ho such that the mean difference (HMD) of 

the population between the two variables is statistically identical to the hypothesized mean differences. If 

HMD is set to zero, this is the same as saying that the first mean equals the second mean. The alternative 

hypothesis is that the difference between the real population means is statistically different from the 

hypothesized mean differences when tested using the sample dataset. If HMD is set to zero, this is the 

same as saying that the first mean does not equal the second mean. 

 

A right-tailed hypothesis tests the null hypothesis Ho such that the population mean difference between 

the two variables is statistically less than or equal to the hypothesized mean differences. If HMD is set to 

zero, this is the same as saying that the first mean is less than or equals the second mean. The alternative 

hypothesis is that the real difference between population means is statistically greater than the 

hypothesized mean differences when tested using the sample dataset. If HMD is set to zero, this is the 

same as saying that the first mean is greater than the second mean. 

 

A left-tailed hypothesis tests the null hypothesis Ho such that the differences between the population 

means of the two variables is statistically greater than or equal to the hypothesized mean differences. If 

HMD is set to zero, this is the same as saying that the first mean is greater than or equals the second 

mean. The alternative hypothesis is that the real difference between population means is statistically less 



than the hypothesized mean difference when tested using the sample dataset. If HMD is set to zero, this is 

the same as saying that the first mean is less than the second mean. 

 

If the calculated p-value is less than or equal to the significance level in the test, reject the null hypothesis 

and conclude that the true population difference of the population means is not equal to (two-tail test), 

less than (left-tail test), or greater than (right-tail test) HMD based on the sample tested. Otherwise, the 

true difference of the population means is statistically similar to the HMD. 

 

For data requirements, see Two Variables with Dependent Means (T-Test). 

 

Two Variables that are Independent with Unequal Variances (T-Test)  
 

The two-variable t-test with unequal variances (the population variance of sample 1 is expected to be 

different from the population variance of sample 2) is appropriate when the population standard deviation 

is not known but the sampling distribution is assumed to be approximately normal. The t-test is used 

when the sample size is less than 30. In addition, the two independent samples are assumed to have 

similar variances.  

 

To illustrate, suppose that a new customer relationship management (CRM) process is being evaluated for 

its effectiveness. The customer satisfaction ranking between two hotels (one with and the other without 

CRM implemented) are collected. The t-Test on Two (Independent) Variables with Unequal Variances 

can be applied. This test is used here because there are two distinctly different samples collected 

(customer survey results of two different hotels) and the variances of both samples are assumed to be 

dissimilar (due to the difference in geographical location plus the different demographics and 

psychographics of customers at both properties). 

 

This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-

tailed test. A two-tailed hypothesis tests the null hypothesis Ho such that the population mean differences 

between the two variables is statistically identical to the hypothesized mean differences. If HMD is set to 

zero, this is the same as saying that the first mean equals the second mean. The alternative hypothesis is 

that the real difference between the population means is statistically different from the hypothesized mean 

differences when tested using the sample dataset. If HMD is set to zero, this is the same as saying that the 

first mean does not equal the second mean. 

 



A right-tailed hypothesis tests the null hypothesis Ho such that the difference between the means of the 

populations of the two variables is statistically less than or equal to the hypothesized mean differences. If 

HMD is set to zero, this is the same as saying that the first mean is less than or equals the second mean. 

The alternative hypothesis is that the mean of the differences of the real populations is statistically greater 

than the hypothesized mean difference when tested using the sample dataset. If HMD is set to zero, this is 

the same as saying that the first mean is greater than the second mean. 

 

A left-tailed hypothesis tests the null hypothesis Ho such that the difference between the population means 

of the two variables is statistically greater than or equal to the hypothesized mean differences. If HMD is 

set to zero, this is the same as saying that the first mean is greater than or equals the second mean. The 

alternative hypothesis is that the real difference between population means is statistically less than the 

hypothesized mean difference when tested using the sample dataset. If HMD is set to zero, this is the 

same as saying that the first mean is less than the second mean. 

