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1. INTRODUCTION 

Welcome to the Risk Simulator Software 

The Risk Simulator is a Monte Carlo simulation, Forecasting, and Optimization software. The software is 
written in Microsoft .NET C# and functions together with Excel as an add-in. This software is also 
compatible and often used with the Real Options Super Lattice Solver (SLS) software and Employee 
Stock Options Valuation Toolkit (ESOV) software, also developed by Real Options Valuation, Inc. Note 
that although we attempt to be thorough in this user manual, the manual is absolutely not a substitute for 
the Training DVD, live training courses, and books written by the software’s creator (e.g., Dr. Johnathan 
Mun’s Real Options Analysis, 2nd Edition, Wiley Finance, 2005; Modeling Risk: Applying Monte Carlo 
Simulation, Real Options Analysis, Forecasting, and Optimization, 2nd Edition, Wiley Finance, 2010; 
and Valuing Employee Stock Options (2004 FAS 123R), Wiley Finance, 2004). Please visit our website at 
www.realoptionsvaluation.com for more information about these items.   
 
The Risk Simulator software has the following modules: 

 Monte Carlo Simulation (runs parametric and nonparametric simulation of 42 probability 
distributions with different simulation profiles, truncated and correlated simulations, 
customizable distributions, precision and error-controlled simulations, and many other 
algorithms) 

 Forecasting (runs Box-Jenkins ARIMA, multiple regression, nonlinear extrapolation, stochastic 
processes, and time-series analysis) 

 Optimization Under Uncertainty (runs optimizations using discrete integer and continuous 
variables for portfolio and project optimization with and without simulation) 

 Modeling and Analytical Tools (runs tornado, spider, and sensitivity analysis, as well as bootstrap 
simulation, hypothesis testing, distributional fitting, etc.) 

 
Real Options SLS software is used for computing simple and complex options and includes the ability to 
create customizable option models. This oftware has the following modules: 

 Single Asset SLS (for solving abandonment, chooser, contraction, deferment, and expansion 
options, as well as for solving customized options) 

 Multiple Asset and Multiple Phase SLS (for solving multiphased sequential options, options with 
multiple underlying assets and phases, combination of multiphased sequential with abandonment, 
chooser, contraction, deferment, expansion, and switching options; it can also be used to solve 
customized options) 

 Multinomial SLS (for solving trinomial mean-reverting options, quadranomial jump-diffusion 
options, and pentanomial rainbow options) 

 Excel Add-In Functions (for solving all the above options plus closed-form models and 
customized options in an Excel-based environment) 
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Installation Requirements and Procedures 

 
To install the software, follow the on-screen instructions. The minimum requirements for this software 
are: 
 

 Pentium IV processor or later (dual core recommended) 
 Windows XP, Vista, or Windows 7 
 Microsoft Excel XP, 2003, 2007, 2010, or later 
 Microsoft .NET Framework 2.0 or later (versions 3.0, 3.5, and so forth) 
 350 MB free space 
 1GB RAM minimum (2–4GB recommended) 
 Administrative rights to install software 

 
Most new computers come with Microsoft .NET Framework 2.0/3.0 already installed. However, if an 
error message pertaining to requiring .NET Framework occurs during the installation of Risk Simulator, 
exit the installation. Then, install the relevant .NET Framework software included in the CD (choose your 
own language). Complete the .NET installation, restart the computer, and then reinstall the Risk 
Simulator software.  
 
There is a default 10-day trial license file that comes with the software. To obtain a full corporate license, 
please contact Real Options Valuation, Inc., at admin@realoptionsvaluation.com or call (925) 271-4438 
or visit our website at www.realoptionsvaluation.com. Please visit this website and click on 
DOWNLOAD to obtain the latest software release, or click on the FAQ link to obtain any updated 
information on licensing or installation issues and fixes. 
 

Licensing  

If you have installed the software and have purchased a full license to use the software, you will need to 
e-mail us your Hardware ID so that we can generate a license file for you. Follow the instructions below: 
 
Start Excel XP/2003/2007/2010, click on the License icon or click on Risk Simulator│License and copy 
down and e-mail your 11 to 20 digit and alphanumeric HARDWARE ID that starts with the prefix “RS” 
(you can also select the Hardware ID and do a right-click copy or click on the e-mail Hardware ID link) to 
admin@realoptionsvaluation.com. Once we have obtained this ID, a newly generated permanent license 
will be e-mailed to you. Once you obtain this license file, simply save it to your hard drive (if it is a 
zipped file, first unzip its contents and save them to your hard drive). Start Excel, click on Risk 
Simulator │ License or click on the License icon and click on Install License and point to this new 
license file. Restart Excel and you are done. The entire process will take less than a minute and you will 
be fully licensed. 
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Once installation is complete, start Microsoft Excel and if the installation was successful, you should see 
an additional “Risk Simulator” item on the menu bar in Excel XP/2003 or under the new icon group in 
Excel 2007/2010, and a new icon bar on Excel as seen in Figure 1.1 (A and B). In addition, a splash 
screen will appear as seen in Figure 1.2, indicating that the software is functioning and loaded into Excel. 
Figure 1.3 (A and B) also shows the Risk Simulator toolbar. If these items exist in Excel, you are now 
ready to start using the software. The remainder of this user manual provides step-by-step instructions for 
using the software.  
 

 
 

Figure 1.1A – Risk Simulator Menu and Icon Bar in Excel XP and Excel 2003 
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Figure 1.1B – Risk Simulator Menu and Icon Bar in Excel 2007/2010 

 
Figure 1.2 – Risk Simulator Splash Screen 
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Figure 
1.3A – Risk Simulator Icon Toolbar in Excel XP and Excel 2003 

 

 
 

 
 

 
 

 
 

Figure 1.3B – Risk Simulator Icon Toolbars in Excel 2007/2010 
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WHAT’S NEW IN VERSION 2011 

A Comprehensive List of Risk Simulator’s Capabilities 

The following lists the main capabilities of Risk Simulator, where the highlighted items indicate the latest 
additions to version 2011. 
 
General Capabilities 

1. Available in 10 languages––English, French, German, Italian, Japanese, Korean, Portuguese, 
Spanish, Simplified Chinese, and Traditional Chinese. 

2. Books––analytical theory, application, and case studies are supported by 10 books.  
3. Commented Cells––turn cell comments on or off and decide if you wish to show cell comments 

on all input assumptions, output forecasts, and decision variables. 
4. Detailed Example Models––24 example models in Risk Simulator and over 300 models in 

Modeling Toolkit. 
5. Detailed Reports––all analyses come with detailed reports. 
6. Detailed User Manual––step-by-step user manual. 
7. Flexible Licensing––certain functionalities can be turned on or off to allow you to customize 

your risk analysis experience. For instance, if you are only interested in the forecasting tools in 
Risk Simulator, you may be able to obtain a special license that activates only the forecasting 
tools and leaves the other modules deactivated, thereby saving some costs on the software.  

8. Flexible Requirements––works in Window 7, Vista, and XP; integrates with Excel 2010, 2007, 
2003; and works in MAC operating systems running virtual machines.  

9. Fully customizable colors and charts––tilt, 3D, color, chart type, and much more! 
10. Hands-on Exercises––detailed step-by-step guide to running Risk Simulator, including guides 

on interpreting the results.  
11. Multiple Cell Copy and Paste––allows assumptions, decision variables, and forecasts to be 

copied and pasted. 
12. Profiling––allows multiple profiles to be created in a single model (different scenarios of 

simulation models can be created, duplicated, edited, and run in a single model). 
13. Revised Icons in Excel 2007/2010––a completely reworked icon toolbar that is more intuitive 

and user friendly. There are four sets of icons that fit most screen resolutions (1280 x 760 and 
above). 

14. Right-Click Shortcuts––access all of Risk Simulator's tools and menus using a mouse right-
click. 

15. ROV Software Integration––works well with other ROV software including Real Options SLS, 
Modeling Toolkit, Basel Toolkit, ROV Compiler, ROV Extractor and Evaluator, ROV Modeler, 
ROV Valuator, ROV Optimizer, ROV Dashboard, ESO Valuation Toolkit, and others! 

16. RS Functions in Excel––insert RS functions for setting assumptions and forecasts, and right-
click support in Excel. 

17. Troubleshooter—allows you to reenable the software, check for your system requirements, 
obtain the Hardware ID, and others.  
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18. Turbo Speed Analysis—runs forecasts and other analyses tools at blazingly fast speeds 
(enhanced in version 5.2). The analyses and results remain the same but are now computed very 
quickly; reports are generated very quickly as well. 

19. Web Resources, Case Studies, and Videos––download free models, getting-started videos, case 
studies, whitepapers, and other materials from our website. 

 
Simulation Module 

20. 6 random number generators––ROV Advanced Subtractive Generator, Subtractive Random 
Shuffle Generator, Long Period Shuffle Generator, Portable Random Shuffle Generator, Quick 
IEEE Hex Generator, and Basic Minimal Portable Generator. 

21. 2 sampling methods––Monte Carlo and Latin Hypercube. 
22. 3 Correlation Copulas––applying Normal Copula, T Copula, and Quasi-Normal Copula for 

correlated simulations. 
23. 42 probability distributions––arcsine, Bernoulli, beta, beta 3, beta 4, binomial, Cauchy, chi-

square, cosine, custom, discrete uniform, double log, Erlang, exponential, exponential 2, F 
distribution, gamma, geometric, Gumbel max, Gumbel min, hypergeometric, Laplace, logistic, 
lognormal (arithmetic) and lognormal (log), lognormal 3 (arithmetic) and lognormal 3 (log), 
negative binomial, normal, parabolic, Pareto, Pascal, Pearson V, Pearson VI, PERT, Poisson, 
power, power 3, Rayleigh, t and t2, triangular, uniform, Weibull, Weibull 3. 

24. Alternate Parameters––using percentiles as an alternate way of inputting parameters. 
25. Custom Nonparametric Distribution––make your own distributions for running historical 

simulations, and applying the Delphi method.  
26. Distribution Truncation––enabling data boundaries. 
27. Excel Functions––set assumptions and forecasts using functions inside Excel 
28. Multidimensional Simulation––simulation of uncertain input parameters. 
29. Precision Control––determines if the number of simulation trials run is sufficient. 
30. Super Speed Simulation––runs 100,000 trials in a few seconds. 
 

Forecasting Module 
31. ARIMA––autoregressive integrated moving average models ARIMA (P,D,Q). 
32. Auto ARIMA––runs the most common combinations of ARIMA to find the best-fitting model. 
33. Auto Econometrics––runs thousands of model combinations and permutations to obtain the 

best-fitting model for existing data (linear, nonlinear, interacting, lag, leads, rate, difference). 
34. Basic Econometrics––econometric and linear/nonlinear and interacting regression models. 
35. Combinatorial Fuzzy Logic Forecasts––time-series forecast methods 
36. Cubic Spline––nonlinear interpolation and extrapolation. 
37. GARCH––volatility projections using generalized autoregressive conditional heteroskedasticity 

models: GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH, EGARCH-T, GJR-
GARCH, and GJR-TGARCH. 

38. J-Curve––exponential J curves. 
39. Limited Dependent Variables––Logit, Probit, and Tobit. 
40. Markov Chains––two competing elements over time and market share predictions. 
41. Multiple Regression––regular linear and nonlinear regression, with stepwise methodologies 

(forward, backward, correlation, forward-backward). 
42. Neural Network Forecasts––linear, nonlinear logistic, hyperbolic tangent, and cosine 
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43. Nonlinear Extrapolation––nonlinear time-series forecasting. 
44. S Curve––logistic S curves. 
45. Time-Series Analysis––8 time-series decomposition models for predicting levels, trends, and 

seasonalities. 
46. Trendlines––forecasting and fitting using linear, nonlinear polynomial, power, logarithmic, 

exponential, and moving averages with goodness of fit. 
 

Optimization Module 
47. Linear Optimization––multiphasic optimization and general linear optimization. 
48. Nonlinear Optimization––detailed results including Hessian matrices, LaGrange functions, and 

more. 
49. Static Optimization––quick runs for continuous, integers, and binary optimizations. 
50. Dynamic Optimization––simulation with optimization.  
51. Stochastic Optimization––quadratic, tangential, central, forward, and convergence criteria. 
52. Efficient Frontier––combinations of stochastic and dynamic optimizations on multivariate 

efficient frontiers. 
53. Genetic Algorithms––used for a variety of optimization problems. 
54. Multiphasic Optimization––testing for local versus global optimum allowing better control over 

how the optimization is run, and increases the accuracy and dependency of the results. 
55. Percentiles and Conditional Means––additional statistics for stochastic optimization, including 

percentiles as well as conditional means, which are critical in computing conditional value at 
risk measures. 

56. Search Algorithm––simple, fast, and efficient search algorithms for basic single decision 
variable and goal seek applications. 

57. Super Speed Simulation in Dynamic and Stochastic Optimization––runs simulation at super 
speed while integrated with optimization. 

 
Analytical Tools Module 

58. Check Model––tests for the most common mistakes in your model. 
59. Correlation Editor––allows large correlation matrices to be directly entered and edited. 
60. Create Report––automates report generation of assumptions and forecasts in a model. 
61. Create Statistics Report––generates comparative report of all forecast statistics. 
62. Data Diagnostics––runs tests on heteroskedasticity, micronumerosity, outliers, nonlinearity, 

autocorrelation, normality, sphericity, nonstationarity, multicollinearity, and correlations. 
63. Data Extraction and Export––extracts data to Excel or flat text files and Risk Sim files, runs 

statistical reports and forecast result reports. 
64. Data Open and Import––retrieves previous simulation run results. 
65. Deseasonalization and Detrending––deasonalizes and detrends your data. 
66. Distributional Analysis––computes exact PDF, CDF, and ICDF of all 42 distributions and 

generates probability tables. 
67. Distributional Designer––allows you to create custom distributions. 
68. Distributional Fitting (Multiple)–– runs multiple variables simultaneously, accounts for 

correlations and correlation significance. 
69. Distributional Fitting (Single)––Kolmogorov-Smirnov and chi-square tests on continuous 

distributions, complete with reports and distributional assumptions. 
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70. Hypothesis Testing––tests if two forecasts are statistically similar or different. 
71. Nonparametric Bootstrap––simulation of the statistics to obtain the precision and accuracy of 

the results. 
72. Overlay Charts––fully customizable overlay charts of assumptions and forecasts together (CDF, 

PDF, 2D/3D chart types). 
73. Principal Component Analysis––tests the best predictor variables and ways to reduce the data 

array. 
74. Scenario Analysis––hundreds and thousands of static two-dimensional scenarios. 
75. Seasonality Test––tests for various seasonality lags. 
76. Segmentation Clustering––groups data into statistical clusters for segmenting your data. 
77. Sensitivity Analysis––dynamic sensitivity (simultaneous analysis). 
78. Structural Break Test––tests if your time-series data has statistical structural breaks. 
79. Tornado Analysis––static perturbation of sensitivities, spider and tornado analysis, and scenario 

tables. 
 

Statistics and BizStats Module 
80. Percentile Distributional Fitting––using percentiles and optimization to find the best-fitting 

distribution.  
81. Probability Distributions’ Charts and Tables––run 45 probability distributions, their four 

moments, CDF, ICDF, PDF, charts, and overlay multiple distributional charts, and generate 
probability distribution tables.   

82. Statistical Analysis––descriptive statistics, distributional fitting, histograms, charts, nonlinear 
extrapolation, normality test, stochastic parameters estimation, time-series forecasting, trendline 
projections, etc. 

83. ROV BIZSTATS––over 130 business statistics and analytical models:  
 
Absolute Values, ANOVA: Randomized Blocks Multiple Treatments, ANOVA: Single Factor Multiple 
Treatments, ANOVA: Two Way Analysis, ARIMA, Auto ARIMA, Autocorrelation and Partial 
Autocorrelation, Autoeconometrics (Detailed), Autoeconometrics (Quick), Average, Combinatorial 
Fuzzy Logic Forecasting, Control Chart: C, Control Chart: NP, Control Chart: P, Control Chart: R, 
Control Chart: U, Control Chart: X, Control Chart: XMR, Correlation, Correlation (Linear,  Nonlinear), 
Count, Covariance, Cubic Spline, Custom Econometric Model, Data Descriptive Statistics, 
Deseasonalize, Difference, Distributional Fitting, Exponential J Curve, GARCH, Heteroskedasticity, Lag, 
Lead, Limited Dependent Variables (Logit), Limited Dependent Variables (Probit), Limited Dependent 
Variables (Tobit), Linear Interpolation, Linear Regression, LN, Log, Logistic S Curve, Markov Chain, 
Max, Median, Min, Mode, Neural Network, Nonlinear Regression, Nonparametric: Chi-Square Goodness 
of Fit, Nonparametric: Chi-Square Independence, Nonparametric: Chi-Square Population Variance, 
Nonparametric: Friedman’s Test, Nonparametric: Kruskal-Wallis Test, Nonparametric: Lilliefors Test, 
Nonparametric: Runs Test, Nonparametric: Wilcoxon Signed-Rank (One Var), Nonparametric: Wilcoxon 
Signed-Rank (Two Var), Parametric: One Variable (T) Mean, Parametric: One Variable (Z) Mean, 
Parametric: One Variable (Z) Proportion, Parametric: Two Variable (F) Variances, Parametric: Two 
Variable (T) Dependent Means, Parametric: Two Variable (T) Independent Equal Variance, Parametric: 
Two Variable (T) Independent Unequal Variance, Parametric: Two Variable (Z) Independent Means, 
Parametric: Two Variable (Z) Independent Proportions, Power, Principal Component Analysis, Rank 
Ascending, Rank Descending, Relative LN Returns, Relative Returns, Seasonality, Segmentation 
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Clustering, Semi-Standard Deviation (Lower), Semi-Standard Deviation (Upper), Standard 2D Area, 
Standard 2D Bar, Standard 2D Line, Standard 2D Point, Standard 2D Scatter, Standard 3D Area, 
Standard 3D Bar, Standard 3D Line, Standard 3D Point, Standard 3D Scatter, Standard Deviation 
(Population), Standard Deviation (Sample), Stepwise Regression (Backward), Stepwise Regression 
(Correlation), Stepwise Regression (Forward), Stepwise Regression (Forward-Backward), Stochastic 
Processes (Exponential Brownian Motion), Stochastic Processes (Geometric Brownian Motion), 
Stochastic Processes (Jump Diffusion), Stochastic Processes (Mean Reversion with Jump Diffusion), 
Stochastic Processes (Mean Reversion), Structural Break, Sum, Time-Series Analysis (Auto), Time-
Series Analysis (Double Exponential Smoothing), Time-Series Analysis (Double Moving Average), 
Time-Series Analysis (Holt-Winter’s Additive), Time-Series Analysis (Holt-Winter’s Multiplicative), 
Time-Series Analysis (Seasonal Additive), Time-Series Analysis (Seasonal Multiplicative), Time-Series 
Analysis (Single Exponential Smoothing), Time-Series Analysis (Single Moving Average), Trend Line 
(Difference Detrended), Trend Line (Exponential Detrended), Trend Line (Exponential), Trend Line 
(Linear Detrended), Trend Line (Linear), Trend Line (Logarithmic Detrended), Trend Line 
(Logarithmic), Trend Line (Moving Average Detrended), Trend Line (Moving Average), Trend Line 
(Polynomial Detrended), Trend Line (Polynomial), Trend Line (Power Detrended), Trend Line (Power), 
Trend Line (Rate Detrended), Trend Line (Static Mean Detrended), Trend Line (Static Median 
Detrended), Variance (Population), Variance (Sample), Volatility: EGARCH, Volatility: EGARCH-T, 
Volatility: GARCH, Volatility: GARCH-M, Volatility: GJR GARCH, Volatility: GJR TGARCH, 
Volatility: Log Returns Approach, Volatility: TGARCH, Volatility: TGARCH-M, Yield Curve (Bliss), 
and Yield Curve (Nelson-Siegel). 
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2. MONTE CARLO SIMULATION 

Monte Carlo simulation, named for the famous gambling capital of Monaco, is a very potent 
methodology. For the practitioner, simulation opens the door for solving difficult and complex but 
practical problems with great ease. Monte Carlo creates artificial futures by generating thousands and 
even millions of sample paths of outcomes and looks at their prevalent characteristics. For analysts in a 
company, taking graduate-level advanced math courses is just not logical or practical. A brilliant analyst 
would use all available tools at his or her disposal to obtain the same answer the easiest and most practical 
way possible. And in all cases, when modeled correctly, Monte Carlo simulation provides similar answers 
to the more mathematically elegant methods. So, what is Monte Carlo simulation and how does it work? 