 

If the calculated p-value is less than or equal to the significance level in the test, reject the null hypothesis 

and conclude that the true population difference of the population means is not equal to (two-tail test), 

less than (left-tail test), or greater than (right-tail test) the hypothesized mean based on the sample tested. 

Otherwise, the true difference of the population means is statistically similar to the hypothesized mean. 

 

For data requirements, see Two Variables with Dependent Means (T-Test). 

 

Two Variables that are Independent testing for Means (Z-Test)  
 

The two-variable Z-test is appropriate when the population standard deviations are known for the two 

samples, and the sampling distribution of each variable is assumed to be approximately normal. This 

applies when the number of data points of each variable exceeds 30.  

 

To illustrate, suppose that a market research was conducted on two different markets and the sample 

collected is large (N must exceed 30 for both variables). The researcher is interested in testing whether 

there is a statistically significant different between the two markets. Further suppose that such a market 

survey has been performed many times in the past and the population standard deviations are known. A 

Two Independent Variables Z-Test can be applied because the sample size exceeds 30 on each market, 

and the population standard deviations are known. 

 



This Z-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-

tailed test. A two-tailed hypothesis tests the null hypothesis Ho such that the difference between the two 

population means is statistically identical to the hypothesized mean. The alternative hypothesis is that the 

real difference between the two population means is statistically different from the hypothesized mean 

when tested using the sample dataset. 

 

A right-tailed hypothesis tests the null hypothesis Ho such that the difference between the two population 

means is statistically less than or equal to the hypothesized mean. The alternative hypothesis is that the 

real difference between the two population means is statistically greater than the hypothesized mean when 

tested using the sample dataset. 

 

A left-tailed hypothesis tests the null hypothesis Ho such that the difference between the two population 

means is statistically greater than or equal to the hypothesized mean. The alternative hypothesis is that the 

real difference between the two population means is statistically less than the hypothesized mean when 

tested using the sample dataset. 

 

Data Requirements  

For the Two Independent Variables Z-Test, create data tables such as the one in Figure 9, and select the 

data area in blue two variables at a time (e.g., select the data from A2 to B34, or data points 10 to 65). To 

extend the data set, just add more observations (rows) or more variables (columns) but make sure that 

you have at least 30 data points in each variable to run a Z-test. See Figure 10.  

 



 
Figure 9: Data requirements for a two-variable independent z-test 

 
Figure 10: Running a two-variable independent z-test 



Two Variables that are Independent testing for Proportions (Z-Test)  
 

The two-variable Z-test on proportions is appropriate when the sampling distribution is assumed to be 

approximately normal. This applies when the number of data points of both samples exceeds 30. Further, 

the data should all be proportions and be between 0 and 1.  

 

To illustrate, suppose that brand research was conducted on two different headache pills and the sample 

collected is large (N must exceed 30 for both variables). The researcher is interested in testing whether 

there is a statistically significant different between the proportion of headache sufferers of both samples 

using the different headache medication. A Two Independent Variables Z-Test for Proportions can be 

applied because the sample size exceeds 30 on each market, and the data collected are proportions. 

 

This Z-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-

tailed test. A two-tailed hypothesis tests the null hypothesis Ho such that the difference in the population 

proportion is statistically identical to the hypothesized difference (if the hypothesized difference is set to 

zero, the null hypothesis tests if the population proportions of the two samples are identical). The 

alternative hypothesis is that the real difference in population proportions is statistically different from the 

hypothesized difference when tested using the sample dataset. 

 

A right-tailed hypothesis tests the null hypothesis Ho such that the difference in the population proportion 

is statistically less than or equal to the hypothesized difference. If the hypothesized difference is set to 

zero, the null hypothesis tests if population proportion of Sample 1 is equal or less than the population 

proportion of Sample 2. The alternative hypothesis is that the real difference in population proportions is 

statistically greater than the hypothesized difference when tested using the sample dataset. 