What Is Monte Carlo Simulation? 

Monte Carlo simulation in its simplest form is a random number generator that is useful for forecasting, 
estimation, and risk analysis. A simulation calculates numerous scenarios of a model by repeatedly 
picking values from a user-predefined probability distribution for the uncertain variables and using those 
values for the model. As all those scenarios produce associated results in a model, each scenario can have 
a forecast. Forecasts are events (usually with formulas or functions) that you define as important outputs 
of the model. These usually are events such as totals, net profit, or gross expenses.  
 
Simplistically, think of the Monte Carlo simulation approach as repeatedly picking golf balls out of a 
large basket with replacement. The size and shape of the basket depend on the distributional input 
assumption (e.g., a normal distribution with a mean of 100 and a standard deviation of 10, versus a 
uniform distribution or a triangular distribution) where some baskets are deeper or more symmetrical than 
others, allowing certain balls to be pulled out more frequently than others. The number of balls pulled 
repeatedly depends on the number of trials simulated. For a large model with multiple related 
assumptions, imagine a very large basket wherein many smaller baskets reside. Each small basket has its 
own set of golf balls that are bouncing around. Sometimes these small baskets are linked with each other 
(if there is a correlation between the variables) and the golf balls are bouncing in tandem, while other 
times the balls are bouncing independently of one another. The balls that are picked each time from these 
interactions within the model (the large central basket) are tabulated and recorded, providing a forecast 
output result of the simulation.    
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Getting Started with Risk Simulator 

A High-Level Overview of the Software 

The Risk Simulator software has several different applications including Monte Carlo simulation, 
forecasting, optimization, and risk analytics. 
  

 The Simulation Module allows you to run simulations in your existing Excel-based models, 
generate and extract simulation forecasts (distributions of results), perform distributional fitting 
(automatically finding the best-fitting statistical distribution), compute correlations (maintain 
relationships among simulated random variables), identify sensitivities (creating tornado and 
sensitivity charts), test statistical hypotheses (finding statistical differences between pairs of 
forecasts), run bootstrap simulation (testing the robustness of result statistics), and run custom 
and nonparametric simulations (simulations using historical data without specifying any 
distributions or their parameters for forecasting without data or applying expert opinion 
forecasts).  

 The Forecasting Module can be used to generate automatic time-series forecasts (with and 
without seasonality and trend), multivariate regressions (modeling relationships among 
variables), nonlinear extrapolations (curve fitting), stochastic processes (random walks, mean-
reversions, jump-diffusion, and mixed processes), Box-Jenkins ARIMA (econometric forecasts), 
Auto ARIMA, basic econometrics and auto econometrics (modeling relationships and generating 
forecasts), exponential J curves, logistic S curves, GARCH models and their multiple variations 
(modeling and forecasting volatility), maximum likelihood models for limited dependent 
variables (logit, tobit, and probit models), Markov chains, trendlines, spline curves, and others. 

 The Optimization Module is used for optimizing multiple decision variables subject to constraints 
to maximize or minimize an objective, and can be run either as a static optimization, dynamic, 
and stochastic optimization under uncertainty together with Monte Carlo simulation, or as a 
stochastic optimization with super speed simulations. The software can handle linear and 
nonlinear optimizations with binary, integer, and continuous variables, as well as generate 
Markowitz efficient frontiers.    

 The Analytical Tools Module allows you to run segmentation clustering, hypothesis testing, 
statistical tests of raw data, data diagnostics of technical forecasting assumptions (e.g., 
heteroskedasticity, multicollinearity, and the like), sensitivity and scenario analyses, overlay chart 
analysis, spider charts, tornado charts, and many other powerful tools. 

 The Real Options Super Lattice Solver is another standalone software that complements Risk 
Simulator, used for solving simple to complex real options problems.  

 
The following sections walk you through the basics of the Simulation Module in Risk Simulator, while 
future chapters provide more details about the applications of other modules. To follow along, make sure 
you have Risk Simulator installed on your computer to proceed.  
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In fact, it is highly recommended that you first watch the getting started videos on the web 
(www.realoptionsvaluation.com/risksimulator.html) or attempt the step-by-step exercises at the end of 
this chapter before coming back and reviewing the text in this chapter. This approach is recommended 
because the videos will get you started immediately, as will the exercises, whereas the text in this chapter 
focuses more on the theory and detailed explanations of the properties of simulation. 

Running a Monte Carlo Simulation  

Typically, to run a simulation in your existing Excel model, the following steps have to be performed: 
 

1. Start a new simulation profile or open an existing profile. 
2. Define input assumptions in the relevant cells. 
3. Define output forecasts in the relevant cells. 
4. Run simulation. 
5. Interpret the results. 

 
If desired, and for practice, open the example file called Basic Simulation Model and follow along with 
the examples below on creating a simulation. The example file can be found either on the start menu at 
Start | Real Options Valuation | Risk Simulator | Examples or accessed directly through Risk 
Simulator | Example Models. 

1. Starting a New Simulation Profile 

To start a new simulation, you will first need to create a simulation profile. A simulation profile contains 
a complete set of instructions on how you would like to run a simulation, that is, all the assumptions, 
forecasts, run preferences, and so forth. Having profiles facilitates creating multiple scenarios of 
simulations. That is, using the same exact model, several profiles can be created, each with its own 
specific simulation properties and requirements. The same person can create different test scenarios using 
different distributional assumptions and inputs or multiple persons can test their own assumptions and 
inputs on the same model.  
 

 Start Excel and create a new model or open an existing one (you can use the Basic Simulation 
Model example to follow along). 

 Click on Risk Simulator | New Simulation Profile. 
 Specify a title for your simulation as well as all other pertinent information (Figure 2.1). 
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Figure 2.1 – New Simulation Profile 

 
 Title: Specifying a simulation title allows you to create multiple simulation profiles in a single 

Excel model. Thus you can now save different simulation scenario profiles within the same 
model without having to delete existing assumptions and changing them each time a new 
simulation scenario is required. You can always change the profile’s name later (Risk Simulator 
| Edit Profile). 

 Number of trials: This is where the number of simulation trials required is entered. That is, 
running 1,000 trials means that 1,000 different iterations of outcomes based on the input 
assumptions will be generated. You can change this number as desired, but the input has to be 
positive integers. The default number of runs is 1,000 trials. You can use precision and error 
control later in this chapter to automatically help determine how many simulation trials to run 
(see the section on precision and error control for details).  

 Pause simulation on error: If checked, the simulation stops every time an error is encountered in 
the Excel model. That is, if your model encounters a computation error (e.g., some input values 
generated in a simulation trial may yield a divide by zero error in one of your spreadsheet cells), 
the simulation stops. This function is important to help audit your model to make sure there are 
no computational errors in your Excel model. However, if you are sure the model works, then 
there is no need for this preference to be checked.  

 Turn on correlations: If checked, correlations between paired input assumptions will be 
computed. Otherwise, correlations will all be set to zero, and a simulation is run assuming no 
cross-correlations between input assumptions. As an example, applying correlations will yield 
more accurate results if, indeed, correlations exist, and will tend to yield a lower forecast 
confidence if negative correlations exist. After turning on correlations here, you can later set the 
relevant correlation coefficients on each assumption generated (see the section on correlations for 
more details).  

Enter a relevant tile for 
this simulation 

Select if you want 
correlations to be 
considered in the 

simulation (default is 
checked) 

Enter the desired 
number of simulation 
trials (default is 1,000) 
 

Select if you want the 
simulation to stop 
when an error is 

encountered (default is 
unchecked) 

Select and enter a seed 
value if you want the 
simulation to follow a 

specified random number 
sequence (default is 

unchecked) 
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 Specify random number sequence: Simulation by definition will yield slightly different results 
every time a simulation is run. This characteristic is by virtue of the random number generation 
routine in Monte Carlo simulation and is a theoretical fact in all random number generators. 
However, when making presentations, sometimes you may require the same results (especially 
when the report being presented shows one set of results and during a live presentation you would 
like to show the same results being generated, or when you are sharing models with others and 
would like the same results to be obtained every time), so you would then check this preference 
and enter in an initial seed number. The seed number can be any positive integer. Using the same 
initial seed value, the same number of trials, and the same input assumptions, the simulation will 
always yield the same sequence of random numbers, guaranteeing the same final set of results.  

 
Note that once a new simulation profile has been created, you can come back later and modify these 
selections. To do so, make sure that the current active profile is the profile you wish to modify, otherwise, 
click on Risk Simulator | Change Simulation Profile, select the profile you wish to change and click 
OK (Figure 2.2 shows an example where there are multiple profiles and how to activate a selected 
profile). Then, click on Risk Simulator | Edit Simulation Profile and make the required changes. You 
can also duplicate or rename an existing profile. When creating multiple profiles in the same Excel model, 
make sure to provide each profile a unique name so you can tell them apart later on. Also, these profiles 
are stored inside hidden sectors of the Excel *.xls file and you do not have to save any additional files. 
The profiles and their contents (assumptions, forecasts, etc.) are automatically saved when you save the 
Excel file. Finally, the last profile that is active when you exit and save the Excel file will be the one that 
is opened the next time the Excel file is accessed. 
 

 
Figure 2.2 – Change Active Simulation 
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2. Defining Input Assumptions 

The next step is to set input assumptions in your model. Note that assumptions can only be assigned to 
cells without any equations or functions—typed-in numerical values that are inputs in a model—whereas 
output forecasts can only be assigned to cells with equations and functions—outputs of a model. Recall 
that assumptions and forecasts cannot be set unless a simulation profile already exists. Do the following 
to set new input assumptions in your model: 
 

 Make sure a Simulation Profile exists; open an existing profile or start a new profile (Risk 
Simulator | New Simulation Profile). 

 Select the cell you wish to set an assumption on (e.g., cell G8 in the Basic Simulation Model 
example). 

 Click on Risk Simulator | Set Input Assumption or click on the set input assumption icon in the 
Risk Simulator icon toolbar. 

 Select the relevant distribution you want, enter the relevant distribution parameters (e.g., 
Triangular distribution with 1, 2, 2.5 as the minimum, most likely, and maximum values), and hit 
OK to insert the input assumption into your model (Figure 2.3). 

 

 
Figure 2.3 – Setting an Input Assumption 

 
Note that you can also set assumptions by selecting the cell you wish to set the assumption on and using 
the mouse right-click, access the shortcut Risk Simulator menu to set an input assumption. In addition, 
for expert users, you can set input assumptions using the Risk Simulator RS Functions: select the cell of 
choice, click on Excel’s Insert, Function, select the All Category, and scroll down to the RS functions list 
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(we do not recommend using RS functions unless you are an expert user). For the examples going 
forward, we suggest following the basic instructions in accessing menus and icons. 
 
As shown in Figure 2.4, there are several key areas in the Assumption Properties worthy of mention.  
 

 Assumption Name: This is an optional area to allow you to enter in unique names for the 
assumptions to help track what each of the assumptions represents. Good modeling practice is to 
use short but precise assumption names.  

 Distribution Gallery: This area to the left shows all of the different distributions available in the 
software. To change the views, right-click anywhere in the gallery and select large icons, small 
icons, or list. There are over two dozen distributions available.  

 Input Parameters: Depending on the distribution selected, the required relevant parameters are 
shown. You may either enter the parameters directly or link them to specific cells in your 
worksheet. Hard coding or typing the parameters is useful when the assumption parameters are 
assumed not to change. Linking to worksheet cells is useful when the input parameters need to be 

visible or are allowed to be changed (click on the link icon  to link an input parameter to a 
worksheet cell).  

 Enable Data Boundary: These are typically not used by the average analyst but exist for 
truncating the distributional assumptions. For instance, if a normal distribution is selected, the 
theoretical boundaries are between negative infinity and positive infinity. However, in practice, 
the simulated variable exists only within some smaller range, and this range can then be entered 
to truncate the distribution appropriately.  

 Correlations: Pairwise correlations can be assigned to input assumptions here. If correlations are 
required, remember to check the Turn on Correlations preference by clicking on Risk Simulator 
│Edit Simulation Profile. See the discussion on correlations later in this chapter for more details 
about assigning correlations and the effects correlations will have on a model. Notice that you can 
either truncate a distribution or correlate it to another assumption, but not both. 

 Short Descriptions: These exist for each of the distributions in the gallery. The short 
descriptions explain when a certain distribution is used as well as the input parameter 
requirements. See the section in Understanding Probability Distributions for Monte Carlo 
Simulation for details on each distribution type available in the software. 

 Regular Input and Percentile Input: This option allows the user to perform a quick due 
diligence test of the input assumption. For instance, if setting a normal distribution with some 
mean and standard deviation inputs, you can click on the percentile input to see what the 
corresponding 10th and 90th percentiles are.  

 Enable Dynamic Simulation: This option is unchecked by default, but if you wish to run a 
multidimensional simulation (i.e., if you link the input parameters of the assumption to another 
cell that is itself an assumption, you are simulating the inputs, or simulating the simulation), then 
remember to check this option. Dynamic simulation will not work unless the inputs are linked to 
other changing input assumptions.  
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Figure 2.4 – Assumption Properties 

 
Note: If you are following along with the example, continue by setting another assumption on cell G9. 
This time use the Uniform distribution with a minimum value of 0.9 and a maximum value of 1.1. Then, 
proceed to defining the output forecasts in the next step.  

3. Defining Output Forecasts 

The next step is to define output forecasts in the model. Forecasts can only be defined on output cells with 
equations or functions. The following describes the set forecast process: 
 

 Select the cell you wish to set a forecast (e.g., cell G10 in the Basic Simulation Model example). 
 Click on Risk Simulator and select Set Output Forecast or click on the set output forecast icon on 

the Risk Simulator icon toolbar (Figure 1.3). 
 Enter the relevant information and click OK.  

 
Note that you can also set output forecasts by selecting the cell you wish to set the forecast on and using 
the mouse right-click, access the shortcut Risk Simulator menu to set an output forecast. 
 
Figure 2.5 illustrates the set forecast properties. 
  

 Forecast Name: Specify the name of the forecast cell. This is important because when you have 
a large model with multiple forecast cells, naming the forecast cells individually allows you to 
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access the right results quickly. Do not underestimate the importance of this simple step. Good 
modeling practice is to use short but precise forecast names.  

 Forecast Precision: Instead of relying on a guesstimate of how many trials to run in your 
simulation, you can set up precision and error controls. When an error-precision combination has 
been achieved in the simulation, the simulation will pause and inform you of the precision 
achieved, making the required number of simulation trials an automated process rather than a 
guessing game. Review the section on error and precision control later in this chapter for more 
specific details.  

 Show Forecast Window: Allows the user to show or not show a particular forecast window. The 
default is to always show a forecast chart.  

 

 
Figure 2.5 – Set Output Forecast 

4. Running the Simulation 

If everything looks right, simply click on Risk Simulator | Run Simulation or click on the Run icon on 
the Risk Simulator toolbar and the simulation will proceed. You may also reset a simulation after it has 
run to rerun it (Risk Simulator | Reset Simulation or the reset simulation icon on the toolbar) or to pause 
it during a run. Also, the step function (Risk Simulator | Step Simulation or the step simulation icon on 
the toolbar) allows you to simulate a single trial, one at a time, useful for educating others on simulation 
(i.e., you can show that at each trial, all the values in the assumption cells are being replaced and the 
entire model is recalculated each time). You can also access the run simulation menu by right-clicking 
anywhere in the model and selecting Run Simulation. 
 
Risk Simulator also allows you to run the simulation at extremely fast speed, called Super Speed. To do 
this, click on Risk Simulator │ Run Super Speed Simulation or use the run super speed icon. Notice 
how much faster the super speed simulation runs. In fact, for practice, Reset Simulation and then Edit 
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Simulation Profile and change the Number of Trials to 100,000, and Run Super Speed. It should only take 
a few seconds to run. However, please be aware that super speed simulation will not run if the model has 
errors, VBA (visual basic for applications), or links to external data sources or applications. In such 
situations, you will be notified and the regular speed simulation will be run instead. Regular speed 
simulations are always able to run even with errors, VBA, or external links. 

5. Interpreting the Forecast Results 

The final step in Monte Carlo simulation is to interpret the resulting forecast charts. Figures 2.6 through 
2.13 show the forecast chart and the corresponding statistics generated after running the simulation. 
Typically, the following elements are important in interpreting the results of a simulation: 
 

 Forecast Chart: The forecast chart shown in Figure 2.6 is a probability histogram that shows the 
frequency counts of values occurring in the total number of trials simulated. The vertical bars 
show the frequency of a particular x value occurring out of the total number of trials, while the 
cumulative frequency (smooth line) shows the total probabilities of all values at and below x 
occurring in the forecast. 

 Forecast Statistics: The forecast statistics shown in Figure 2.7 summarize the distribution of the 
forecast values in terms of the four moments of a distribution. See the Understanding the 
Forecast Statistics section later in this chapter for more details on what some of these statistics 
mean. You can rotate between the histogram and statistics tabs by depressing the space bar. 

 

  
Figure 2.6 – Forecast Chart 
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Figure 2.7 – Forecast Statistics 

 
Forecast Chart Tabs 
 

 Preferences: The preferences tab in the forecast chart (Figure 2.8A) allows you to change the 
look and feel of the charts. For instance, if Always On Top is selected, the forecast charts will 
always be visible regardless of what other software are running on your computer. Histogram 
Resolution allows you to change the number of bins of the histogram, anywhere from 5 bins to 
100 bins. Also, the Data Update feature allows you to control how fast the simulation runs versus 
how often the forecast chart is updated. For example, viewing the forecast chart updated at almost 
every trial will slow down the simulation as more memory is being allocated to updating the chart 
versus running the simulation. This is merely a user preference and in no way changes the results 
of the simulation, just the speed of completing the simulation. To further increase the speed of the 
simulation, you can minimize Excel while the simulation is running, thereby reducing the 
memory required to visibly update the Excel spreadsheet and freeing up the memory to run the 
simulation. The Clear All and Minimize All controls all the open forecast charts.  

 Options: As shown in Figure 2.8B, this forecast chart feature allows you to show all the forecast 
data or to filter in/out values that fall within either some specified interval or some standard 
deviation you choose. Also, the precision level can be set here for this specific forecast to show 
the error levels in the statistics view. See the section on error and precision control later in this 
chapter for more details. Show the following statistic on histogram is a user preference for 
whether the mean, median, first quartile, and fourth quartile lines (25th and 75th percentiles) 
should be displayed on the forecast chart. 

 Controls: As shown in Figure 2.8C, this tab has all the functionalities in allowing you to change 
the type, color, size, zoom, tilt, 3D, and other things in the forecast chart, as well as to generate 
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overlay charts (PDF, CDF) and run distributional fitting on your forecast data (see the Data 
Fitting sections for more details on this methodology).  

 Global View versus Normal View: Figures 2.8A to 2.8C show the forecast chart’s Normal View 
where the forecast chart user interface is divided into tabs, making it small and compact. In 
contrast, Figure 2.9 shows the Global View where all elements are located in a single interface. 
The results are identical in both views and selecting which view is a matter of personal 
preference. You can switch between these two views by clicking on the link, located at the top 
right corner, called “Global View” and “Local View.”  

 
Figure 2.8A – Forecast Chart Preferences 

 
Figure 2.8B – Forecast Chart Options  
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Figure 2.8C – Forecast Chart Controls  

 

 
Figure 2.9 – Forecast Chart Global View 
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Using Forecast Charts and Confidence Intervals  
 
In forecast charts, you can determine the probability of occurrence called confidence intervals. That is, 
given two values, what are the chances that the outcome will fall between these two values? Figure 2.10 
illustrates that there is a 90% probability that the final outcome (in this case, the level of income) will be 
between $0.2653 and $1.3230. The two-tailed confidence interval can be obtained by first selecting Two-
Tail as the type, entering the desired certainty value (e.g., 90) and hitting TAB on the keyboard. The two 
computed values corresponding to the certainty value will then be displayed. In this example, there is a 
5% probability that income will be below $0.2653 and another 5% probability that income will be above 
$1.3230. That is, the two-tailed confidence interval is a symmetrical interval centered on the median, or 
50th percentile, value. Thus, both tails will have the same probability.  
 

 
Figure 2.10 – Forecast Chart Two-Tail Confidence Interval 

 
Alternatively, a one-tail probability can be computed. Figure 2.11 shows a left-tail selection at 95% 
confidence (i.e., choose Left-Tail ≤ as the type, enter 95 as the certainty level, and hit TAB on the 
keyboard). This means that there is a 95% probability that the income will be below $1.3230 or a 5% 
probability that income will be above $1.3230, corresponding perfectly with the results seen in Figure 
2.10.  
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Figure 2.11 – Forecast Chart One-Tail Confidence Interval 

 
In addition to evaluating what the confidence interval is (i.e., given a probability level and finding the 
relevant income values), you can determine the probability of a given income value. For instance, what is 
the probability that income will be less than or equal to $1? To obtain the answer, select the Left-Tail ≤ 
probability type, enter 1 into the value input box, and hit TAB. The corresponding certainty will then be 
computed (in this case, as shown in Figure 2.12, there is a 67.70% probability income will be at or below 
$1).  

 
Figure 2.12 – Forecast Chart Probability Evaluation 
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For the sake of completeness, you can select the Right-Tail > probability type, enter the value 1 in the 
value input box, and hit TAB. The resulting probability indicates the right-tail probability past the value 1, 
that is, the probability of income exceeding $1 (in this case, as shown in Figure 2.13, we see that there is a 
32.30% probability of income exceeding $1). The sum of 67.70% and 32.30% is, of course, 100%, the 
total probability under the curve.   

 
Figure 2.13 – Forecast Chart Probability Evaluation 

 
TIPS  

 The forecast window is resizable by clicking on and dragging the bottom right corner of the 
forecast window.  

 It is also advisable that the current simulation be reset (Risk Simulator | Reset Simulation) 
before rerunning a simulation.  

 Remember that you will need to hit TAB on the keyboard to update the chart and results when you 
type in the certainty values or right- and left-tail values.  

 You can also hit the spacebar on the keyboard repeatedly to cycle among the histogram to 
statistics, preferences, options, and control tabs.  

 In addition, if you click on Risk Simulator | Options you can access several different options for 
Risk Simulator, including allowing Risk Simulator to start each time Excel starts or to only start 
when you want it to (by going to Start | Programs | Real Options Valuation | Risk Simulator | 
Risk Simulator), changing the cell colors of assumptions and forecasts, and turning cell 
comments on and off (cell comments will allow you to see which cells are input assumptions and 
which are output forecasts as well as their respective input parameters and names). Do spend 
some time playing around with the forecast chart outputs and various bells and whistles, 
especially the Controls tab. 
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Correlations and Precision Control 

The Basics of Correlations 

The correlation coefficient is a measure of the strength and direction of the relationship between two 
variables, and it can take on any value between –1.0 and +1.0. That is, the correlation coefficient can be 
decomposed into its sign (positive or negative relationship between two variables) and the magnitude or 
strength of the relationship (the higher the absolute value of the correlation coefficient, the stronger the 
relationship).  
 
The correlation coefficient can be computed in several ways. The first approach is to manually compute 
the correlation, r, of two variables, x and y, using: 
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The second approach is to use Excel’s CORREL function. For instance, if the 10 data points for x and y 
are listed in cells A1:B10, then the Excel function to use is CORREL (A1:A10, B1:B10).  
 
The third approach is to run Risk Simulator’s Multi-Fit Tool, and the resulting correlation matrix will be 
computed and displayed.  
 
It is important to note that correlation does not imply causation. Two completely unrelated random 
variables might display some correlation but this does not imply any causation between the two (e.g., 
sunspot activity and events in the stock market are correlated but there is no causation between the two).  
 
There are two general types of correlations: parametric and nonparametric correlations. Pearson’s 
correlation coefficient is the most common correlation measure and is usually referred to simply as the 
correlation coefficient. However, Pearson’s correlation is a parametric measure, which means that it 
requires both correlated variables to have an underlying normal distribution and that the relationship 
between the variables is linear. When these conditions are violated, which is often the case in Monte 
Carlo simulation, the nonparametric counterparts become more important. Spearman’s rank correlation 
and Kendall’s tau are the two alternatives. The Spearman correlation is most commonly used and is most 
appropriate when applied in the context of Monte Carlo simulation––there is no dependence on normal 
distributions or linearity, meaning that correlations between different variables with different distribution 
can be applied. To compute the Spearman correlation, first rank all the x and y variable values and then 
apply the Pearson’s correlation computation.  
 
In the case of Risk Simulator, the correlation used is the more robust nonparametric Spearman’s rank 
correlation. However, to simplify the simulation process, and to be consistent with Excel’s correlation 
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function, the correlation inputs required are the Pearson’s correlation coefficient. Risk Simulator will 
then apply its own algorithms to convert them into Spearman’s rank correlation, thereby simplifying the 
process. However, to simplify the user interface, we allow users to enter the more common Pearson’s 
product-moment correlation (e.g., computed using Excel’s CORREL function), while in the mathematical 
codes, we convert these simple correlations into Spearman’s rank-based correlations for distributional 
simulations.  

Applying Correlations in Risk Simulator 

Correlations can be applied in Risk Simulator in several ways: 
 

 When defining assumptions (Risk Simulator │Set Input Assumption), simply enter the 
correlations into the correlation matrix grid in the Distribution Gallery.  

 With existing data, run the Multi-Fit tool (Risk Simulator │Tools│Distributional 
Fitting│Multiple Variables) to perform distributional fitting and to obtain the correlation matrix 
between pairwise variables. If a simulation profile exists, the assumptions fitted will 
automatically contain the relevant correlation values.  

 With existing assumptions, you can click on Risk Simulator │Tools │Edit Correlations to 
enter the pairwise correlations of all the assumptions directly in one user interface. 

 
Note that the correlation matrix must be positive definite. That is, the correlation must be mathematically 
valid. For instance, suppose you are trying to correlate three variables: grades of graduate students in a 
particular year, the number of beers they consume a week, and the number of hours they study a week. 
One would assume that the following correlation relationships exist: 
 
Grades and Beer: – The more they drink, the lower the grades (no-show on exams) 
Grades and Study: + The more they study, the higher the grades 
Beer and Study: – The more they drink, the less they study (drunk and partying all the time) 
 
However, if you input a negative correlation between Grades and Study, and assuming that the correlation 
coefficients have high magnitudes, the correlation matrix will be nonpositive definite. It would defy logic, 
correlation requirements, and matrix mathematics. However, smaller coefficients can sometimes still 
work even with the bad logic. When a nonpositive or bad correlation matrix is entered, Risk Simulator 
will automatically inform you, and offers to adjust these correlations to something that is semipositive 
definite while still maintaining the overall structure of the correlation relationship (the same signs as well 
as the same relative strengths).  

The Effects of Correlations in Monte Carlo Simulation  

Although the computations required to correlate variables in a simulation are complex, the resulting 
effects are fairly clear. Figure 2.14 shows a simple correlation model (Correlation Effects Model in the 
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example folder). The calculation for revenue is simply price multiplied by quantity. The same model is 
replicated for no correlations, positive correlation (+0.8), and negative correlation (–0.8) between price 
and quantity.  
 

 
Figure 2.14 – Simple Correlation Model 

 
The resulting statistics are shown in Figure 2.15. Notice that the standard deviation of the model without 
correlations is 0.1450, compared to 0.1886 for the positive correlation and 0.0717 for the negative 
correlation. That is, for simple models, negative correlations tend to reduce the average spread of the 
distribution and create a tight and more concentrated forecast distribution as compared to positive 
correlations with larger average spreads. However, the mean remains relatively stable. This implies that 
correlations do little to change the expected value of projects but can reduce or increase a project’s risk.  

 
Figure 2.15 – Correlation Results 

 
Figure 2.16 illustrates the results after running a simulation, extracting the raw data of the assumptions 
and computing the correlations between the variables. The figure shows that the input assumptions are 
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recovered in the simulation. That is, you enter +0.8 and –0.8 correlations and the resulting simulated 
values have the same correlations.  
 

 
Figure 2.16 – Correlations Recovered 

Precision and Error Control   

One very powerful tool in Monte Carlo simulation is that of precision control. For instance, how many 
trials are considered sufficient to run in a complex model? Precision control takes the guesswork out of 
estimating the relevant number of trials by allowing the simulation to stop if the level of prespecified 
precision is reached.  
 
The precision control functionality lets you set how precise you want your forecast to be. Generally 
speaking, as more trials are calculated, the confidence interval narrows and the statistics become more 
accurate. The precision control feature in Risk Simulator uses the characteristic of confidence intervals to 
determine when a specified accuracy of a statistic has been reached. For each forecast, you can set the 
specific confidence interval for the precision level.   
 
Make sure that you do not confuse three very different terms: error, precision, and confidence. Although 
they sound similar, the concepts are significantly different from one another. A simple illustration is in 
order. Suppose you are a taco shell manufacturer and are interested in finding out how many broken taco 
shells there are on average in a box of 100 shells. One way to do this is to collect a sample of prepackaged 
boxes of 100 taco shells, open them, and count how many of them are actually broken. You manufacture 
1 million boxes a day (this is your population) but you randomly open only 10 boxes (this is your sample 
size, also known as your number of trials in a simulation). The number of broken shells in each box is as 
follows: 24, 22, 4, 15, 33, 32, 4, 1, 45, and 2. The calculated average number of broken shells is 18.2. 
Based on these 10 samples or trials, the average is 18.2 units, while based on the sample, the 80% 
confidence interval is between 2 and 33 units (that is, 80% of the time, the number of broken shells is 
between 2 and 33 based on this sample size or number of trials run). However, how sure are you that 18.2 
is the correct average? Are 10 trials sufficient to establish this? The confidence interval between 2 and 33 
is too wide and too variable. Suppose you require a more accurate average value where the error is ±2 
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taco shells 90% of the time––this means that if you open all 1 million boxes manufactured in a day, 
900,000 of these boxes will have broken taco shells on average at some mean unit ±2 taco shells. How 
many more taco shell boxes would you then need to sample (or trials run) to obtain this level of 
precision? Here, the 2 taco shells is the error level while the 90% is the level of precision. If sufficient 
numbers of trials are run, then the 90% confidence interval will be identical to the 90% precision level, 
where a more precise measure of the average is obtained such that 90% of the time, the error and, hence, 
the confidence will be ±2 taco shells. As an example, say the average is 20 units, then the 90% confidence 
interval will be between 18 and 22 units with this interval being precise 90% of the time, where in 
opening all 1 million boxes, 900,000 of them will have between 18 and 22 broken taco shells. The 

number of trials required to hit this precision is based on the sampling error equation of 
n
sZx  , 

where 
n
sZ  is the error of 2 taco shells, x  is the sample average, Z is the standard-normal Z-score 

obtained from the 90% precision level, s is the sample standard deviation, and n is the number of trials 
required to hit this level of error with the specified precision. Figures 2.17 and 2.18 illustrate how 
precision control can be performed on multiple simulated forecasts in Risk Simulator. This feature 
prevents the user from having to decide how many trials to run in a simulation and eliminates all 
possibilities of guesswork. Figure 2.17 illustrates the forecast chart with a 95% precision level set. This 
value can be changed and will be reflected in the Statistics tab as shown in Figure 2.18.   

 
Figure 2.17 – Setting the Forecast’s Precision Level 
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Figure 2.18 – Computing the Error  
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Understanding the Forecast Statistics 

Most distributions can be defined up to four moments. The first moment describes a distribution’s 
location or central tendency (expected returns); the second moment describes its width or spread (risks); 
the third moment, its directional skew (most probable events); and the fourth moment, its peakedness or 
thickness in the tails (catastrophic losses or gains). All four moments should be calculated in practice and 
interpreted to provide a more comprehensive view of the project under analysis. Risk Simulator provides 
the results of all four moments in its Statistics view in the forecast charts. 

Measuring the Center of the Distribution––the First Moment 

The first moment of a distribution measures the expected rate of return on a particular project. It measures 
the location of the project’s scenarios and possible outcomes on average. The common statistics for the 
first moment include the mean (average), median (center of a distribution), and mode (most commonly 
occurring value). Figure 2.19 illustrates the first moment––where, in this case, the first moment of this 
distribution is measured by the mean ( or average, value.  

 

 
Figure 2.19 – First Moment 

 

Measuring the Spread of the Distribution––the Second Moment 

The second moment measures the spread of a distribution, which is a measure of risk. The spread, or 
width, of a distribution measures the variability of a variable, that is, the potential that the variable can fall 
into different regions of the distribution––in other words, the potential scenarios of outcomes. Figure 2.20 
illustrates two distributions with identical first moments (identical means) but very different second 
moments or risks. The visualization becomes clearer in Figure 2.21. As an example, suppose there are two 
stocks and the first stock’s movements (illustrated by the darker line) with the smaller fluctuation is 
compared against the second stock’s movements (illustrated by the dotted line) with a much higher price 
fluctuation. Clearly an investor would view the stock with the wilder fluctuation as riskier because the 
outcomes of the more risky stock are relatively more unknown than the less risky stock. The vertical axis 
in Figure 2.21 measures the stock prices, thus, the more risky stock has a wider range of potential 
outcomes. This range is translated into a distribution’s width (the horizontal axis) in Figure 2.20, where 

Skew = 0 
KurtosisXS = 0 

1=2 1 2 

1 2 1 ≠ 2 
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the wider distribution represents the riskier asset. Hence, width, or spread, of a distribution measures a 
variable’s risks.  
 
Notice that in Figure 2.20, both distributions have identical first moments, or central tendencies, but the 
distributions are clearly very different. This difference in the distributional width is measurable. 
Mathematically and statistically, the width, or risk, of a variable can be measured through several 
different statistics, including the range, standard deviation (), variance, coefficient of variation, and 
percentiles.  

 

 
Figure 2.20 – Second Moment 

 

 
Figure 2.21 – Stock Price Fluctuations 

 

Skew = 0 
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Measuring the Skew of the Distribution––the Third Moment 

The third moment measures a distribution’s skewness, that is, how the distribution is pulled to one side or 
the other. Figure 2.22 illustrates a negative, or left, skew (the tail of the distribution points to the left) and 
Figure 2.23 illustrates a positive, or right, skew (the tail of the distribution points to the right). The mean 
is always skewed toward the tail of the distribution, while the median remains constant. Another way of 
seeing this relationship is that the mean moves but the standard deviation, variance, or width may still 
remain constant. If the third moment is not considered, then looking only at the expected returns (e.g., 
median or mean) and risk (standard deviation), a positively skewed project might be incorrectly chosen! 
For example, if the horizontal axis represents the net revenues of a project, then clearly a left, or 
negatively, skewed distribution might be preferred because there is a higher probability of greater returns 
(Figure 2.22) as compared to a higher probability for lower level returns (Figure 2.23). Thus, in a skewed 
distribution, the median is a better measure of returns, as the medians for both Figures 2.22 and 2.23 are 
identical, risks are identical, and, hence, a project with a negatively skewed distribution of net profits is a 
better choice. Failure to account for a project’s distributional skewness may mean that the incorrect 
project could be chosen (e.g., two projects may have identical first and second moments, that is, they both 
have identical returns and risk profiles, but their distributional skews may be very different). 

 
 

 
Figure 2.22 – Third Moment (Left Skew) 

 

 
Figure 2.23 – Third Moment (Right Skew) 
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Measuring the Catastrophic Tail Events in a Distribution––the Fourth Moment 

The fourth moment, or kurtosis, measures the peakedness of a distribution. Figure 2.24 illustrates this 
effect. The background (denoted by the dotted line) is a normal distribution with a kurtosis of 3.0, or an 
excess kurtosis (KurtosisXS) of 0.0. Risk Simulator’s results show the KurtosisXS value, using 0 as the 
normal level of kurtosis, which means that a negative KurtosisXS indicates flatter tails (platykurtic 
distributions like the uniform distribution), while positive values indicate fatter tails (leptokurtic 
distributions like the student’s t or lognormal distributions). The distribution depicted by the bold line has 
a higher excess kurtosis, thus the area under the curve is thicker at the tails with less area in the central 
body. This condition has major impacts on risk analysis. As shown for the two distributions in Figure 
2.24, the first three moments (mean, standard deviation, and skewness) can be identical, but the fourth 
moment (kurtosis) is different. This condition means that, although the returns and risks are identical, the 
probabilities of extreme and catastrophic events (potential large losses or large gains) occurring are higher 
for a high kurtosis distribution (e.g., stock market returns are leptokurtic, or have high kurtosis). Ignoring 
a project’s kurtosis may be detrimental. Typically, a higher excess kurtosis value indicates that the 
downside risks are higher (e.g., the Value at Risk of a project might be significant).  
 

 
Figure 2.24 – Fourth Moment 
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The Functions of Moments  

Ever wonder why these risk statistics are called “moments”? In mathematical vernacular, moment means 
raised to the power of some value. In other words, the third moment implies that in an equation, three is 
most probably the highest power. In fact, the equations below illustrate the mathematical functions and 
applications of some moments for a sample statistic. For example, notice that the highest power for the 
first moment average is one, the second moment standard deviation is two, the third moment skew is 
three, and the highest power for the fourth moment is four.   
 
First Moment: Arithmetic Average or Simple Mean (Sample) 

n

x
x

n
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      The Excel equivalent function is AVERAGE. 

 
Second Moment: Standard Deviation (Sample) 
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   The Excel equivalent function is STDEV for a sample standard deviation. 

The Excel equivalent function is STDEVP for a population standard deviation. 
 
Third Moment: Skew (Sample) 
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Fourth Moment: Kurtosis (Sample) 
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The Excel equivalent function is KURT. 
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Understanding Probability Distributions for Monte Carlo Simulation 

This section demonstrates the power of Monte Carlo simulation, but to get started with simulation, one 
first needs to understand the concept of probability distributions. To begin to understand probability, 
consider this example: You want to look at the distribution of nonexempt wages within one department of 
a large company. First, you gather raw data––in this case, the wages of each nonexempt employee in the 
department. Second, you organize the data into a meaningful format and plot the data as a frequency 
distribution on a chart. To create a frequency distribution, you divide the wages into group intervals and 
list these intervals on the chart’s horizontal axis. Then you list the number or frequency of employees in 
each interval on the chart’s vertical axis. Now you can easily see the distribution of nonexempt wages 
within the department. 
 
A glance at the chart illustrated in Figure 2.25 reveals that most of the employees (approximately 60 out 
of a total of 180) earn from $7.00 to $9.00 per hour.   

                                    Figure 2.25 – Frequency Histogram I 
 
You can chart this data as a probability distribution. A probability distribution shows the number of 
employees in each interval as a fraction of the total number of employees. To create a probability 
distribution, you divide the number of employees in each interval by the total number of employees and 
list the results on the chart’s vertical axis. 
 
The chart in Figure 2.26 shows you the number of employees in each wage group as a fraction of all 
employees; you can estimate the likelihood or probability that an employee drawn at random from the 
whole group earns a wage within a given interval. For example, assuming the same conditions exist at the 
time the sample was taken, the probability is 0.33 (a one in three chance) that an employee drawn at 
random from the whole group earns between $8.00 and $8.50 an hour.   
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Probability

0.33

Hourly Wage Ranges in Dollars

   7.00  7.50  8.00  8.50  9.00

                                                                                                                           
                                                      Figure 2.26 – Frequency Histogram II 
 
Probability distributions are either discrete or continuous. Discrete probability distributions describe 
distinct values, usually integers, with no intermediate values and are shown as a series of vertical bars. A 
discrete distribution, for example, might describe the number of heads in four flips of a coin as 0, 1, 2, 3, 
or 4. Continuous distributions are actually mathematical abstractions because they assume the existence 
of every possible intermediate value between two numbers. That is, a continuous distribution assumes 
there is an infinite number of values between any two points in the distribution. However, in many 
situations, you can effectively use a continuous distribution to approximate a discrete distribution even 
though the continuous model does not necessarily describe the situation exactly. 
 
Selecting the Right Probability Distribution 
Plotting data is one guide to selecting a probability distribution. The following steps provide another 
process for selecting probability distributions that best describe the uncertain variables in your 
spreadsheets: 
  

•  Look at the variable in question. List everything you know about the conditions surrounding this 
variable. You might be able to gather valuable information about the uncertain variable from 
historical data. If historical data are not available, use your own judgment, based on experience, 
listing everything you know about the uncertain variable. 