 

A left-tailed hypothesis tests the null hypothesis Ho such that the difference in the population proportion is 

statistically greater than or equal to the hypothesized difference. If the hypothesized difference is set to 

zero, the null hypothesis tests if population proportion of Sample 1 is equal or greater than the population 

proportion of Sample 2. The alternative hypothesis is that the real difference in population proportions is 

statistically less than the hypothesized difference when tested using the sample dataset. 

 

Data Requirements  

For the Two Independent Variables Z-Test for Proportions, create data tables such as the one in Figure 

11, and select the data area in blue two variables at a time (e.g., select the data from D2 to E34, or data 



points 0.0360 to 0.0300). To extend the data set, just add more observations (rows) or more variables 

(columns) but make sure that the data are proportions between 0 and 1 (not inclusive of 1). Finally, make 

sure that you have at least 30 data points to run a Z-test (see Figures 11 and 12).   

 

 
Figure 11: Data requirements for a two-variable z-test for proportions 

 



 
Figure 12: Running a two-variable z-test for proportions 

 

Two Variables that are Independent testing for Variances (F-Test)  
 

The two-variable F-test analyzes the variances from two samples. The population variance of sample 1 is 

tested with the population variance of sample 2 to see if they are equal. This test is appropriate when the 

population standard deviation is not known and the sampling distribution is assumed to be approximately 

normal.  

 

The measurement of variation is a key issue in Six Sigma and quality control applications. In this 

illustration, suppose that the variation or variance around the units produced in a manufacturing process is 

compared to another process to determine which process is more variable and hence, less predictable in 

quality. 

 

This F-test typically can be applied to a single hypothesis test: a two-tailed test. A two-tailed hypothesis 

tests the null hypothesis Ho such that the population variance of the two variables is statistically identical. 

The alternative hypothesis is that the population variances are statistically different from one another 

when tested using the sample dataset. 

 



If the calculated p-value is less than or equal to the significance level in the test, reject the null hypothesis 

and conclude that the true population variances of the two variables are not statistically equal to one 

another. Otherwise, the true population variances are statistically similar to each other. 

 

For data requirements, see Two Variables that are Independent testing for Proportions (Z-Test). 

 
The Basics of Nonparametric Methodologies 
 

Nonparametric techniques make no assumptions about the specific shape or distribution from which the 

sample is drawn. This is different from the other hypotheses tests, such as ANOVA or t-Tests (parametric 

tests) where the sample is assumed to be drawn from a population that is normally or approximately 

normally distributed. If normality is assumed, the power of the test is higher due this normality restriction. 

However, if flexibility on distributional requirements is needed, nonparametric techniques are superior. In 

general, nonparametric methodologies provide these advantages over other parametric tests: 

 

• Normality or approximate normality does not have to be assumed 

• Fewer assumptions about the population are required, that is, nonparametric tests do not require 

that the population assume any specific distribution 

• Smaller sample sizes can be analyzed 

• Samples with nominal and ordinal scales of measurement can be tested 

• Sample variances do not have to be equal, which is required in parametric tests 

 

However, several caveats are worthy of mention: 

 

• Compared to parametric tests, nonparametric tests use data less efficiently 

• The power of nonparametric tests is lower than that of parametric tests 

 

Therefore, if all the required assumptions are satisfied, it is better to use parametric tests. However, in 

reality, it may be difficult to justify these distributional assumptions, or small sample sizes may exist, 

requiring the need for nonparametric tests. Thus, nonparametric tests should be used when the data are 

nominal or ordinal, or when the data are interval or ratio but the normality assumption is not met.  

 

The following lists each of the nonparametric tests available for use in the software. 