•  Review the descriptions of the probability distributions. 
•  Select the distribution that characterizes this variable. A distribution characterizes a variable when the 

conditions of the distribution match those of the variable. 
 
Monte Carlo Simulation  
Monte Carlo simulation in its simplest form is a random number generator that is useful for forecasting, 
estimation, and risk analysis. A simulation calculates numerous scenarios of a model by repeatedly 
picking values from a user-predefined probability distribution for the uncertain variables and using those 
values for the model. As all those scenarios produce associated results in a model, each scenario can have 
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a forecast. Forecasts are events (usually with formulas or functions) that you define as important outputs 
of the model. These usually are events such as totals, net profit, or gross expenses.  
 
Simplistically, think of the Monte Carlo simulation approach as repeatedly picking golf balls out of a 
large basket with replacement. The size and shape of the basket depend on the distributional input 
assumption (e.g., a normal distribution with a mean of 100 and a standard deviation of 10, versus a 
uniform distribution or a triangular distribution) where some baskets are deeper or more symmetrical than 
others, allowing certain balls to be pulled out more frequently than others. The number of balls pulled 
repeatedly depends on the number of trials simulated. For a large model with multiple related 
assumptions, imagine a very large basket wherein many smaller baskets reside. Each small basket has its 
own set of golf balls that are bouncing around. Sometimes these small baskets are linked with each other 
(if there is a correlation between the variables) and the golf balls are bouncing in tandem, while other 
times the balls are bouncing independent of one another. The balls that are picked each time from these 
interactions within the model (the large central basket) are tabulated and recorded, providing a forecast 
output result of the simulation.       
 
With Monte Carlo simulation, Risk Simulator generates random values for each assumption’s probability 
distribution that are totally independent. In other words, the random value selected for one trial has no 
effect on the next random value generated. Use Monte Carlo sampling when you want to simulate real-
world what-if scenarios for your spreadsheet model. 
 
The two following sections provide a detailed listing of the different types of discrete and continuous 
probability distributions that can be used in Monte Carlo simulation.  
 

Discrete Distributions 

Bernoulli or Yes/No Distribution  

The Bernoulli distribution is a discrete distribution with two outcomes (e.g., head or tails, success or 
failure, 0 or 1). It is the binomial distribution with one trial and can be used to simulate Yes/No or 
Success/Failure conditions. This distribution is the fundamental building block of other more complex 
distributions. For instance: 

 
 Binomial distribution: a Bernoulli distribution with higher number of n total trials that 

computes the probability of x successes within this total number of trials. 
 Geometric distribution: a Bernoulli distribution with higher number of trials that computes 

the number of failures required before the first success occurs. 
 Negative binomial distribution: a Bernoulli distribution with higher number of trials that 

computes the number of failures before the Xth success occurs. 
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The mathematical constructs for the Bernoulli distribution are as follows: 
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Probability of success (p) is the only distributional parameter. Also, it is important to note that there is 
only one trial in the Bernoulli distribution, and the resulting simulated value is either 0 or 1.  
 
Input requirements:  
Probability of success > 0 and < 1 (i.e., 0.0001 ≤ p ≤ 0.9999). 

Binomial Distribution  

The binomial distribution describes the number of times a particular event occurs in a fixed number of 
trials, such as the number of heads in 10 flips of a coin or the number of defective items out of 50 items 
chosen. 
 
Conditions  
The three conditions underlying the binomial distribution are:  
 

•  For each trial, only two outcomes are possible that are mutually exclusive. 
•  The trials are independent––what happens in the first trial does not affect the next trial. 
•  The probability of an event occurring remains the same from trial to trial. 

 
The mathematical constructs for the binomial distribution are as follows: 
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Probability of success (p) and the integer number of total trials (n) are the distributional parameters. The 
number of successful trials is denoted x. It is important to note that probability of success (p) of 0 or 1 are 
trivial conditions that do not require any simulations and, hence, are not allowed in the software.  
 
Input requirements:  
Probability of success > 0 and < 1 (i.e., 0.0001 ≤ p ≤ 0.9999).  
Number of trials ≥ 1 or positive integers and ≤ 1000 (for larger trials, use the normal distribution with the 
relevant computed binomial mean and standard deviation as the normal distribution’s parameters).   

Discrete Uniform  

The discrete uniform distribution is also known as the equally likely outcomes distribution, where the 
distribution has a set of N elements and each element has the same probability. This distribution is related 
to the uniform distribution but its elements are discrete and not continuous.  
The mathematical constructs for the discrete uniform distribution are as follows: 
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Input requirements:  
Minimum < maximum and both must be integers (negative integers and zero are allowed). 

Geometric Distribution 

The geometric distribution describes the number of trials until the first successful occurrence, such as the 
number of times you need to spin a roulette wheel before you win. 
 
Conditions 
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The three conditions underlying the geometric distribution are: 
 

•  The number of trials is not fixed. 
•  The trials continue until the first success. 
•  The probability of success is the same from trial to trial. 

 
The mathematical constructs for the geometric distribution are as follows: 
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Probability of success (p) is the only distributional parameter. The number of successful trials simulated 
is denoted x, which can only take on positive integers.  
 
Input requirements:  
Probability of success > 0 and < 1 (i.e., 0.0001 ≤ p ≤ 0.9999). It is important to note that probability of 
success (p) of 0 or 1 are trivial conditions that do not require any simulations and, hence, are not allowed 
in the software. 

Hypergeometric Distribution 

The hypergeometric distribution is similar to the binomial distribution in that both describe the number of 
times a particular event occurs in a fixed number of trials. The difference is that binomial distribution 
trials are independent, whereas hypergeometric distribution trials change the probability for each 
subsequent trial and are called “trials without replacement.” For example, suppose a box of manufactured 
parts is known to contain some defective parts. You choose a part from the box, find it is defective, and 
remove the part from the box. If you choose another part from the box, the probability that it is defective 
is somewhat lower than for the first part because you have already removed a defective part. If you had 
replaced the defective part, the probabilities would have remained the same, and the process would have 
satisfied the conditions for a binomial distribution. 
 
 
Conditions 
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The three conditions underlying the hypergeometric distribution are: 
 

•  The total number of items or elements (the population size) is a fixed number, a finite population. The 
population size must be less than or equal to 1,750. 

•  The sample size (the number of trials) represents a portion of the population. 
•  The known initial probability of success in the population changes after each trial. 

 
The mathematical constructs for the hypergeometric distribution are as follows: 
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Excess Kurtosis = complex function  
 
The number of items in the population or Population Size (N), trials sampled or Sample Size (n), and 
number of items in the population that have the successful trait or Population Successes (Nx) are the 
distributional parameters. The number of successful trials is denoted x. 
 
Input requirements:  
Population Size ≥ 2 and integer. 
Sample Size > 0 and integer. 
Population Successes > 0 and integer. 
Population Size > Population Successes. 
Sample Size < Population Successes. 
Population Size < 1750. 
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Negative Binomial Distribution 

The negative binomial distribution is useful for modeling the distribution of the number of additional 
trials required in addition to the number of successful occurrences required (R). For instance, in order to 
close a total of 10 sales opportunities, how many extra sales calls would you need to make above 10 calls 
given some probability of success in each call? The x-axis shows the number of additional calls required 
or the number of failed calls. The number of trials is not fixed, the trials continue until the Rth success, 
and the probability of success is the same from trial to trial. Probability of success (p) and number of 
successes required (R) are the distributional parameters. It is essentially a superdistribution of the 
geometric and binomial distributions. This distribution shows the probabilities of each number of trials in 
excess of R to produce the required success R. 
 
Conditions 
The three conditions underlying the negative binomial distribution are: 
 

•  The number of trials is not fixed. 
•  The trials continue until the rth success. 
•  The probability of success is the same from trial to trial. 

 
The mathematical constructs for the negative binomial distribution are as follows: 
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Probability of success (p) and required successes (R) are the distributional parameters. 
 
Input requirements:  
Successes required must be positive integers > 0 and < 8000. 
Probability of success > 0 and < 1 (that is, 0.0001 ≤ p ≤ 0.9999). It is important to note that probability of 
success (p) of 0 or 1 are trivial conditions that do not require any simulations and, hence, are not allowed 
in the software.  
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Pascal Distribution 

The Pascal distribution is useful for modeling the distribution of the number of total trials required to 
obtain the number of successful occurrences required. For instance, to close a total of 10 sales 
opportunities, how many total sales calls would you need to make given some probability of success in 
each call? The x-axis shows the total number of calls required, which includes successful and failed calls. 
The number of trials is not fixed, the trials continue until the Rth success, and the probability of success is 
the same from trial to trial. Pascal distribution is related to the negative binomial distribution. Negative 
binomial distribution computes the number of events required in addition to the number of successes 
required given some probability (in other words, the total failures), whereas the Pascal distribution 
computes the total number of events required (in other words, the sum of failures and successes) to 
achieve the successes required given some probability. Successes required and probability are the 
distributional parameters. 
 
Conditions 
The three conditions underlying the negative binomial distribution are: 
 

•  The number of trials is not fixed. 
•  The trials continue until the rth success. 
•  The probability of success is the same from trial to trial. 

 
The mathematical constructs for the Pascal distribution are shown below:  
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Successes Required and Probability are the distributional parameters. 
 
Input requirements:  
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Successes required > 0 and is an integer. 
0 ≤ Probability ≤ 1. 

Poisson Distribution 

The Poisson distribution describes the number of times an event occurs in a given interval, such as the 
number of telephone calls per minute or the number of errors per page in a document. 
 
Conditions 
The three conditions underlying the Poisson distribution are: 
 

•  The number of possible occurrences in any interval is unlimited. 
•  The occurrences are independent. The number of occurrences in one interval does not affect the 

number of occurrences in other intervals. 
•  The average number of occurrences must remain the same from interval to interval. 

 
The mathematical constructs for the Poisson are as follows: 

0 and for    
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Mean    

Standard Deviation =   

Skewness = 

1

 

Excess Kurtosis = 

1

 

Rate, or Lambda (), is the only distributional parameter. 
 
Input requirements:  
Rate > 0 and ≤ 1000 (i.e., 0.0001 ≤ rate ≤ 1000). 
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Continuous Distributions 

Arcsine Distribution 

The arcsine distribution is U-shaped and is a special case of the bBeta distribution when both shape and 
scale are equal to 0.5. Values close to the minimum and maximum have high probabilities of occurrence 
whereas values between these two extremes have very small probabilities of occurrence. Minimum and 
maximum are the distributional parameters.  
 
The mathematical constructs for the Arcsine distribution are shown below. The probability density 
function (PDF) is denoted f(x) and the cumulative distribution function (CDF) is denoted F(x). 
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  

2( )
8
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  

Skewness = 0 for all inputs 
Excess Kurtosis = 1.5 for all inputs 
 
Minimum and maximum are the distributional parameters. 
 
Input requirements:  
Maximum > minimum (either input parameter can be positive, negative, or zero). 

Beta Distribution 

The beta distribution is very flexible and is commonly used to represent variability over a fixed range. 
One of the more important applications of the beta distribution is its use as a conjugate distribution for the 
parameter of a Bernoulli distribution. In this application, the beta distribution is used to represent the 
uncertainty in the probability of occurrence of an event. It is also used to describe empirical data and 
predict the random behavior of percentages and fractions, as the range of outcomes is typically between 0 
and 1.  
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The value of the beta distribution lies in the wide variety of shapes it can assume when you vary the two 
parameters, alpha and beta. If the parameters are equal, the distribution is symmetrical. If either parameter 
is 1 and the other parameter is greater than 1, the distribution is J-shaped. If alpha is less than beta, the 
distribution is said to be positively skewed (most of the values are near the minimum value). If alpha is 
greater than beta, the distribution is negatively skewed (most of the values are near the maximum value).   
 
The mathematical constructs for the beta distribution are as follows: 
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Alpha () and beta () are the two distributional shape parameters, and  is the Gamma function.   
 
Conditions 
The two conditions underlying the beta distribution are: 
 

•  The uncertain variable is a random value between 0 and a positive value. 
•  The shape of the distribution can be specified using two positive values. 
 
Input requirements:  
Alpha and beta both > 0 and can be any positive value. 

Beta 3 and Beta 4 Distributions 

The original Beta distribution only takes two inputs, Alpha and Beta shape parameters. However, the 
output of the simulated value is between 0 and 1. In the Beta 3 distribution, we add an extra parameter 
called Location or Shift, where we are not free to move away from this 0 to 1 output limitation, therefore 
the Beta 3 distribution is also known as a Shifted Beta distribution. Similarly, the Beta 4 distribution adds 
two input parameters, Location or Shift, and Factor. The original Bbeta distribution is multiplied by the 
factor and shifted by the location, and, therefore the Beta 4 is also known as the Multiplicative Shifted 
Beta distribution.  
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The mathematical constructs for the Beta 3 and Beta 4 distributions are based on those in the Beta 
distribution, with the relevant shifts and factorial multiplication (e.g., the PDF and CDF will be adjusted 
by the shift and factor, and some of the moments, such as the mean, will similarly be affected; the 
standard deviation, in contrast, is only affected by the factorial multiplication, whereas the remaining 
moments are not affected at all). 
 
Input requirements:  
Location >=< 0  (location can take on any positive or negative value including zero). 
Factor > 0.  

Cauchy Distribution, or Lorentzian or Breit-Wigner Distribution 

 
The Cauchy distribution, also called the Lorentzian or Breit-Wigner distribution, is a continuous 
distribution describing resonance behavior. It also describes the distribution of horizontal distances at 
which a line segment tilted at a random angle cuts the x-axis.  
 
The mathematical constructs for the cauchy or Lorentzian distribution are as follows: 

4/)(
2/1)( 22 


 


mx

xf  

 
The Cauchy distribution is a special case because it does not have any theoretical moments (mean, 
standard deviation, skewness, and kurtosis) as they are all undefined.  
 
Mode location () and scale ( are the only two parameters in this distribution. The location parameter 
specifies the peak or mode of the distribution, while the scale parameter specifies the half-width at half-
maximum of the distribution. In addition, the mean and variance of a Cauchy, or Lorentzian, distribution 
are undefined.  
 
In addition, the Cauchy distribution is the Student’s T distribution with only 1 degree of freedom. This 
distribution is also constructed by taking the ratio of two standard normal distributions (normal 
distributions with a mean of zero and a variance of one) that are independent of one another.  
 
Input requirements:  
Location (Alpha) can be any value. 
Scale (Beta) > 0 and can be any positive value. 

Chi-Square Distribution 

The chi-square distribution is a probability distribution used predominatly in hypothesis testing, and is 
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related to the gamma and standard normal distributions. For instance, the sum of independent normal 
distributions is distributed as a chi-square () with k degrees of freedom: 

222
2

2
1 ~... k

d

kZZZ   

 
The mathematical constructs for the chi-square distribution are as follows: 
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
 is the gamma function. Degrees of freedom, k, is the only distributional parameter. 
 
The chi-square distribution can also be modeled using a gamma distribution by setting the  

shape parameter equal to 
2
k

 and the scaleequal to 22S  where S is the scale.  

 
Input requirements:  
Degrees of freedom  > 1 and must be an integer < 300. 

Cosine Distribution 

The cosine distribution looks like a logistic distribution where the median value between the minimum 
and maximum have the highest peak or mode, carrying the maximum probability of occurrence, while the 
extreme tails close to the minimum and maximum values have lower probabilities. Minimum and 
maximum are the distributional parameters. 
 
 
The mathematical constructs for the Cosine distribution are shown below:  
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Minimum and maximum are the distributional parameters. 
 
Input requirements:  
Maximum > minimum (either input parameter can be positive, negative, or zero). 

Double Log Distribution 

The double log distribution looks like the Cauchy distribution where the central tendency is peaked and 
carries the maximum value probability density but declines faster the further it gets away from the center, 
creating a symmetrical distribution with an extreme peak in between the minimum and maximum values. 
Minimum and maximum are the distributional parameters.  
  
The mathematical constructs for the Double Log distribution are shown below:  

1 ln min max
( ) 2

0
min max max min

2 2

x a
for x

f x b b
                      otherwise

where a and b

   
      




 
 

 

1 1 ln min
2 2

( )
1 1 ln max
2 2

x a x a
for x a

b b
F x

x a x a
for a x  

b b

       
        

       
                    

 

2
Min MaxMean =   

2( )
36

Max MinStandard Deviation =   

Skewness is always equal to 0 



User Manual (Risk Simulator Software)   60 © 2005-2011 Real Options Valuation, Inc.  
 

Excess Kurtosis is a complex function and not easily represented 
 
Minimum and maximum are the distributional parameters. 
 
Input requirements:  
Maximum > minimum (either input parameter can be positive, negative, or zero). 

Erlang Distribution 

The Erlang distribution is the same as the Gamma distribution with the requirement that the Alpha or 
shape parameter must be a positive integer. An example application of the Erlang distribution is the 
calibration of the rate of transition of elements through a system of compartments. Such systems are 
widely used in biology and ecology (e.g., in epidemiology, an individual may progress at an exponential 
rate from being healthy to becoming a disease carrier, and continue exponentially from being a carrier to 
being infectious). Alpha (also known as shape) and Beta (also known as scale) are the distributional 
parameters.  
  
The mathematical constructs for the Erlang distribution are shown below:  
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Alpha and Beta are the distributional parameters. 
 
Input requirements:  
Alpha (Shape) > 0 and is an Integer  
Beta (Scale) > 0 
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Exponential Distribution 

The exponential distribution is widely used to describe events recurring at random points in time, such as 
the time between failures of electronic equipment or the time between arrivals at a service booth. It is 
related to the Poisson distribution, which describes the number of occurrences of an event in a given 
interval of time. An important characteristic of the exponential distribution is the “memoryless” property, 
which means that the future lifetime of a given object has the same distribution regardless of the time it 
existed. In other words, time has no effect on future outcomes. 
 
Conditions 
The condition underlying the exponential distribution is: 
 

•  The exponential distribution describes the amount of time between occurrences. 
 
The mathematical constructs for the exponential distribution are as follows: 

0 ;0for    )(     xexf x  

Mean = 

1

 

Standard Deviation = 

1

 

Skewness = 2 (this value applies to all success rate inputs) 
Excess Kurtosis = 6 (this value applies to all success rate inputs) 
 
Success rate () is the only distributional parameter. The number of successful trials is denoted x. 
 
Input requirements:  
Rate > 0.    

Exponential 2 Distribution 

The Exponential 2 distribution uses the same constructs as the original Exponential distribution but adds a 
Location or Shift parameter. The Exponential distribution starts from a minimum value of 0, whereas this 
Exponential 2 or Shifted Exponential, distribution shifts the starting location to any other value. 
 
Rate, or Lambda, and Location, or Shift, are the distributional parameters. 
 
Input requirements:  
Rate (Lambda) > 0.  
Location can be any positive or negative value including zero. 
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Extreme Value Distribution, or Gumbel Distribution 

The extreme value distribution (Type 1) is commonly used to describe the largest value of a response over 
a period of time, for example, in flood flows, rainfall, and earthquakes. Other applications include the 
breaking strengths of materials, construction design, and aircraft loads and tolerances. The extreme value 
distribution is also known as the Gumbel distribution.  
 
The mathematical constructs for the extreme value distribution are as follows: 
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 (this applies for all values of mode and scale) 

Excess Kurtosis = 5.4 (this applies for all values of mode and scale) 
 
Mode () and scale () are the distributional parameters. 
 
Calculating Parameters 
There are two standard parameters for the extreme value distribution: mode and scale. The mode 
parameter is the most likely value for the variable (the highest point on the probability distribution). After 
you select the mode parameter, you can estimate the scale parameter. The scale parameter is a number 
greater than 0. The larger the scale parameter, the greater the variance. 
 
 
Input requirements:  
Mode Alpha can be any value. 
Scale Beta > 0. 

F Distribution, or Fisher-Snedecor Distribution 

The F distribution, also known as the Fisher-Snedecor distribution, is another continuous distribution used 
most frequently for hypothesis testing. Specifically, it is used to test the statistical difference between two 
variances in analysis of variance tests and likelihood ratio tests. The F distribution with the numerator 
degree of freedom n and denominator degree of freedom m is related to the chi-square distribution in that: 
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The numerator degree of freedom n and denominator degree of freedom m are the only distributional 
parameters.  
 