 



Chi-Square Goodness of Fit Test  
 

The Chi-Square test for goodness of fit is used to examine if a sample data set could have been drawn 

from a population having a specified probability distribution. The probability distribution tested here is 

the normal distribution. The null hypothesis tested such that the sample is randomly drawn from the 

normal distribution, versus the alternate hypothesis that the sample is not from a normal distribution. If 

the calculated p-value is less than or equal to the alpha significance value, reject the null hypothesis and 

accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha significance value, do 

not reject the null hypothesis.   

 

Data Requirements  

For the Chi-Square Goodness of Fit Test, create data tables such as the one shown in Figure 13, and 

select the data area in blue area (e.g., select the data from D6 to E13, or data points 800 to 4). To extend 

the data set, just add more observations (rows) as seen in Figures 13 and 14.   

 

 
 

Figure 13: Data requirements for the chi-square goodness-of-fit test 

 

 



 
 

Figure 14: Running a chi-square goodnes of fit test 

 

Chi-Square Test of Independence 
 

The Chi-Square test for independence examines two variables to see if there is some statistical 

relationship between them. This test is not used to find the exact nature of the relationship between the 

two variables but simply to test if the variables could be independent of each other. The null hypothesis 

tested is such that the variables are independent of each other, versus the alternate hypothesis that the 

variables are not independent of each other. The Chi-Square test looks at a table of observed frequencies 

and a table of expected frequencies. The amount of disparity between these two tables is calculated and 

compared with the Chi-Square test statistic. The observed frequencies reflect the cross-classification for 

members of a single sample, and the table of expected frequencies is constructed under the assumption 

that the null hypothesis is true.  

 

Data Requirements 

For the Chi-Square Test of Independence, create data tables such as the one in gure 151.15, and select 

the data area in blue area two variables at a time (e.g., select the data from A2 to B29, or data points 10 

to 110). To extend the data set, just add more observations (rows) as seen in Figure 15.  

 



  
Figure 15: Data requirements and running the chi-square test of independence 

 
Chi-Square Population Variance Test 
 

The Chi-Square test for population variance is used for hypothesis testing and confidence interval 

estimation for a population variance. The population variance of a sample is typically unknown; hence, 

the need for quantifying this confidence interval. The population is assumed to be normally distributed.  

 

Friedman’s Test  
 

The Friedman test is a form of nonparametric test, that makes no assumptions about the specific shape of 

the population from which the sample is drawn, allowing for smaller sample data sets to be analyzed. This 

method is the extension of the Wilcoxon Signed Rank test for paired samples. The corresponding 

parametric test is the Randomized Block Multiple Treatment ANOVA, but unlike the ANOVA, the 

Friedman test does not require that the dataset be randomly sampled from normally distributed 

populations with equal variances.  

 

The Friedman test uses a two-tailed hypothesis test where the null hypothesis is such that the population 

medians of each treatment are statistically identical to the rest of the group. That is, there is no effect on 

the treatment among the different groups. The alternative hypothesis is such that the real population 

medians are statistically different from one another when tested using the sample dataset. That is, the 



medians are statistically different, which means that there is a statistically significant effect among the 

different treatment groups. If the calculated p-value is less than or equal to the alpha significance value 

then reject the null hypothesis and accept the alternate hypothesis. Otherwise, if the p-value is higher than 

the alpha significance value, do not reject the null hypothesis.  

 

Data Requirements  

For the Friedman's Test, create data tables such as the one shown in Figure 16, and select the data area 

in blue area (e.g., select the data from C22 to F32, or data points Treatment 1 to 80). If selecting the 

headers, remember to select "Treat first row as headers." To extend the data set, just add more 

observations (rows). See Figure 16.  