Input requirements:  
Degrees of freedom numerator and degrees of freedom denominator must both be integers > 0  

Gamma Distribution (Erlang Distribution)  

The gamma distribution applies to a wide range of physical quantities and is related to other distributions: 
lognormal, exponential, Pascal, Erlang, Poisson, and chi-square. It is used in meteorological processes to 
represent pollutant concentrations and precipitation quantities. The gamma distribution is also used to 
measure the time between the occurrence of events when the event process is not completely random. 
Other applications of the gamma distribution include inventory control, economic theory, and insurance 
risk theory. 
 
Conditions 
The gamma distribution is most often used as the distribution of the amount of time until the rth 
occurrence of an event in a Poisson process. When used in this fashion, the three conditions underlying 
the gamma distribution are: 
 

•  The number of possible occurrences in any unit of measurement is not limited to a fixed number. 
•  The occurrences are independent. The number of occurrences in one unit of measurement does not 

affect the number of occurrences in other units. 
•  The average number of occurrences must remain the same from unit to unit. 

 
The mathematical constructs for the gamma distribution are as follows: 
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Standard Deviation = 2  

Skewness = 

2

 

Excess Kurtosis = 

6

 

 
Shape parameter alpha () and scale parameter beta () are the distributional parameters, and  is the 
Gamma function.  
 
When the alpha parameter is a positive integer, the gamma distribution is called the Erlang distribution, 
used to predict waiting times in queuing systems, where the Erlang distribution is the sum of independent 
and identically distributed random variables each having a memoryless exponential distribution. Setting n 
as the number of these random variables, the mathematical construct of the Erlang distribution is: 
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 for all x > 0 and all positive integers of n 

 
Input requirements:  
Scale beta > 0 and can be any positive value. 
Shape alpha ≥ 0.05 and any positive value. 
Location can be any value. 

Laplace Distribution 

The Laplace distribution is also sometimes called the double exponential distribution because it can be 
constructed with two exponential distributions (with an additional location parameter) spliced together 
back-to-back, creating an unusual peak in the middle. The probability density function of the Laplace 
distribution is reminiscent of the normal distribution. However, whereas the normal distribution is 
expressed in terms of the squared difference from the mean, the Laplace density is expressed in terms of 
the absolute difference from the mean, making the Laplace distribution’s tails fatter than those of the 
normal distribution. When the location parameter is set to zero, the Laplace distribution’s random variable 
is exponentially distributed with an inverse of the scale parameter. Alpha (also known as location) and 
Beta (also known as scale) are the distributional parameters. 
 
The mathematical constructs for the Laplace distribution are shown below:  
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Skewness is always equal to 0 as it is a symmetrical distribution 
Excess Kurtosis is always equal to 3 
 
Input requirements:  
Alpha (Location) can take on any positive or negative value including zero. 
Beta (Scale) > 0. 

Logistic Distribution 

The logistic distribution is commonly used to describe growth, that is, the size of a population expressed 
as a function of a time variable. It also can be used to describe chemical reactions and the course of 
growth for a population or individual. 
 
The mathematical constructs for the logistic distribution are as follows: 
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Skewness = 0 (this applies to all mean and scale inputs) 
Excess Kurtosis = 1.2 (this applies to all mean and scale inputs) 
 
Mean () and scale () are the distributional parameters. 
 
Calculating Parameters 
There are two standard parameters for the logistic distribution: mean and scale. The mean parameter is the 
average value, which for this distribution is the same as the mode because this is a symmetrical 
distribution. After you select the mean parameter, you can estimate the scale parameter. The scale 
parameter is a number greater than 0. The larger the scale parameter, the greater the variance. 
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Input requirements:  
Scale Beta > 0 and can be any positive value. 
Mean Alpha can be any value. 

Lognormal Distribution 

The lognormal distribution is widely used in situations where values are positively skewed, for example, 
in financial analysis for security valuation or in real estate for property valuation, and where values 
cannot fall below zero.  
 
Stock prices are usually positively skewed rather than normally (symmetrically) distributed. Stock prices 
exhibit this trend because they cannot fall below the lower limit of zero but might increase to any price 
without limit. Similarly, real estate prices illustrate positive skewness as property values cannot become 
negative.  
 
Conditions 
The three conditions underlying the lognormal distribution are: 
 

•  The uncertain variable can increase without limits but cannot fall below zero. 
•  The uncertain variable is positively skewed, with most of the values near the lower limit. 
•  The natural logarithm of the uncertain variable yields a normal distribution. 
 

Generally, if the coefficient of variability is greater than 30%, use a lognormal distribution. Otherwise, 
use the normal distribution. 
 
The mathematical constructs for the lognormal distribution are as follows: 
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Standard Deviation =     1exp2exp 22    

Skewness =    ))exp(2(1exp 22    

Excess Kurtosis =       62exp33exp24exp 222    
 
Mean () and standard deviation () are the distributional parameters. 
 
Input requirements:  
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Mean and standard deviation both > 0 and can be any positive value. 
 
Lognormal Parameter Sets 
By default, the lognormal distribution uses the arithmetic mean and standard deviation. For applications 
for which historical data are available, it is more appropriate to use either the logarithmic mean and 
standard deviation, or the geometric mean and standard deviation.  

Lognormal 3 Distribution 

The Lognormal 3 distribution uses the same constructs as the original Lognormal distribution but adds a 
Location, or Shift, parameter. The Lognormal distribution starts from a minimum value of 0, whereas this 
Lognormal 3, or Shifted Lognormal distribution shifts the starting location to any other value. 
 
Mean, Standard Deviation, and Location (Shift) are the distributional parameters. 
 
Input requirements:  
Mean > 0.  
Standard Deviation > 0. 
Location can be any positive or negative value including zero. 

Normal Distribution 

The normal distribution is the most important distribution in probability theory because it describes many 
natural phenomena, such as people’s IQs or heights. Decision makers can use the normal distribution to 
describe uncertain variables such as the inflation rate or the future price of gasoline. 
 
Conditions 
The three conditions underlying the normal distribution are: 
 

•  Some value of the uncertain variable is the most likely (the mean of the distribution). 
•  The uncertain variable could as likely be above the mean as it could be below the mean (symmetrical 

about the mean). 
•  The uncertain variable is more likely to be in the vicinity of the mean than further away. 

 
The mathematical constructs for the normal distribution are as follows: 
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Skewness = 0 (this applies to all inputs of mean and standard deviation) 
Excess Kurtosis = 0 (this applies to all inputs of mean and standard deviation) 
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Mean () and standard deviation () are the distributional parameters. 
 
Input requirements:  
Standard deviation > 0 and can be any positive value. 
Mean can take on any value. 

Parabolic Distribution 

The parabolic distribution is a special case of the beta distribution when Shape = Scale = 2. Values close 
to the minimum and maximum have low probabilities of occurrence, whereas values between these two 
extremes have higher probabilities or occurrence. Minimum and maximum are the distributional 
parameters.  
 
The mathematical constructs for the Parabolic distribution are shown below:  
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Where the functional form above is for a Beta distribution, and for a Parabolic function, we set Alpha = 
Beta = 2 and a shift of location in Minimum, with a multiplicative factor of (Maximum – Minimum). 

2
Min MaxMean =   

2( )
20

Max MinStandard Deviation =   

Skewness = 0 
Excess Kurtosis = –0.8571 
 
Minimum and Maximum are the distributional parameters. 
 
Input requirements:  
Maximum > minimum (either input parameter can be positive, negative, or zero). 

Pareto Distribution 

The Pareto distribution is widely used for the investigation of distributions associated with such empirical 
phenomena as city population sizes, the occurrence of natural resources, the size of companies, personal 
incomes, stock price fluctuations, and error clustering in communication circuits. 
 
The mathematical constructs for the Pareto are as follows: 
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Shape () and Location () are the distributional parameters.   
 
Calculating Parameters 
There are two standard parameters for the Pareto distribution: location and shape. The location parameter 
is the lower bound for the variable. After you select the location parameter, you can estimate the shape 
parameter. The shape parameter is a number greater than 0, usually greater than 1. The larger the shape 
parameter, the smaller the variance and the thicker the right tail of the distribution. 
 
Input requirements:  
Location > 0 and can be any positive value 
Shape ≥ 0.05. 

Pearson V Distribution 

The Pearson V distribution is related to the Inverse Gamma distribution, where it is the reciprocal of the 
variable distributed according to the Gamma distribution. Pearson V distribution is also used to model 
time delays where there is almost certainty of some minimum delay and the maximum delay is 
unbounded, for example, delay in arrival of emergency services and time to repair a machine. Alpha (also 
known as shape) and Beta (also known as scale) are the distributional parameters. 
 
The mathematical constructs for the Pearson V distribution are shown below:  
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Input requirements:  
Alpha (Shape) > 0.  
Beta (Scale) > 0. 

Pearson VI Distribution 

The Pearson VI distribution is related to the Gamma distribution, where it is the rational function of two 
variables distributed according to two Gamma distributions. Alpha 1 (also known as shape 1), Alpha 2 
(also known as shape 2), and Beta (also known as scale) are the distributional parameters. 
 
The mathematical constructs for the Pearson VI distribution are shown below:  
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Input requirements:  
Alpha 1 (Shape 1) > 0.  
Alpha 2 (Shape 2) > 0.  
Beta (Scale) > 0. 
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PERT Distribution 

The PERT distribution is widely used in project and program management to define the worst-case, 
nominal-case, and best-case scenarios of project completion time. It is related to the Beta and Triangular 
distributions. PERT distribution can be used to identify risks in project and cost models based on the 
likelihood of meeting targets and goals across any number of project components using minimum, most 
likely, and maximum values, but it is designed to generate a distribution that more closely resembles 
realistic probability distributions. The PERT distribution can provide a close fit to the normal or 
lognormal distributions. Like the triangular distribution, the PERT distribution emphasizes the "most 
likely" value over the minimum and maximum estimates. However, unlike the triangular distribution, the 
PERT distribution constructs a smooth curve that places progressively more emphasis on values around 
(near) the most likely value, in favor of values around the edges. In practice, this means that we "trust" the 
estimate for the most likely value, and we believe that even if it is not exactly accurate (as estimates 
seldom are), we have an expectation that the resulting value will be close to that estimate. Assuming that 
many real-world phenomena are normally distributed, the appeal of the PERT distribution is that it 
produces a curve similar to the normal curve in shape, without knowing the precise parameters of the 
related normal curve. Minimum, Most Likely, and Maximum are the distributional parameters. 
 
The mathematical constructs for the PERT distribution are shown below:  
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Input requirements:  
Minimum ≤ Most Likely ≤ Maximum and can be positive, negative, or zero. 

Power Distribution 

The Power distribution is related to the exponential distribution in that the probability of small outcomes 
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is large but exponentially decreases as the outcome value increases. Alpha (also known as shape) is the 
only distributional parameter. 
 
The mathematical constructs for the Power distribution are shown below:  

1( )
( )

f x x
F x x





 

  

1
Mean 





 

2(1 ) (2 )
Standard Deviation 

 


 
 

2 2( 1)
3

Skew  
 
       

Excess Kurtosis is a complex function and cannot be readily computed 
 
Input requirements:  
Alpha > 0.  

Power 3 Distribution 

The Power 3 distribution uses the same constructs as the original Power distribution but adds a Location, 
or Shift, parameter, and a multiplicative Factor parameter. The Power distribution starts from a minimum 
value of 0, whereas this Power 3, or Shifted Multiplicative Power, distribution shifts the starting location 
to any other value. 
 
Alpha, Location or Shift, and Factor are the distributional parameters. 
 
Input requirements:  
Alpha > 0.05. 
Location, or Shift, can be any positive or negative value including zero. 
Factor > 0. 

Student’s t Distribution 

The Student’s t distribution is the most widely used distribution in hypothesis test. This distribution is 
used to estimate the mean of a normally distributed population when the sample size is small to test the 
statistical significance of the difference between two sample means or confidence intervals for small 
sample sizes. 
  
The mathematical constructs for the t distribution are as follows: 
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Mean = 0 (this applies to all degrees of freedom r except if the distribution is shifted to another nonzero 
central location) 

Standard Deviation = 
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Skewness = 0 (this applies to all degrees of freedom r) 
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where 
s

xxt 
  and  is the gamma function. 

 
Degrees of freedom r is the only distributional parameter.   
The t distribution is related to the F distribution as follows: the square of a value of t with r degrees of 
freedom is distributed as F with 1 and r degrees of freedom. The overall shape of the probability density 
function of the t distribution also resembles the bell shape of a normally distributed variable with mean 0 
and variance 1, except that it is a bit lower and wider or is leptokurtic (fat tails at the ends and peaked 
center). As the number of degrees of freedom grows (say, above 30), the t distribution approaches the 
normal distribution with mean 0 and variance 1. 
 
Input requirements:  
Degrees of freedom ≥ 1 and must be an integer. 

Triangular Distribution 

The triangular distribution describes a situation where you know the minimum, maximum, and most 
likely values to occur. For example, you could describe the number of cars sold per week when past sales 
show the minimum, maximum, and usual number of cars sold. 
 
Conditions 
The three conditions underlying the triangular distribution are: 
 

•  The minimum number of items is fixed. 
•  The maximum number of items is fixed. 
•  The most likely number of items falls between the minimum and maximum values, forming a 

triangular-shaped distribution, which shows that values near the minimum and maximum are less 
likely to occur than those near the most-likely value. 

 
The mathematical constructs for the triangular distribution are as follows: 



User Manual (Risk Simulator Software)   74 © 2005-2011 Real Options Valuation, Inc.  
 





















Max    for    

))((
)(2

    for    
min))((

)(2

)(
xLikely

LikelyMaxMinMax
xMax

LikelyxMin
LikelyMinMax
Minx

xf  

 

Mean = )(
3
1 MaxLikelyMin   

Standard Deviation = )(
18
1 222 LikelyMaxLikelyMinMaxMinMaxLikelyMin   

Skewness = 
2/3222 )(5

)2)(2)(2(2
MaxLikelyMinLikelyMinMaxLikelyMaxMin

LikelyMaxMinLikelyMaxMinLikelyMaxMin


  

Excess Kurtosis = –0.6 (this applies to all inputs of Min, Max, and Likely)  
 
Minimum value (Min), most-likely value (Likely), and maximum value (Max) are the distributional 
parameters.  
 
Input requirements:  
Min ≤ Most Likely ≤ Max and can take any value. 
However, Min < Max and can take any value. 

Uniform Distribution 

With the uniform distribution, all values fall between the minimum and maximum and occur with equal 
likelihood.  
 
Conditions 
The three conditions underlying the uniform distribution are: 
 

•  The minimum value is fixed. 
•  The maximum value is fixed. 
•  All values between the minimum and maximum occur with equal likelihood. 

 
The mathematical constructs for the uniform distribution are as follows: 
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Skewness = 0 (this applies to all inputs of Min and Max) 
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Excess Kurtosis = –1.2 (this applies to all inputs of Min and Max) 
 
Maximum value (Max) and minimum value (Min) are the distributional parameters. 
 
Input requirements:  
Min < Max and can take any value. 

Weibull Distribution (Rayleigh Distribution) 

The Weibull distribution describes data resulting from life and fatigue tests. It is commonly used to 
describe failure time in reliability studies as well as the breaking strengths of materials in reliability and 
quality control tests. Weibull distributions are also used to represent various physical quantities, such as 
wind speed. 
 
The Weibull distribution is a family of distributions that can assume the properties of several other 
distributions. For example, depending on the shape parameter you define, the Weibull distribution can be 
used to model the exponential and Rayleigh distributions, among others. The Weibull distribution is very 
flexible. When the Weibull shape parameter is equal to 1.0, the Weibull distribution is identical to the 
exponential distribution. The Weibull location parameter lets you set up an exponential distribution to 
start at a location other than 0.0. When the shape parameter is less than 1.0, the Weibull distribution 
becomes a steeply declining curve. A manufacturer might find this effect useful in describing part failures 
during a burn-in period. 
  
The mathematical constructs for the Weibull distribution are as follows: 
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Shape () and central location scale () are the distributional parameters, and  is the Gamma function. 
 
Input requirements:  
Shape Alpha ≥ 0.05. 
Scale Beta > 0 and can be any positive value. 
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Weibull 3 Distribution 

The Weibull 3 distribution uses the same constructs as the original Weibull distribution but adds a 
Location, or Shift, parameter. The Weibull distribution starts from a minimum value of 0, whereas this 
Weibull 3, or Shifted Weibull, distribution shifts the starting location to any other value. 
 
Alpha, Beta, and Location or Shift are the distributional parameters. 
 
Input requirements:  
Alpha (Shape) ≥ 0.05. 
Beta (Central Location Scale) > 0 and can be any positive value.  
Location can be any positive or negative value including zero. 
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3. FORECASTING  

Forecasting is the act of predicting the future. It can be based on historical data or speculation about the 
future when no history exists. When historical data exist, a quantitative or statistical approach is best, but 
if no historical data exist, then potentially a qualitative or judgmental approach is usually the only 
recourse. Figure 3.1 lists the most common methodologies for forecasting.  
 

FORECASTING

QUALITATIVEQUANTITATIVE

CROSS-SECTIONAL MIXED PANEL

TIME-SERIES

Delphi Method
Expert Opinions

Management Assumptions
Market Research

Polling Data
Surveys

ARIMA(X)
Multiple Regression

Econometric Models
Monte Carlo Simulation

Multiple Regression
Statistical Probabilities

ARIMA

Classical Decomposition 
(8 Time-Series Models)

Multivariate Regression

Nonlinear Extrapolation

Stochastic Processes

Use Risk Simulator 
to run Monte Carlo 

Simulations (use
distributional fitting
or nonparametric 

custom distributions)

Use Risk Simulator’s 
Forecast Tool for ARIMA, 
Classical Decomposition, 
Multivariate Regressions, 

Nonlinear Regressions, Simulations
and Stochastic Processes
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Multivariate Regressions, 

Nonlinear Regressions, Simulations
and Stochastic Processes

 
Figure 3.1 – Forecasting Methods  

 

Different Types of Forecasting Techniques 

Generally, forecasting can be divided into quantitative and qualitative approaches. Qualitative forecasting 
is used when little to no reliable historical, contemporaneous, or comparable data are available. Several 
qualitative methods exist such as the Delphi, or expert opinion, approach (a consensus-building forecast 
by field experts, marketing experts, or internal staff members), management assumptions (target growth 
rates set by senior management), and market research or external data or polling and surveys (data 
obtained from third-party sources, industry and sector indexes, or active market research). These 
estimates can be either single-point estimates (an average consensus) or a set of forecast values (a 
distribution of forecasts). The latter can be entered into Risk Simulator as a custom distribution and the 
resulting forecasts can be simulated, that is, a nonparametric simulation using the estimated data points 
themselves as the distribution.  
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On the quantitative side of forecasting, the available data or data that need to be forecasted can be divided 
into time-series (values that have a time element to them, such as revenues at different years, inflation 
rates, interest rates, market share, failure rates), cross-sectional (values that are time-independent, such as 
the grade point average of sophomore students across the nation in a particular year, given each student’s 
levels of SAT scores, IQ, and number of alcoholic beverages consumed per week), or mixed panel 
(mixture between time-series and panel data, e.g., predicting sales over the next 10 years given budgeted 
marketing expenses and market share projections, which means that the sales data is time series but 
exogenous variables, such as marketing expenses and market share, exist to help to model the forecast 
predictions). 

 

The Risk Simulator software provides the user several forecasting methodologies: 
 

1. ARIMA (Autoregressive Integrated Moving Average) 
2. Auto ARIMA 
3. Auto Econometrics  
4. Basic Econometrics 
5. Combinatorial Fuzzy Logic 
6. Cubic Spline Curves 
7. Custom Distributions 
8. GARCH (Generalized Autoregressive Conditional Heteroskedasticity) 
9. J Curve 
10. Markov Chain 
11. Maximum Likelihood (Logit, Probit, Tobit) 
12. Multivariate Regression  
13. Neural Network Forecasts 
14. Nonlinear Extrapolation 
15. S Curve 
16. Stochastic Processes  
17. Time-Series Analysis and Decomposition 
18. Trendlines  

 
 

The analytical details of each forecasting method fall outside the purview of this user manual. For more 
details, please review Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, 
Stochastic Forecasting, and Portfolio Optimization, by Dr. Johnathan Mun (Wiley Finance, 2006), who is 
also the creator of the Risk Simulator software. Nonetheless, the following illustrates some of the more 
common approaches and several quick getting started examples in using the software. More detailed 
descriptions and example models of each of these techniques are found throughout this chapter and the 
next. All other forecasting approaches are fairly easy to apply within Risk Simulator. 
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 ARIMA 
Autoregressive integrated moving average (ARIMA, also known as Box-Jenkins ARIMA) is an advanced 
econometric modeling technique. ARIMA looks at historical time-series data and performs backfitting 
optimization routines to account for historical autocorrelation (the relationship of one value versus 
another in time) and the stability of the data to correct for the nonstationary characteristics of the data, and 
this predictive model learns over time by correcting its forecasting errors. Advanced knowledge in 
econometrics is typically required to build good predictive models using this approach. 