 

 
 



 
 

Figure 16: Data requirements and running the Friedman test for randomized block design 

 

 

Kruskal-Wallis Test  
 

The Kruskal-Wallis test is a form of nonparametric test that makes no assumptions about the specific 

shape of the population from which the sample is drawn, allowing for smaller sample data sets to be 

analyzed. This method is the extension of the Wilcoxon Signed Rank test for paired samples that 

compares the statistical properties of more than two independent samples. The corresponding parametric 

test is the One-Way ANOVA, but unlike the ANOVA, the Kruskal-Wallis test does not require that the 

dataset be randomly sampled from normally distributed populations with equal variances. The Kruskal-

Wallis test is a two-tailed hypothesis test where the null hypothesis is such that the population medians of 

each treatment are statistically identical to the rest of the group. That is, there are no different effects 

among the different treatment groups. The alternative hypothesis is such that the real population medians 

are statistically different from one another when tested using the sample dataset. That is, the medians are 

statistically different, which means that there is a statistically significant effect among the different 

treatment groups. If the calculated p-value is less than or equal to the alpha significance value, reject the 

null hypothesis and accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha 

significance value, do not reject the null hypothesis. 

 



The benefit of the Kruskal-Wallis Test is that it can be applied to ordinal, interval, and ratio data; 

ANOVA, however, is applicable only for interval and ratio data. Also, the Kruskal-Wallis test can be run 

with fewer data points. 

 

To illustrate, suppose that three different drug indications (T = 3) were developed and tested on 100 

patients each (N = 100). The Kruskal-Wallis Test can be applied to test if these three drugs are all equally 

effective statistically. If the calculated p-value is less than or equal to the significance level used in the 

test, reject the null hypothesis and conclude that there is a significant difference among the different 

Treatments. Otherwise, the Treatments are all equally effective. 

 

Data Requirements 

For the Kruskal-Wallis Test, create data tables such as the one in Figure 17, and select the data area in 

blue area (e.g., select the data from C40 to F50, or data points Treatment 1 to 80). To extend the data set, 

just add more observations (rows) or more treatment variables to compare (columns). If selecting the 

variable names, remember to select “Treat first row as headers.”   

 

 
 



 
 

Figure 17: Data requirements and running the Kruskal-Wallis test for a nonparametric one-way ANOVA 

equivalence 

 

Lilliefors Test  
 

The Lilliefors test is a form of nonparametric test, that makes no assumptions about the specific shape of 

the population from which the sample is drawn, allowing for smaller sample data sets to be analyzed. This 

test evaluates the null hypothesis of whether the data sample was drawn from a normally distributed 

population, versus an alternate hypothesis that the data sample is not normally distributed. If the 

calculated p-value is less than or equal to the alpha significance value, reject the null hypothesis and 

accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha significance value, do 

not reject the null hypothesis. This test relies on two cumulative frequencies: one derived from the sample 

data set, the second derived from a theoretical distribution based on the mean and standard deviation of 

the sample data. An alternative to this test is the Chi-Square test for normality, which requires more data 

points to run than the Lilliefors test. 

 

Data Requirements 

For the Lilliefors Test for Normality, create data tables such as the one shown in Figure 18, and select 

the data area in blue area one variable at a time (e.g., select the data from A2 to A29, or data points 10 

to 66). To extend the data set, just add more observations (rows).  



  
 

Figure 18: Data requirements and running the nonparametric Lilliefors test for normality 

 

 

 Runs Test  
 

The Runs test is a form of nonparametric test that makes no assumptions about the specific shape of the 

population from which the sample is drawn, allowing for smaller sample data sets to be analyzed. This 

test evaluates the randomness of a series of observations by analyzing the number of runs it contains. A 

run is a consecutive appearance of one or more observations that are similar. The null hypothesis tested is 

whether the data sequence is random, versus the alternate hypothesis that the data sequence is not random. 

If the calculated p-value is less than or equal to the alpha significance value, reject the null hypothesis and 

accept the alternate hypothesis. Otherwise, if the p-value is higher than the alpha significance value, do 

not reject the null hypothesis. 

 

Data Requirements 

For the Runs Test for Randomness, create data tables such as the one shown in Figure 19, and select the 

data area in blue area multiple variables at a time (e.g., select the data from A2 to J29, or data points 10 

to 66). To extend the data set, just add more observations (rows) and variables (columns).  

 



 
 

Figure 19: Data requirements for the nonparametric Runs test for randomness 

 

Wilcoxon Signed-Rank Test (One Variable) 
 

The single variable Wilcoxon Signed Rank test is a form of nonparametric test that makes no assumptions 

about the specific shape of the population from which the sample is drawn, allowing for smaller sample 

data sets to be analyzed. This method looks at whether a sample dataset could have been randomly drawn 

from a particular population whose median is being hypothesized. The corresponding parametric test is 

the one-sample t-test, which should be used if the underlying population is assumed to be normal, 

providing a higher statistical power on the test. The Wilcoxon Signed Rank test can be applied to three 

types of hypothesis tests: a two-tailed test, a right-tailed test, and a left-tailed test. If the calculated 

Wilcoxon statistic is outside the critical limits for the specific significance level in the test, reject the null 

hypothesis and conclude that the true population median is not equal to (two-tail test), less than (left-tail 

test), or greater than (right-tail test) the hypothesized median based on the sample tested. Otherwise, the 

true population median is statistically similar to the hypothesized median. 

 

For data requirements, see One-Variable Testing for Means (T-Test). 

 



Wilcoxon Signed-Rank Test (Two Variables) 
 

The Wilcoxon Signed Rank test for paired variables is a form of nonparametric test that makes no 

assumptions about the specific shape of the population from which the sample is drawn, allowing for 

smaller sample data sets to be analyzed. This method looks at whether the median of the differences 

between the two paired variables is equal. This test is specifically formulated for testing the same or 

similar samples before and after an event (e.g., measurements taken before a medical treatment are 

compared against those measurements taken after the treatment to see if there is a difference). The 

corresponding parametric test is the two-sample t-test with dependent means, which should be used if the 

underlying population is assumed to be normal, providing a higher statistical power on the test. The 

Wilcoxon Signed Rank test can be applied to three types of hypothesis tests: a two-tailed test, a right-

tailed test, and a left-tailed test.   

 

To illustrate, suppose that a new engine design is tested against an existing engine design to see if there is 

a statistically significant different between the two. The Paired Variable Wilcoxon Signed-Rank Test can 

be applied. If the calculated Wilcoxon statistic is outside the critical limits for the specific significance 

level in the test, reject the null hypothesis and conclude that the difference between the true population 

medians is not equal to (two-tail test), less than (left-tail test), or greater than (right-tail test) the 

hypothesized median difference based on the sample tested. Otherwise, the true population median is 

statistically similar to the hypothesized median. 

 

For data requirements, see Two Dependent Variables Testing for Means (Z-Test). 

 

Single-Factor Multiple Treatments ANOVA  
 

The One-Way ANOVA for Single Factor with Multiple Treatments is an extension of the two-variable t-

test, looking at multiple variables simultaneously. The ANOVA is appropriate when the sampling 

distribution is assumed to be approximately normal. ANOVA can be applied only to the two-tailed 

hypothesis test. A two-tailed hypothesis tests the null hypothesis such that the population means of each 

treatment are statistically identical to the rest of the group, which means that there is no effect among the 

different treatment groups. The alternative hypothesis is such that the real population means are 

statistically different from one another when tested using the sample dataset. 

 

To illustrate, suppose that three different drug indications (T = 3) were developed and tested on 100 

patients each (N = 100). The One-Way ANOVA can be applied to test if these three drugs are all equally 



effective statistically. If the calculated p-value is less than or equal to the significance level used in the 

test, reject the null hypothesis and conclude that there is a significant difference among the different 

Treatments. Otherwise, the Treatments are all equally effective. 

 

Data Requirements 

For the One-Way ANOVA module, create tables such as the one in Figure 20, and select the data area in 

blue (15 to 25). You can extend the data by adding rows of observations and columns of treatments.  