 
 Auto ARIMA 

The Auto ARIMA module automates some of the traditional ARIMA modeling by automatically testing 
multiple permutations of model specifications and returns the best-fitting model. Running the Auto 
ARIMA is similar to regular ARIMA forecasts. The difference being that the P, D, Q inputs are no longer 
required and different combinations of these inputs are automatically run and compared. 

 
 Basic Econometrics 

Econometrics refers to a branch of business analytics, modeling, and forecasting techniques for modeling 
the behavior of or forecasting certain business, economic, finance, physics, manufacturing, operations, 
and any other variables. Running the Basic Econometrics models are similar to regular regression analysis 
except that the dependent and independent variables are allowed to be modified before a regression is run. 

 
 Auto Econometrics 

Similar to basic econometrics, but Auto Econometrics allows thousands of linear, nonlinear, interacting, 
lagged, and mixed variables to be automatically run on your data to determine the best-fitting econometric 
model that describes the behavior of the dependent variable. It is useful for modeling the effects of the 
variables and for forecasting future outcomes, while not requiring the analyst to be an expert 
econometrician. 

 
 Combinatorial Fuzzy Logic 

In contrast, the term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is 
approximate rather than accurate––as opposed to crisp logic, where binary sets have binary logic, fuzzy 
logic variables may have a truth value that ranges between 0 and 1 and is not constrained to the two truth 
values of classic propositional logic. This fuzzy weighting schema is used together with a combinatorial 
method to yield time-series forecast results.   

 
 Cubic Spline Curves  

Sometimes there are missing values in a time-series data set. For instance, interest rates for years 1 to 3 
may exist, followed by years 5 to 8, and then year 10. Spline curves can be used to interpolate the missing 
years’ interest rate values based on the data that exist. Spline curves can also be used to forecast or 
extrapolate values of future time periods beyond the time period of available data. The data can be linear 
or nonlinear.  
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 Custom Distributions  
Using Risk Simulator, expert opinions can be collected and a customized distribution can be generated. 
This forecasting technique comes in handy when the data set is small or the goodness of fit is bad when 
applied to a distributional fitting routine.  

 
 GARCH 

The generalized autoregressive conditional heteroskedasticity (GARCH) model is used to model 
historical and forecast future volatility levels of a marketable security (e.g., stock prices, commodity 
prices, and oil prices). The data set has to be a time series of raw price levels. GARCH will first convert 
the prices into relative returns and then run an internal optimization to fit the historical data to a mean-
reverting volatility term structure, while assuming that the volatility is heteroskedastic in nature (changes 
over time according to some econometric characteristics). Several variations of this methodology are 
available in Risk Simulator, including EGARCH, EGARCH-T, GARCH-M, GJR-GARCH, GJR-
GARCH-T, IGARCH, and T-GARCH. 

 
 J Curve 

The J curve, or exponential growth curve, is where the growth of the next period depends on the current 
period’s level and the increase is exponential. This means that over time, the values will increase 
significantly from one period to another. This model is typically used in forecasting biological growth and 
chemical reactions over time.   

 
 Markov Chain 

A Markov chain exists when the probability of a future state depends on a previous state and when linked 
together form a chain that reverts to a long-run steady state level. This approach is typically used to 
forecast the market share of two competitors. The required inputs are the starting probability of a 
customer in the first store (the first state) will return to the same store in the next period versus the 
probability of switching to a competitor’s store in the next state.  

 
 Maximum Likelihood on Logit, Probit, and Tobit 

Maximum likelihood estimation (MLE) is used to forecast the probability of something occurring given 
some independent variables. For instance, MLE is used to predict if a credit line or debt will default given 
the obligor’s characteristics (30 years old, single, salary of $100,000 per year, and having a total credit 
card debt of $10,000); or the probability a patient will have lung cancer if the person is a male between 
the ages of 50 and 60, smokes 5 packs of cigarettes per month, and so forth. In these circumstances, the 
dependent variable is limited (i.e., limited to being binary 1 and 0 for default/die and no default/live, or 
limited to integer values like 1, 2, 3,etc.), and the desired outcome of the model is to predict the 
probability of an event occurring. Traditional regression analysis will not work in these situations (the 
predicted probability is usually less than zero or greater than one, and many of the required regression 
assumptions are violated, such as independence and normality of the errors, and the errors will be fairly 
large).  
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 Multivariate Regression 
Multivariate regression is used to model the relationship structure and characteristics of a certain 
dependent variable as it depends on other independent exogenous variables. Using the modeled 
relationship, we can forecast the future values of the dependent variable. The accuracy and goodness of fit 
for this model can also be determined. Linear and nonlinear models can be fitted in the multiple 
regression analysis. 

 
 Neural Network Forecast 

The term Neural Network is often used to refer to a network or circuit of biological neurons, while 
modern usage of the term often refers to artificial neural networks comprising artificial neurons, or nodes, 
recreated in a software environment. Such networks attempt to mimic the neurons in the human brain in 
ways of thinking and identifying patterns and, in our situation, identifying patterns for the purposes of 
forecasting time-series data. 

 
 Nonlinear Extrapolation 

The underlying structure of the data to be forecasted is assumed to be nonlinear over time. For instance, a 
data set such as 1, 4, 9, 16, 25 is considered to be nonlinear (these data points are from a squared 
function).   

 
 S Curve 

The S curve or logistic growth curve starts off like a J curve, with exponential growth rates. Over time, 
the environment becomes saturated (e.g., market saturation, competition, overcrowding), the growth 
slows, and the forecast value eventually ends up at a saturation or maximum level. This model is typically 
used in forecasting market share or sales growth of a new product from market introduction until maturity 
and decline, population dynamics, and other naturally occurring phenomenon.   

 
 Stochastic Processes   

Sometimes variables cannot be readily predicted using traditional means, and these variables are said to 
be stochastic. Nonetheless, most financial, economic, and naturally occurring phenomena (e.g., motion of 
molecules through the air) follow a known mathematical law or relationship. Although the resulting 
values are uncertain, the underlying mathematical structure is known and can be simulated using Monte 
Carlo risk simulation. The processes supported in Risk Simulator include Brownian motion random walk, 
mean-reversion, jump-diffusion, and mixed processes, useful for forecasting nonstationary time-series 
variables.   

 
 Time-Series Analysis and Decomposition  

In well-behaved time-series data (typical examples include sales revenues and cost structures of large 
corporations), the values tend to have up to three elements: a base value, trend, and seasonality. Time-
series analysis uses these historical data and decomposes them into these three elements, and recomposes 
them into future forecasts. In other words, this forecasting method, like some of the others described, first 



User Manual (Risk Simulator Software)   82 © 2005-2011 Real Options Valuation, Inc.  
 

performs a back-fitting (backcast) of historical data before it provides estimates of future values 
(forecasts).  
 

 Trendlines 
Trendlines can be used to determine if a set of time-series data follows any appreciable trend. Trends can 
be linear or nonlinear (such as exponential, logarithmic, moving average, power, polynomial, or power). 

Running the Forecasting Tool in Risk Simulator 

In general, to create forecasts, several quick steps are required: 
 Start Excel and enter in or open your existing historical data.   
 Select the data, and click on Simulation and select Forecasting.  
 Select the relevant sections (ARIMA, Multivariate Regression, Nonlinear Extrapolation, 

Stochastic Forecasting, Time-Series Analysis) and enter the relevant inputs.  
 
Figure 3.2 illustrates the Forecasting tool and the various methodologies and the following provides a 
quick review of the selected methodology and several quick getting started examples in using the 
software. The example file can be found either on the start menu at Start | Real Options Valuation | 
Risk Simulator | Examples or accessed directly through Risk Simulator | Example Models.   
 

 
Figure 3.2 – Risk Simulator’s Forecasting Methods 
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Time-Series Analysis 

Theory 
Figure 3.3 lists the eight most common time-series models, segregated by seasonality and trend. For 
instance, if the data variable has no trend or seasonality, then a single moving-average model or a single 
exponential-smoothing model would suffice. However, if seasonality exists but no discernable trend is 
present, either a seasonal additive or seasonal multiplicative model would be better, and so forth.   
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Figure 3.3 – The Eight Most Common Time-Series Methods 

 
Procedure 

 Start Excel and open your historical data if required (the example below uses the Time-Series 
Forecasting file in the examples folder). 

 Select the historical data (data should be listed in a single column). 
 Select Risk Simulator | Forecasting | Time-Series Analysis.  
 Choose the model to apply, enter the relevant assumptions, and click OK 

 
Results Interpretation 
Figure 3.5 illustrates the sample results generated by using the Forecasting tool and a Holt-Winter’s 
multiplicative model. The model-fitting and forecast chart indicates that the trend and seasonality are 
picked up nicely by the Holt-Winter’s multiplicative model. The time-series analysis report provides the 
relevant optimized alpha, beta, and gamma parameters; the error measurements; fitted data; forecast 
values; and fitted-forecast graph. The parameters are simply for reference. Alpha captures the memory 
effect of the base level changes over time, and beta is the trend parameter that measures the strength of 
the trend, while gamma measures the seasonality strength of the historical data. The analysis decomposes 
the historical data into these three elements and then recomposes them to forecast the future. The fitted 
data illustrates the historical data, and it uses the recomposed model and shows how close the forecasts 
are in the past (a technique called backcasting). The forecast values are either single-point estimates or 
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assumptions (if the option to automatically generate assumptions is chosen and if a simulation profile 
exists). The graph illustrates these historical, fitted, and forecast values. The chart is a powerful 
communication and visual tool to see how good the forecast model is. 
 

 

 
Figure 3.4 – Time-Series Analysis 

 
Notes 
This time-series analysis module contains the eight time-series models seen in Figure 3.3. You can choose 
the specific model to run based on the trend and seasonality criteria or choose the Auto Model Selection, 
which will automatically iterate through all eight methods, optimize the parameters, and find the best-
fitting model for your data. Alternatively, if you choose one of the eight models, you can also unselect the 
optimize checkboxes and enter your own alpha, beta, and gamma parameters. Refer to Dr. Johnathan 
Mun’s Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, Forecasting, and 
Optimization (Wiley Finance, 2006) for more details on the technical specifications of these parameters. 
In addition, you would need to enter the relevant seasonality periods if you choose the automatic model 
selection or any of the seasonal models. The seasonality input has to be a positive integer (e.g., if the data 
is quarterly, enter 4 as the number of seasons or cycles a year, or enter 12 if monthly data). Next, enter the 
number of periods to forecast. This value also has to be a positive integer. The maximum runtime is set at 
300 seconds. Typically, no changes are required. However, when forecasting with a significant amount of 
historical data, the analysis might take slightly longer, and if the processing time exceeds this runtime, the 
process will be terminated. You can also elect to have the forecast automatically generate assumptions. 
That is, instead of single-point estimates, the forecasts will be assumptions. Finally, the polar parameters 
option allows you to optimize the alpha, beta, and gamma parameters to include zero and one. Certain 



User Manual (Risk Simulator Software)   85 © 2005-2011 Real Options Valuation, Inc.  
 

forecasting software allows these polar parameters while others do not. Risk Simulator allows you to 
choose which to use. Typically, there is no need to use polar parameters. 
 

Alpha, Beta, Gamma RMSE Alpha, Beta, Gamma RMSE
0.00, 0.00, 0.00 914.824 0.00, 0.00, 0.00 914.824
0.10, 0.10, 0.10 415.322 0.10, 0.10, 0.10 415.322
0.20, 0.20, 0.20 187.202 0.20, 0.20, 0.20 187.202
0.30, 0.30, 0.30 118.795 0.30, 0.30, 0.30 118.795
0.40, 0.40, 0.40 101.794 0.40, 0.40, 0.40 101.794
0.50, 0.50, 0.50 102.143

The analysis was run with alpha = 0.2429, beta = 1.0000, gamma = 0.7797, and seasonality = 4

Period Actual Forecast Fit
1 684.20 RMSE 71.8132
2 584.10 MSE 5157.1348
3 765.40 MAD 53.4071
4 892.30 MAPE 4.50%
5 885.40 684.20 Theil's U 0.3054
6 677.00 667.55
7 1006.60 935.45
8 1122.10 1198.09
9 1163.40 1112.48

10 993.20 887.95
11 1312.50 1348.38
12 1545.30 1546.53
13 1596.20 1572.44
14 1260.40 1299.20
15 1735.20 1704.77
16 2029.70 1976.23
17 2107.80 2026.01
18 1650.30 1637.28
19 2304.40 2245.93
20 2639.40 2643.09

Forecast 21 2713.69
Forecast 22 2114.79
Forecast 23 2900.42
Forecast 24 3293.81

The best-fitting test for the moving average forecast uses the root mean squared errors (RMSE). The RMSE calculates the square root of the average squared deviations of the fitted
values versus the actual data points.

Mean Squared Error (MSE) is an absolute error measure that squares the errors (the difference between the actual historical data and the forecast-fitted data predicted by the model) to
keep the positive and negative errors from canceling each other out. This measure also tends to exaggerate large errors by weighting the large errors more heavily than smaller errors
by squaring them, which can help when comparing different time-series models. Root Mean Square Error (RMSE) is the square root of MSE and is the most popular error measure,
also known as the quadratic loss function. RMSE can be defined as the average of the absolute values of the forecast errors and is highly appropriate when the cost of the forecast
errors is proportional to the absolute size of the forecast error. The RMSE is used as the selection criteria for the best-fitting time-series model.

Mean Absolute Percentage Error (MAPE) is a relative error statistic measured as an average percent error of the historical data points and is most appropriate when the cost of the
forecast error is more closely related to the percentage error than the numerical size of the error. Finally, an associated measure is the Theil's U statistic, which measures the naivety of
the model's forecast. That is, if the Theil's U statistic is less than 1.0, then the forecast method used provides an estimate that is statistically better than guessing.

Error Measurements

Holt-Winter's Multiplicative

Summary Statistics

Time-Series Analysis Summary

When both seasonality and trend exist, more advanced models are required to decompose the data into their base elements: a base-case level (L) weighted by the alpha parameter; a
trend component (b) weighted by the beta parameter; and a seasonality component (S) weighted by the gamma parameter. Several methods exist but the two most common are the
Holt-Winters' additive seasonality and Holt-Winters' multiplicative seasonality methods. In the Holt-Winter's additive model, the base case level, seasonality, and trend are added
together to obtain the forecast fit.

 
Figure 3.5 – Example Holt-Winter’s Forecast Report 
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Multivariate Regression 

Theory 
It is assumed that the user is sufficiently knowledgeable about the fundamentals of regression analysis. 
The general bivariate linear regression equation takes the form of   XY 10 , where 0 is the 

intercept, 1 is the slope, and  is the error term. It is bivariate as there are only two variables: a Y, or 
dependent, variable and an X, or independent, variable, where X is also known as the regressor 
(sometimes a bivariate regression is also known as a univariate regression as there is only a single 
independent variable X). The dependent variable is so named because it depends on the independent 
variable; for example, sales revenue depends on the amount of marketing costs expended on a product’s 
advertising and promotion, making the dependent variable sales and the independent variable marketing 
costs. An example of a bivariate regression is seen as simply inserting the best-fitting line through a set of 
data points in a two-dimensional plane as seen on the left panel in Figure 3.6. In other cases, a 
multivariate regression can be performed, where there are multiple, or n number of, independent X 
variables, where the general regression equation will now take the form of 

  nn XXXXY ...3322110 . In this case, the best-fitting line will be within an n + 1 

dimensional plane.  
 

 
Figure 3.6 – Bivariate Regression 

 
However, fitting a line through a set of data points in a scatter plot as in Figure 3.6 may result in 
numerous possible lines. The best-fitting line is defined as the single unique line that minimizes the total 
vertical errors, that is, the sum of the absolute distances between the actual data points (Yi) and the 

estimated line ( Ŷ ) as shown on the right panel of Figure 3.6. To find the best-fitting line that minimizes 
the errors, a more sophisticated approach is required, that is, regression analysis. Regression analysis, 
therefore, finds the unique best-fitting line by requiring that the total errors be minimized, or by 
calculating 

X X 

Y Y 

Y1 

Y2 


  
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where only one unique line minimizes this sum of squared errors. The errors (vertical distance between 
the actual data and the predicted line) are squared to avoid the negative errors canceling out the positive 
errors. Solving this minimization problem with respect to the slope and intercept requires calculating a 
first derivative and setting them equal to zero: 
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which yields the bivariate regression’s least squares equations: 

 
 
For multivariate regression, the analogy is expanded to account for multiple independent variables, where 

iiii XXY   ,33,221  and the estimated slopes can be calculated by: 
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In running multivariate regressions, great care has to be taken to set up and interpret the results. For 
instance, a good understanding of econometric modeling is required (e.g., identifying regression pitfalls 
such as structural breaks, multicollinearity, heteroskedasticity, autocorrelation, specification tests, 
nonlinearities, etc.) before a proper model can be constructed. See Modeling Risk: Applying Monte Carlo 
Simulation, Real Options Analysis, Forecasting, and Optimization (Wiley Finance, 2006) by Dr. 
Johnathan Mun for more detailed analysis and discussion of multivariate regression as well as how to 
identify these regression pitfalls.  
 
 

XY

n

X
X

n

YX
YX

XX

YYXX

n

i
in

i
i

n

i
i

n

i
in

i
ii

n

i
i

n

i
ii

10

2

1

1

2

11

1

1

2

1
1

                             

)(

))((
















































 



User Manual (Risk Simulator Software)   88 © 2005-2011 Real Options Valuation, Inc.  
 

Procedure: 
 Start Excel and open your historical data if required (the illustration below uses the file Multiple 

Regression in the examples folder). 
 Check to make sure that the data is arranged in columns, select the entire data area including the 

variable name, and select Risk Simulator | Forecasting | Multiple Regression. 
 Select the dependent variable and check the relevant options (lags, stepwise regression, nonlinear 

regression, etc.), and click OK. 
 
Results Interpretation 
Figure 3.8 illustrates a sample multivariate regression result report. The report comes complete with all 
the regression results, analysis of variance results, fitted chart, and hypothesis test results. The technical 
details of interpreting these results are beyond the scope of this user manual. See Modeling Risk: Applying 
Monte Carlo Simulation, Real Options Analysis, Forecasting, and Optimization (Wiley Finance, 2006) by 
Dr. Johnathan Mun for more detailed analysis and discussion of multivariate regression as well as the 
interpretation of regression reports. 
 