 

 
 

 
 

Figure 20: Data requirements and running a one-way ANOVA 

 

Randomized Block Multiple Treatments ANOVA  
 

The One-Way Randomized Block ANOVA is appropriate when the sampling distribution is assumed to 

be approximately normal and when there exists a Block variable for which ANOVA will Control (Block 

the effects of this variable by controlling it in the experiment). ANOVA can be applied only to the two-

tailed hypothesis test. This analysis can test for the effects of both the Treatments as well as the 



effectiveness of the Control or Block variable. If the calculated p-value for the Treatment is less than or 

equal to the significance level used in the test, reject the null hypothesis and conclude that there is a 

significant difference among the different Treatments. If the calculated p-value for the Block variable is 

less than or equal to the significance level used in the test, reject the null hypothesis and conclude that 

there is a significant difference among the different Block variables. To illustrate, suppose that three 

different headlamp designs (T = 3) were developed and tested on 4 groups of volunteer drivers grouped 

by their age (B = 4). The One-Way Randomized Block ANOVA can be applied to test if these three 

headlamps are all equally effective statistically when tested using the volunteers' driving test grades. 

Otherwise, the Treatments are all equally effective. This test can determine if the difference occur 

because of the Treatment (that the type of headlamp will determine differences in driving test scores) or 

from the Block or controlled variable (that age may yield different driving abilities). 

 

Data Requirements  

For the Randomized Block ANOVA module, create tables such as the one in Figure 21, and select the 

data area (e.g., values 90 to 73 in Figure 21). You can extend the data by adding rows of blocks and 

columns of treatments.   

 

 

 
Figure 21: Data requirements and running a randomized block ANOVA 

 



Two-Way ANOVA  
 

The Two-Way ANOVA is an extension of the Single Factor and Randomized Block ANOVA by 

simultaneously examining the effects of two factors on the dependent variable, along with the effects of 

interactions between the different levels of these two factors. Unlike the randomized block design, this 

model examines the interactions between different levels of the factors, or independent variables. In a 

two-factor experiment, interaction exists when the effect of a level for one factor depends on which level 

of the other factor is present.  

 

There are three sets of null and alternate hypotheses to be tested in the two-way analysis of variance. 

 

The first test is on the first independent variable, where the null hypothesis is that no level of the first 

factor has an effect on the dependent variable. The alternate hypothesis is that there is at least one level of 

the first factor having an effect on the dependent variable. If the calculated p-value is less than or equal to 

the alpha significance value, reject the null hypothesis and accept the alternate hypothesis. Otherwise, if 

the p-value is higher than the alpha significance value, do not reject the null hypothesis. 

 

The second test is on the second independent variable, where the null hypothesis is that no level of the 

second factor has an effect on the dependent variable. The alternate hypothesis is that there is at least one 

level of the second factor having an effect on the dependent variable. If the calculated p-value is less than 

or equal to the alpha significance value, reject the null hypothesis and accept the alternate hypothesis. 

Otherwise, if the p-value is higher than the alpha significance value, do not reject the null hypothesis. 

 

The third test is on the interaction of both the first and second independent variables, where the null 

hypothesis is that there are no interacting effects between levels of the first and second factors. The 

alternate hypothesis is that there is at least one combination of levels of the first and second factors having 

an effect on the dependent variable. If the calculated p-value is less than or equal to the alpha significance 

value, reject the null hypothesis and accept the alternate hypothesis. Otherwise, if the p-value is higher 

than the alpha significance value, do not reject the null hypothesis. 

 

Data Requirements  

For the Two-Way ANOVA module, create tables such as the one in Fiiure 151.22, and select the data 

area (e.g., the values 804 to 835 in Figure 22). You can extend the data by adding rows of factors and 

columns of treatments. Note that the number of replications in the table above is 2 (i.e., two rows of 



observations per Factor A type). Of course you can increase the number of replications as required. The 

number of replications has to be consistent if you wish to extend the data set.   

 

 
 

 
 

Figure 22: Data requirements and running a two-way ANOVA 

  