 
Figure 3.7 – Running a Multivariate Regression  
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Regression Statistics
R-Squared (Coefficient of Determination) 0.3272
Adjus ted R-Squared 0.2508
Multiple R (Multiple Correlation Coefficient) 0.5720
Standard Error of the Estimates (SEy) 149.6720
Number of Observations 50

Regression Results
Intercept X1 X2 X3 X4 X5

Coefficients 57.9555 -0.0035 0.4644 25.2377 -0.0086 16.5579
Standard Error 108.7901 0.0035 0.2535 14.1172 0.1016 14.7996
t-Statistic 0.5327 -1.0066 1.8316 1.7877 -0.0843 1.1188
p-Value 0.5969 0.3197 0.0738 0.0807 0.9332 0.2693
Lower 5% -161.2966 -0.0106 -0.0466 -3.2137 -0.2132 -13.2687
Upper 95% 277.2076 0.0036 0.9753 53.6891 0.1961 46.3845

Degrees of Freedom Hypothesis Test
  Degrees of Freedom for Regression 5 Critical t-Statistic (99% confidence with df of 44) 2.6923
  Degrees of Freedom for Residual 44 Critical t-Statistic (95% confidence with df of 44) 2.0154
  Total Degrees of Freedom 49 Critical t-Statistic (90% confidence with df of 44) 1.6802

Sums of 
Squares

Mean of 
Squares F-Statistic p-Value Hypothesis Test

Regress ion 479388.49 95877.70 4.28 0.0029   Critical F-statis tic (99% confidence with df of 5 and 44) 3.4651
Res idual 985675.19 22401.71   Critical F-statis tic (95% confidence with df of 5 and 44) 2.4270
Total 1465063.68   Critical F-statis tic (90% confidence with df of 5 and 44) 1.9828

Period Actual (Y) Forecast (F) Error (E) RMSE: 140.4048
1 521.0000 299.5124     221.4876     
2 367.0000 487.1243     (120.1243)    
3 443.0000 353.2789     89.7211       
4 365.0000 276.3296     88.6704       
5 614.0000 776.1336     (162.1336)    
6 385.0000 298.9993     86.0007       
7 286.0000 354.8718     (68.8718)      
8 397.0000 312.6155     84.3845       
9 764.0000 529.7550     234.2450     

10 427.0000 347.7034     79.2966       
11 153.0000 266.2526     (113.2526)    
12 231.0000 264.6375     (33.6375)      
13 524.0000 406.8009     117.1991     
14 328.0000 272.2226     55.7774       
15 240.0000 231.7882     8.2118         
16 286.0000 257.8862     28.1138       
17 285.0000 314.9521     (29.9521)      
18 569.0000 335.3140     233.6860     
19 96.0000 282.0356     (186.0356)    
20 498.0000 370.2062     127.7938     
21 481.0000 340.8742     140.1258     
22 468.0000 427.5118     40.4882       
23 177.0000 274.5298     (97.5298)      
24 198.0000 294.7795     (96.7795)      
25 458.0000 295.2180     162.7820     

The Coefficient is statis tically significant if its calculated t-Statistic exceeds the Critical t-Statistic at the relevant degrees of freedom (df). The three main
confidence levels used to test for significance are 90%, 95% and 99%. If a Coefficient's t-Statistic exceeds the Critical level, it is considered statistically
s ignificant. Alternatively, the p-Value calculates each t-Statistic's probability of occurrence, which means that the smaller the p-Value, the more significant the
Coefficient. The usual s ignificant levels for the p-Value are 0.01, 0.05, and 0.10, corresponding to the 99%, 95%, and 90% confidence levels.

The Coefficients with their p-Values highlighted in blue indicate that they are statistically significant at the 90% confidence or 0.10 alpha level, while those
highlighted in red indicate that they are not statistically significant at any other alpha levels.

Analysis of Variance

The Analys is of Variance (ANOVA) table provides an F-test of the regress ion model's overall statistical s ignificance. Instead of looking at individual regressors as
in the t-test, the F-test looks at all the estimated Coefficients' statistical properties . The F-Statistic is calculated as the ratio of the Regression's Mean of Squares
to the Res idual's Mean of Squares. The numerator measures how much of the regression is explained, while the denominator measures how much is
unexplained. Hence, the larger the F-Statistic, the more significant the model. The corresponding p-Value is calculated to test the null hypothesis (Ho) where all
the Coefficients are simultaneously equal to zero, versus the alternate hypothesis (Ha) that they are all s imultaneous ly different from zero, indicating a significant
overall regression model. If the p-Value is smaller than the 0.01, 0.05, or 0.10 alpha significance, then the regression is s ignificant. The same approach can be
applied to the F-Statistic by comparing the calculated F-Statistic with the critical F values  at various significance levels.

Forecasting

Regression Analysis Report

The R-Squared or Coefficient of Determination indicates that 0.33 of the variation in the dependent variable can be explained and accounted for by the
independent variables in this regress ion analysis. However, in a multiple regress ion, the Adjusted R-Squared takes into account the existence of additional
independent variables or regressors and adjusts this R-Squared value to a more accurate view of the regression's explanatory power. Hence, only 0.25 of the
variation in the dependent variable can be explained by the regressors .

The Multiple Correlation Coefficient (Multiple R) measures the correlation between the actual dependent variable (Y) and the estimated or fitted (Y) based on the
regress ion equation. This  is  also the square root of the Coefficient of Determination (R-Squared).

The Standard Error of the Estimates (SEy) describes the dispersion of data points above and below the regression line or plane. This  value is  used as  part of the 
calculation to obtain the confidence interval of the es timates  later.

The Coefficients provide the estimated regression intercept and slopes. For instance, the coefficients are estimates of the true; population b values in the
following regress ion equation Y = b0 + b1X1 + b2X2 + ... + bnXn. The Standard Error measures how accurate the predicted Coefficients are, and the t-Statistics
are the ratios  of each predicted Coefficient to its  Standard Error.

The t-Statistic is used in hypothesis testing, where we set the null hypothesis (Ho) such that the real mean of the Coefficient = 0, and the alternate hypothesis
(Ha) such that the real mean of the Coefficient is not equal to 0. A t-test is is performed and the calculated t-Statistic is compared to the critical values at the
relevant Degrees of Freedom for Residual. The t-test is very important as it calculates if each of the coefficients is s tatistically significant in the presence of the
other regressors . This means that the t-test statistically verifies whether a regressor or independent variable should remain in the regression or it should be
dropped.

 
Figure 3.8 – Multivariate Regression Results 
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Stochastic Forecasting 

Theory  
A stochastic process is nothing but a mathematically defined equation that can create a series of outcomes 
over time, outcomes that are not deterministic in nature, that is, an equation or process that does not 
follow any simple discernible rule such as price will increase X percent every year or revenues will 
increase by this factor of X plus Y percent. A stochastic process is by definition nondeterministic, and one 
can plug numbers into a stochastic process equation and obtain different results every time. For instance, 
the path of a stock price is stochastic in nature, and one cannot reliably predict the stock price path with 
any certainty. However, the price evolution over time is enveloped in a process that generates these 
prices. The process is fixed and predetermined, but the outcomes are not. Hence, by stochastic simulation, 
we create multiple pathways of prices, obtain a statistical sampling of these simulations, and make 
inferences on the potential pathways that the actual price may undertake given the nature and parameters 
of the stochastic process used to generate the time series. Three basic stochastic processes are included in 
Risk Simulator’s Forecasting tool, including geometric Brownian motion or random walk, which is the 
most common and prevalently used process due to its simplicity and wide-ranging applications. The other 
two stochastic processes are the mean-reversion process and the jump-diffusion process.  
 
The interesting thing about stochastic process simulation is that historical data are not necessarily 
required. That is, the model does not have to fit any sets of historical data. Simply compute the expected 
returns and the volatility of the historical data or estimate them using comparable external data or make 
assumptions about these values. See Modeling Risk: Applying Monte Carlo Simulation, Real Options 
Analysis, Forecasting, and Optimization, 2nd Edition (Wiley Finance, 2006) by Dr. Johnathan Mun for 
more details on how each of the inputs are computed (e.g., mean-reversion rate, jump probabilities, 
volatility, etc.).   
 
Procedure 

 Start the module by selecting Risk Simulator | Forecasting | Stochastic Processes. 
 Select the desired process, enter the required inputs, click on Update Chart a few times to make 

sure the process is behaving the way you expect it to, and click OK (Figure 3.9). 
 
Results Interpretation 
Figure 3.10 shows the results of a sample stochastic process. The chart shows a sample set of the 
iterations while the report explains the basics of stochastic processes. In addition, the forecast values 
(mean and standard deviation) for each time period are provided. Using these values, you can decide 
which time period is relevant to your analysis and set assumptions based on these mean and standard 
deviation values using the normal distribution. These assumptions can then be simulated in your own 
custom model.  
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Figure 3.9 – Stochastic Process Forecasting 

Time Mean Stdev
0.0000 100.00 0.00
0.1000 106.32 4.05
0.2000 105.92 4.70
0.3000 105.23 8.23
0.4000 109.84 11.18
0.5000 107.57 14.67
0.6000 108.63 19.79
0.7000 107.85 24.18
0.8000 109.61 24.46
0.9000 109.57 27.99
1.0000 110.74 30.81
1.1000 111.53 35.05
1.2000 111.07 34.10
1.3000 107.52 32.85
1.4000 108.26 37.38

Stochastic Process: Brownian Motion (Random Walk) with Drift 1.5000 106.36 32.19
Start Value 100 Steps 50.00 Jump Rate N/A 1.6000 112.42 32.16

Drift Rate 5.00% Iterations 10.00 Jump Size N/A 1.7000 110.08 31.24
Volatility 25.00% Reversion Rate N/A Random Seed 1720050445 1.8000 109.64 31.87
Horizon 5 Long-Term Value N/A 1.9000 110.18 36.43

2.0000 112.23 37.63
2.1000 114.32 33.10
2.2000 111.14 38.42
2.3000 111.03 37.69
2.4000 112.04 37.23
2.5000 112.98 40.84
2.6000 115.74 43.69
2.7000 115.11 43.64
2.8000 114.87 43.70
2.9000 113.28 42.25
3.0000 115.72 43.43
3.1000 120.05 50.48
3.2000 116.69 42.61
3.3000 118.31 45.57
3.4000 116.35 40.82
3.5000 115.71 40.33
3.6000 118.69 41.45
3.7000 121.66 45.34
3.8000 121.40 45.03
3.9000 125.19 48.19
4.0000 129.65 55.44
4.1000 129.61 53.82
4.2000 125.86 49.68
4.3000 125.70 53.79
4.4000 126.72 49.70
4.5000 129.52 50.28
4.6000 132.28 49.70
4.7000 138.47 56.77
4.8000 139.69 66.32
4.9000 140.85 65.95
5.0000 143.61 68.65

The results on the right indicate the mean and standard deviation of all the iterations generated at each time step. If the Show All
Iterations option is selected, each iteration pathway will be shown in a separate worksheet. The graph generated below shows a
sample set of the iteration pathways.

Stochastic Process Forecasting

Statistical Summary

A stochastic process is a sequence of events or paths generated by probabilistic laws. That is, random events can occur over time
but are governed by specific statistical and probabilistic rules. The main stochastic processes include Random Walk or Brownian
Motion, Mean-Reversion, and Jump-Diffusion. These processes can be used to forecast a multitude of variables that seemingly
follow random trends but yet are restricted by probabilistic laws.

The Random Walk Brownian Motion process can be used to forecast stock prices, prices of commodities, and other stochastic time-
series data given a drift or growth rate and a volatility around the drift path. The Mean-Reversion process can be used to reduce
the fluctuations of the Random Walk process by allowing the path to target a long-term value, making it useful for forecasting time-
series variables that have a long-term rate such as interest rates and inflation rates (these are long-term target rates by regulatory
authorities or the market). The Jump-Diffusion process is useful for forecasting time-series data when the variable can occasionally
exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks can make prices jump up or
down). Finally, these three stochastic processes can be mixed and matched as required.

 
Figure 3.10 – Stochastic Forecast Result 
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Nonlinear Extrapolation 

Theory 
Extrapolation involves making statistical projections by using historical trends that are projected for a 
specified period of time into the future. It is only used for time-series forecasts. For cross-sectional or 
mixed panel data (time-series with cross-sectional data), multivariate regression is more appropriate. 
Extrapolation is useful when major changes are not expected, that is, causal factors are expected to remain 
constant or when the causal factors of a situation are not clearly understood. It also helps discourage 
introduction of personal biases into the process. Extrapolation is fairly reliable, relatively simple, and 
inexpensive. However, extrapolation, which assumes that recent and historical trends will continue, 
produces large forecast errors if discontinuities occur within the projected time period. That is, pure 
extrapolation of time series assumes that all we need to know is contained in the historical values of the 
series that is being forecasted. If we assume that past behavior is a good predictor of future behavior, 
extrapolation is appealing. This makes it a useful approach when all that is needed are many short-term 
forecasts. 
 
This methodology estimates the f(x) function for any arbitrary x value by interpolating a smooth nonlinear 
curve through all the x values and, using this smooth curve, extrapolates future x values beyond the 
historical data set. The methodology employs either the polynomial functional form or the rational 
functional form (a ratio of two polynomials). Typically, a polynomial functional form is sufficient for 
well-behaved data, however, rational functional forms are sometimes more accurate (especially with polar 
functions, i.e., functions with denominators approaching zero). 
 
Procedure 

 Start Excel and open your historical data if required (the illustration shown next uses the file 
Nonlinear Extrapolation from the examples folder). 

 Select the time-series data and select Risk Simulator | Forecasting | Nonlinear Extrapolation.  
 Select the extrapolation type (automatic selection, polynomial function, or rational function) and 

enter the number of forecast period desired (Figure 3.11), and click OK. 
 
Results Interpretation 
The results report shown in Figure 3.12 shows the extrapolated forecast values, the error measurements, 
and the graphical representation of the extrapolation results. The error measurements should be used to 
check the validity of the forecast and are especially important when used to compare the forecast quality 
and accuracy of extrapolation versus time-series analysis.   
 
 
 
 
Notes  
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When the historical data is smooth and follows some nonlinear patterns and curves, extrapolation is better 
than time-series analysis. However, when the data patterns follow seasonal cycles and a trend, time-series 
analysis will provide better results.  

 
Figure 3.11 – Running a Nonlinear Extrapolation 

Period Actual Forecast Fit Estimate Error
1 1.00 RMSE 19.6799
2 6.73 1.00 MSE 387.2974
3 20.52 -1.42 -8.15 MAD 10.2095
4 45.25 99.82 119.36 MAPE 31.56%
5 83.59 55.92 -46.67 Theil's U 1.1210
6 138.01 136.71 14.39
7 210.87 211.96 1.69 Function Type: Rational
8 304.44 304.43 -0.41
9 420.89 420.89 0.01

10 562.34 562.34 0.00
11 730.85 730.85 0.00
12 928.43 928.43 0.00

Forecast 13 1157.03 0.00
Forecast 14 1418.57 0.00
Forecast 15 1714.95 0.00
Forecast 16 2048.00 0.00
Forecast 17 2419.55 0.00
Forecast 18 2831.39 0.00

Error Measurements

Nonlinear Extrapolation

Statistical Summary

Extrapolation involves making statistical projections by using historical trends that are projected for a specified period of time into the future. It is only used for time-series
forecasts. For cross-sectional or mixed panel data (time-series with cross-sectional data), multivariate regression is more appropriate. This methodology is useful when major
changes are not expected, that is, causal factors are expected to remain constant or when the causal factors of a situation are not clearly understood. It also helps discourage
introduction of personal biases into the process. Extrapolation is fairly reliable, relatively simple, and inexpensive. However, extrapolation, which assumes that recent and
historical trends will continue, produces large forecast errors if discontinuities occur within the projected time period. That is, pure extrapolation of time series assumes that all we
need to know is contained in the historical values of the series that is being forecasted. If we assume that past behavior is a good predictor of future behavior, extrapolation is
appealing. This makes it a useful approach when all that is needed are many short-term forecasts.

This methodology estimates the f(x) function for any arbitrary x value, by interpolating a smooth nonlinear curve through all the x values, and using this smooth curve,
extrapolates future x values beyond the historical data set. The methodology employs either the polynomial functional form or the rational functional form (a ratio of two
polynomials). Typically, a polynomial functional form is sufficient for well-behaved data, however, rational functional forms are sometimes more accurate (especially with polar
functions, i.e., functions with denominators approaching zero).

 
Figure 3.12 – Nonlinear Extrapolation Results 
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Box-Jenkins ARIMA Advanced Time-Series 

Theory 
One very powerful advanced times-series forecasting tool is the ARIMA, or Auto Regressive Integrated 
Moving Average, approach. ARIMA forecasting assembles three separate tools into a comprehensive 
model. The first tool segment is the autoregressive (AR) term, which corresponds to the number of lagged 
value of the residual in the unconditional forecast model. In essence, the model captures the historical 
variation of actual data to a forecasting model and uses this variation or residual to create a better 
predicting model. The second tool segment is the integration order (I) term. This integration term 
corresponds to the number of differencing the time series to be forecasted goes through. This element 
accounts for any nonlinear growth rates existing in the data. The third tool segment is the moving average 
(MA) term, which is essentially the moving average of lagged forecast errors. By incorporating this 
lagged forecast errors term, the model in essence learns from its forecast errors or mistakes and corrects 
for them through a moving-average calculation. The ARIMA model follows the Box-Jenkins 
methodology with each term representing steps taken in the model construction until only random noise 
remains. Also, ARIMA modeling uses correlation techniques in generating forecasts. ARIMA can be used 
to model patterns that may not be visible in plotted data. In addition, ARIMA models can be mixed with 
exogenous variables, but make sure that the exogenous variables have enough data points to cover the 
additional number of periods to forecast. Finally, be aware that due to the complexity of the models, this 
module may take longer to run.  
 
There are many reasons why an ARIMA model is superior to common time-series analysis and 
multivariate regressions. The common finding in time-series analysis and multivariate regression is that 
the error residuals are correlated with their own lagged values. This serial correlation violates the standard 
assumption of regression theory that disturbances are not correlated with other disturbances. The primary 
problems associated with serial correlation are: 
 

 Regression analysis and basic time-series analysis are no longer efficient among the different 
linear estimators. However, as the error residuals can help to predict current error residuals, we 
can take advantage of this information to form a better prediction of the dependent variable using 
ARIMA. 

 Standard errors computed using the regression and time-series formula are not correct, and are 
generally understated, and if there are lagged dependent variables set as the regressors, regression 
estimates are biased and inconsistent but can be fixed using ARIMA.  

 
ARIMA(p,d,q) models are the extension of the AR model that uses three components for modeling the 
serial correlation in the time series data. The first component is the autoregressive (AR) term. The AR(p) 
model uses the p lags of the time series in the equation. An AR(p) model has the form: yt = a1yt-1 + ... + 
apyt-p + et. The second component is the integration (d) order term. Each integration order corresponds to 
differencing the time series. I(1) means differencing the data once; I(d) means differencing the data d 
times. The third component is the moving average (MA) term. The MA(q) model uses the q lags of the 
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forecast errors to improve the forecast. An MA(q) model has the form: yt = et + b1et-1 + ... + bqet-q. Finally, 
an ARIMA(p,q) model has the combined form: yt = a1 yt-1 + ... + a p yt-p + et + b1 et-1 + ... + bq et-q.  
 
Procedure 

 Start Excel and enter your data or open an existing worksheet with historical data to forecast (the 
illustration shown next uses the file example file Time-Series ARIMA). 

 Select the time-series data and select Risk Simulator | Forecasting | ARIMA. 
 Enter the relevant P, D, and Q parameters (positive integers only), enter the number of forecast 

period desired, and click OK. 
 
ARIMA and AUTO ARIMA Note  
For ARIMA and Auto ARIMA, you can model and forecast future periods by either using only the 
dependent variable (Y), that is, the Time Series Variable by itself, or you can add in exogenous variables 
(X1, X2,…, Xn) just like in a regression analysis where you have multiple independent variables. You can 
run as many forecast periods as you wish if you use only the time-series variable (Y). However, if you add 
exogenous variables (X), note that your forecast period is limited to the number of exogenous variables’ 
data periods minus the time-series variable’s data periods. For example, you can only forecast up to 5 
periods if you have time-series historical data of 100 periods and only if you have exogenous variables of 
105 periods (100 historical periods to match the time-series variable and 5 additional future periods of 
independent exogenous variables to forecast the time-series dependent variable). 
 
Results Interpretation 
In interpreting the results of an ARIMA model, most of the specifications are identical to the multivariate 
regression analysis (see Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, 
Stochastic Forecasting, and Portfolio Optimization, 2nd Edition, by Dr. Johnathan Mun for more 
technical details about interpreting the multivariate regression analysis and ARIMA models). There are 
however, several additional sets of results specific to the ARIMA analysis as seen in Figure 3.14. The first 
is the addition of Akaike information criterion (AIC) and Schwarz criterion (SC), which are often used in 
ARIMA model selection and identification. That is, AIC and SC are used to determine if a particular 
model with a specific set of p, d, and q parameters is a good statistical fit. SC imposes a greater penalty 
for additional coefficients than the AIC but, generally, the model with the lowest the AIC and SC values 
should be chosen. Finally, an additional set of results called the autocorrelation (AC) and partial 
autocorrelation (PAC) statistics are provided in the ARIMA report.  
 
For instance, if autocorrelation AC(1) is nonzero, it means that the series is first-order serially correlated. 
If AC dies off more or less geometrically with increasing lags, it implies that the series follows a low-
order autoregressive process. If AC drops to zero after a small number of lags, it implies that the series 
follows a low-order moving-average process. In contrast, PAC measures the correlation of values that are 
k periods apart after removing the correlation from the intervening lags. If the pattern of autocorrelation 
can be captured by an autoregression of order less than k, then the partial autocorrelation at lag k will be 
close to zero. The Ljung-Box Q-statistics and their p-values at lag k are also provided, where the null 
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hypothesis being tested is such that there is no autocorrelation up to order k. The dotted lines in the plots 
of the autocorrelations are the approximate two standard error bounds. If the autocorrelation is within 
these bounds, it is not significantly different from zero at approximately the 5% significance level. 
Finding the right ARIMA model takes practice and experience. These AC, PAC, SC, and AIC diagnostic 
tools are highly useful in helping to identify the correct model specification.  
 

 
Figure 3.13 – Box-Jenkins ARIMA Forecast Tool 
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Figure 3.14 – Box-Jenkins ARIMA Forecast Report 
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AUTO ARIMA (Box-Jenkins ARIMA Advanced Time-Series) 

Theory 
While the analyses are identical, AUTO ARIMA differs from ARIMA in automating some of the 
traditional ARIMA modeling. It automatically tests multiple permutations of model specifications and 
returns the best-fitting model. Running the Auto ARIMA is similar to regular ARIMA forecasting, with 
the difference being that the P, D, Q inputs are no longer required and different combinations of these 
inputs are automatically run and compared.  
 
Procedure 

 Start Excel and enter your data or open an existing worksheet with historical data to forecast (the 
illustration shown in Figure 3.15 uses the example file Advanced Forecasting Models in the 
Examples menu of Risk Simulator). 

 In the Auto ARIMA worksheet, select Risk Simulator | Forecasting | AUTO-ARIMA. You can 
also access this method through the forecasting icons ribbon, or right-clicking anywhere in the 
model and selecting the forecasting shortcut menu. 

 Click on the link icon and link to the existing time-series data, enter the number of forecast 
periods desired, and click OK. 

 
ARIMA and AUTO ARIMA Note  
For ARIMA and Auto ARIMA, you can model and forecast future periods by either using only the 
dependent variable (Y), that is, the Time Series Variable by itself or you can add in exogenous variables 
(X1, X2,…, Xn) just like in a regression analysis where you have multiple independent variables. You can 
run as many forecast periods as you wish if you use only the time-series variable (Y). However, if you add 
exogenous variables (X), note that your forecast period is limited to the number of exogenous variables’ 
data periods minus the time-series variable’s data periods. For example, you can only forecast up to 5 
periods if you have time-series historical data of 100 periods and only if you have exogenous variables of 
105 periods (100 historical periods to match the time-series variable and 5 additional future periods of 
independent exogenous variables to forecast the time-series dependent variable). 
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Figure 3.15 – AUTO ARIMA Module 

Basic Econometrics 

Theory 
Econometrics refers to a branch of business analytics, modeling, and forecasting techniques for modeling 
the behavior or forecasting certain business or economic variables. Running the Basic Econometrics 
models is similar to regular regression analysis except that the dependent and independent variables are 
allowed to be modified before a regression is run. The report generated and its interpretation is the same 
as shown in the Multivariate Regression section presented earlier.  
 
Procedure 

 Start Excel and enter your data or open an existing worksheet with historical data to forecast (the 
illustration shown in Figure 3.16 uses the file example file Advanced Forecasting Models in the 
Examples menu of Risk Simulator). 

 Select the data in the Basic Econometrics worksheet and select Risk Simulator | Forecasting | 
Basic Econometrics. 

 Enter the desired dependent and independent variables (see Figure 3.16 for examples) and click 
OK to run the model and report, or click on Show Results to view the results before generating the 
report in case you need to make any changes to the model 
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Figure 3.16 – Basic Econometrics Module 

 
Notes 
 

 To run an econometric model, simply select the data (B5:G55) including headers and click on 
Risk Simulator | Forecasting | Basic Econometrics. You can then type in the variables and their 
modifications for the dependent and independent variables (Figure 3.16). Note that only one 
variable is allowed as the Dependent Variable (Y), whereas multiple variables are allowed in the 
Independent Variables (X) section, separated by a semicolon (;), and that basic mathematical 
functions can be used (e.g., LN, LOG, LAG, +, -, /, *, TIME, RESIDUAL, DIFF). Click on Show 
Results to preview the computed model and click OK to generate the econometric model report. 

 You can also automatically generate Multiple Models by entering a sample model and using the 
predefined INTEGER(N) variable as well as Shifting Data up or down specific rows repeatedly. 
For instance, if you use the variable LAG(VAR1, INTEGER1) and you set INTEGER1 to be 
between MIN = 1 and MAX = 3, then the following three models will be run: LAG(VAR1,1), then 
LAG(VAR1,2), and, finally, LAG(VAR1,3). Also, sometimes you might want to test if the time-
series data has structural shifts or if the behavior of the model is consistent over time by shifting 
the data and then running the same model. For example, if you have 100 months of data listed 
chronologically, you can shift it down 3 months at a time for 10 times (i.e., the model will be run 
on months 1–100, 4–100, 7–100, etc.). Using this Multiple Models section in Basic Econometrics, 
you can run hundreds of models by simply entering a single model equation if you use these 
predefined integer variables and shifting methods.  
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J-S Curve Forecasts 

Theory 
The J curve, or exponential growth curve, is one where the growth of the next period depends on the 
current period’s level and the increase is exponential. This means that over time, the values will increase 
significantly, from one period to another. This model is typically used in forecasting biological growth 
and chemical reactions over time.  
 
Procedure 

 Start Excel and select Risk Simulator | Forecasting | JS Curves. 
 Select the J or S curve type, enter the required input assumptions (see Figures 3.17 and 3.18 for 

examples), and click OK to run the model and report. 
 
The S curve, or logistic growth curve, starts off like a J curve, with exponential growth rates. Over time, 
the environment becomes saturated (e.g., market saturation, competition, overcrowding), the growth 
slows, and the forecast value eventually ends up at a saturation or maximum level. This model is typically 
used in forecasting market share or sales growth of a new product from market introduction until maturity 
and decline, population dynamics, growth of bacterial cultures, and other naturally occurring variables. 
Figure 3.18 illustrates a sample S curve. 
 

 
Figure 3.17 – J-Curve Forecast 
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Figure 3.18 – S-Curve Forecast 

GARCH Volatility Forecasts 

Theory 
The generalized autoregressive conditional heteroskedasticity (GARCH) model is used to model 
historical and forecast future volatility levels of a marketable security (e.g., stock prices, commodity 
prices, oil prices, etc.). The data set has to be a time series of raw price levels. GARCH will first convert 
the prices into relative returns and then run an internal optimization to fit the historical data to a mean-
reverting volatility term structure, while assuming that the volatility is heteroskedastic in nature (changes 
over time according to some econometric characteristics). The theoretical specifics of a GARCH model 
are outside the purview of this user manual. For more details on GARCH models, please refer to 
Advanced Analytical Models, by Dr. Johnathan Mun (Wiley Finance, 2008). 
 
Procedure 

 Start Excel and open the example file Advanced Forecasting Model, go to the GARCH worksheet 
and select Risk Simulator | Forecasting | GARCH. 

 Click on the link icon, select the Data Location, enter the required input assumptions (see Figure 
3.19), and click OK to run the model and report. 

 
Note: The typical volatility forecast situation requires P = 1, Q = 1, Periodicity = number of periods per 
year (12 for monthly data, 52 for weekly data, 252 or 365 for daily data), Base = minimum of 1 and up to 
the periodicity value, and Forecast Periods = number of annualized volatility forecasts you wish to obtain. 
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There are several GARCH models available in Risk Simulator, including EGARCH, EGARCH-T, 
GARCH-M, GJR-GARCH, GJR-GARCH-T, IGARCH, and T-GARCH. See the chapter in Modeling 
Risk, 2nd Edition, by Dr. Johnathan Mun (Wiley Finance, 2010), on GARCH modeling for more details 
on what each specification is for.  
 

 
Figure 3.19 – GARCH Volatility Forecast  
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GARCH MODELS 
 
The accompanying table lists some of the GARCH specifications used in Risk Simulator with two 
underlying distributional assumptions: one for normal distribution and the other for the t distribution.  
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For the GARCH-M models, the conditional variance equations are the same in the six variations but the 
mean questions are different and assumption on tz can be either normal distribution or t distribution. The 

estimated parameters for GARCH-M with normal distribution are those five parameters in the mean and 
conditional variance equations. The estimated parameters for GARCH-M with the t distribution are those 
five parameters in the mean and conditional variance equations plus another parameter, the degrees of 
freedom for the t distribution. In contrast, for the GJR models, the mean equations are the same in the six 
variations and the differences are that the conditional variance equations and the assumption on tz  can be 

either a normal distribution or t distribution. The estimated parameters for EGARCH and GJR-GARCH 
with normal distribution are those four parameters in the conditional variance equation. The estimated 
parameters for GARCH, EARCH, and GJR-GARCH with t distribution are those parameters in the 
conditional variance equation plus the degrees of freedom for the t distribution. More technical details of 
GARCH methodologies fall outside of the scope of this book. 

Markov Chains 

Theory 
A Markov chain exists when the probability of a future state depends on a previous state and when linked 
together form a chain that reverts to a long-run steady state level. This approach is typically used to 
forecast the market share of two competitors. The required inputs are the starting probability of a 
customer in the first store (the first state) will return to the same store in the next period versus the 
probability of switching to a competitor’s store in the next state. 
 
Procedure 

 Start Excel and select Risk Simulator | Forecasting | Markov Chain. 
 Enter in the required input assumptions (see Figure 3.20 for an example) and click OK to run the 

model and report. 
 

Note:  
Set both probabilities to 10% and rerun the Markov chain and you will see the effects of switching 
behaviors very clearly in the resulting chart. 
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Figure 3.20 – Markov Chains (Switching Regimes) 

 

Limited Dependent Variables: Logit, Probit, Tobit Using Maximum Likelihood Estimation  

Theory 
The term Limited Dependent Variables describes the situation where the dependent variable contains data 
that are limited in scope and range, such as binary responses (0 or 1) or truncated, ordered, or censored 
data. For instance, given a set of independent variables (e.g., age, income, education level of credit card or 
mortgage loan holders), we can model the probability of default using maximum likelihood estimation 
(MLE). The response, or dependent variable Y, is binary. That is, it can have only two possible outcomes 
that we denote as 1 and 0 (e.g., Y may represent presence/absence of a certain condition, defaulted/not 
defaulted on previous loans, success/failure of some device, answer yes/no on a survey, etc.). We also 
have a vector of independent variable regressors X, which are assumed to influence the outcome Y. A 
typical ordinary least squares regression approach is invalid because the regression errors are 
heteroskedastic and non-normal, and the resulting estimated probability estimates will return nonsensical 
values of above 1 or below 0. MLE analysis handles these problems using an iterative optimization 
routine to maximize a log likelihood function when the dependent variables are limited.  
 
A Logit or Logistic regression, is used for predicting the probability of occurrence of an event by fitting 
data to a logistic curve. It is a generalized linear model used for binomial regression, and, like many 
forms of regression analysis, it makes use of several predictor variables that may be either numerical or 
categorical. MLE applied in a binary multivariate logistic analysis is used to model dependent variables to 
determine the expected probability of success of belonging to a certain group. The estimated coefficients 
for the Logit model are the logarithmic odds ratios and cannot be interpreted directly as probabilities. A 
quick computation is first required and the approach is simple.  
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Specifically, the Logit model is specified as Estimated Y = LN[Pi/(1–Pi)] or, conversely, Pi = 
EXP(Estimated Y)/(1+EXP(Estimated Y)), and the coefficients βi are the log odds ratios. So, taking the 
antilog, or EXP(βi), we obtain the odds ratio of Pi/(1–Pi). This means that with an increase in a unit of βi, 
the log odds ratio increases by this amount. Finally, the rate of change is the probability dP/dX = βiPi(1–
Pi). The standard error measures how accurate the predicted coefficients are, and the t-statistics are the 
ratios of each predicted coefficient to its standard error and are used in the typical regression hypothesis 
test of the significance of each estimated parameter. To estimate the probability of success of belonging to 
a certain group (e.g., predicting if a smoker will develop chest complications given the amount smoked 
per year), simply compute the Estimated Y value using the MLE coefficients. For example, if the model is 
Y = 1.1 + 0.005 (Cigarettes), then someone smoking 100 packs per year has an Estimated Y of 1.1 + 
0.005(100) = 1.6. Next, compute the inverse antilog of the odds ratio by EXP(Estimated Y)/[1 + 
EXP(Estimated Y)] = EXP(1.6)/(1+ EXP(1.6)) = 0.8320. So, such a person has an 83.20% chance of 
developing some chest complications in his or her lifetime.  
 
A Probit model (sometimes also known as a Normit model) is a popular alternative specification for a 
binary response model, which employs a probit function estimated using maximum likelihood estimation 
and the approach is called probit regression. The Probit and Logistic regression models tend to produce 
very similar predictions where the parameter estimates in a logistic regression tend to be 1.6 to 1.8 times 
higher than they are in a corresponding Probit model. The choice of using a Probit or Logit is entirely up 
to convenience, and the main distinction is that the logistic distribution has a higher kurtosis (fatter tails) 
to account for extreme values. For example, suppose that house ownership is the decision to be modeled, 
and this response variable is binary (home purchase or no home purchase) and depends on a series of 
independent variables Xi such as income, age, and so forth, such that Ii = β0 + β1X1 +...+ βnXn, where the 
larger the value of Ii, the higher the probability of home ownership. For each family, a critical I* threshold 
exists where, if exceeded, the house is purchased, otherwise, no home is purchased, and the outcome 
probability (P) is assumed to be normally distributed such that Pi = CDF(I) using a standard normal 
cumulative distribution function (CDF). Therefore, using the estimated coefficients exactly like those of a 
regression model and using the Estimated Y value, apply a standard normal distribution (you can use 
Excel’s NORMSDIST function or Risk Simulator's Distributional Analysis tool by selecting Normal 
distribution and setting the mean to be 0 and standard deviation to be 1). Finally, to obtain a Probit or 
probability unit measure, set Ii + 5 (because whenever the probability Pi < 0.5, the estimated Ii is 
negative, due to the fact that the normal distribution is symmetrical around a mean of zero).  
 
The Tobit Model (Censored Tobit) is an econometric and biometric modeling method used to describe the 
relationship between a non-negative dependent variable Yi and one or more independent variables Xi. The 
dependent variable in a Tobit econometric model is censored; it is censored because values below zero are 
not observed. The Tobit model assumes that there is a latent unobservable variable Y*. This variable is 
linearly dependent on the Xi variables via a vector of βi coefficients that determine their interrelationships. 
In addition, there is a normally distributed error term Ui to capture random influences on this relationship. 
The observable variable Yi is defined to be equal to the latent variables whenever the latent variables are 
above zero and is assumed to be zero otherwise. That is, Yi = Y* if Y* > 0 and Yi = 0 if Y* = 0. If the 
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relationship parameter βi is estimated by using ordinary least squares regression of the observed Yi on Xi, 
the resulting regression estimators are inconsistent and yield downward-biased slope coefficients and an 
upward-biased intercept. Only MLE would be consistent for a Tobit model. In the Tobit model, there is an 
ancillary statistic called sigma, which is equivalent to the standard error of estimate in a standard ordinary 
least squares regression, and the estimated coefficients are used the same way as a regression analysis. 
 
Procedure 

 Start Excel and open the example file Advanced Forecasting Model, go to the MLE worksheet, 
select the data set including the headers, and click on Risk Simulator | Forecasting | Maximum 
Likelihood. 

 Select the dependent variable from the drop-down list (see Figure 3.21) and click OK to run the 
model and report. 

 

 
Figure 3.21 – Maximum Likelihood Module 
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Spline (Cubic Spline Interpolation and Extrapolation) 

Theory 
Sometimes there are missing values in a time-series data set. For instance, interest rates for years 1 to 3 
may exist, followed by years 5 to 8, and then year 10. Spline curves can be used to interpolate the missing 
years’ interest rate values based on the data that exist. Spline curves can also be used to forecast or 
extrapolate values of future time periods beyond the time period of available data. The data can be linear 
or nonlinear. Figure 3.22 illustrates how a cubic spline is run and Figure 3.23 shows the resulting forecast 
report from this module. The Known X values represent the values on the x-axis of a chart (in our 
example, this is Years of the known interest rates, and, usually, the x-axis values are those that are known 
in advance such as time or years) and the Known Y values represent the values on the y-axis (in our case, 
the known Interest Rates). The y-axis variable is typically the variable you wish to interpolate missing 
values from or extrapolate the values into the future.  
 

 
Figure 3.22 – Cubic Spline Module 
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Procedure 
 Start Excel and open the example file Advanced Forecasting Model, go to the Cubic Spline 

worksheet, select the data set excluding the headers, and click on Risk Simulator | Forecasting | 
Cubic Spline. 

 The data location is automatically inserted into the user interface if you first select the data, or 
you can also manually click on the link icon and link the Known X values and Known Y values 
(see Figure 3.22 for an example), then enter in the required Starting and Ending values to 
extrapolate and interpolate, as well as the required Step Size between these starting and ending 
values. Click OK to run the model and report (see Figure 3.23). 

 
 

 

 
Figure 3.23 – Spline Forecast Results 
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 4. OPTIMIZATION 

This chapter looks at the optimization process and methodologies in more detail in connection with using 
Risk Simulator. These methodologies include the use of continuous versus discrete integer optimization, 
as well as static versus dynamic and stochastic optimizations.  

Optimization Methodologies 

Many algorithms exist to run optimization, and many different procedures exist when optimization is 
coupled with Monte Carlo simulation. In Risk Simulator, there are three distinct optimization procedures 
and optimization types as well as different decision variable types. For instance, Risk Simulator can 
handle Continuous Decision Variables (1.2535, 0.2215, etc.) as well as Integers Decision Variables (1, 
2, 3, 4, etc.), Binary Decision Variables (1 and 0 for go and no-go decisions), and Mixed Decision 
Variables (both integers and continuous variables). On top of that, Risk Simulator can handle Linear 
Optimization (i.e., when both the objective and constraints are all linear equations and functions) as well 
as Nonlinear Optimizations (i.e., when the objective and constraints are a mixture of linear and nonlinear 
functions and equations).  
 
As far as the optimization process is concerned, Risk Simulator can be used to run a Discrete 
Optimization, that is, an optimization that is run on a discrete or static model, where no simulations are 
run. In other words, all the inputs in the model are static and unchanging. This optimization type is 
applicable when the model is assumed to be known and no uncertainties exist. Also, a discrete 
optimization can be first run to determine the optimal portfolio and its corresponding optimal allocation 
of decision variables before more advanced optimization procedures are applied. For instance, before 
running a stochastic optimization problem, a discrete optimization is first run to determine if there exist 
solutions to the optimization problem before a more protracted analysis is performed.  
 
Next, Dynamic Optimization is applied when Monte Carlo simulation is used together with optimization. 
Another name for such a procedure is Simulation-Optimization. That is, a simulation is first run, then the 
results of the simulation are then applied in the Excel model, and then an optimization is applied to the 
simulated values. In other words, a simulation is run for N trials, and then an optimization process is run 
for M iterations until the optimal results are obtained or an infeasible set is found. That is, using Risk 
Simulator’s optimization module, you can choose which forecast and assumption statistics to use and 
replace in the model after the simulation is run. Then, these forecast statistics can be applied in the 
optimization process. This approach is useful when you have a large model with many interacting 
assumptions and forecasts, and when some of the forecast statistics are required in the optimization. For 
example, if the standard deviation of an assumption or forecast is required in the optimization model (e.g., 
computing the Sharpe ratio in asset allocation and optimization problems where we have mean divided by 
standard deviation of the portfolio), then this approach should be used.  
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The Stochastic Optimization process, in contrast, is similar to the dynamic optimization procedure with 
the exception that the entire dynamic optimization process is repeated T times. That is, a simulation with 
N trials is run, and then an optimization is run with M iterations to obtain the optimal results. Then the 
process is replicated T times. The results will be a forecast chart of each decision variable with T values. 
In other words, a simulation is run and the forecast or assumption statistics are used in the optimization 
model to find the optimal allocation of decision variables. Then, another simulation is run, generating 
different forecast statistics, and these new updated values are then optimized, and so forth. Hence, the 
final decision variables will each have their own forecast chart, indicating the range of the optimal 
decision variables. For instance, instead of obtaining single-point estimates in the dynamic optimization 
procedure, you can now obtain a distribution of the decision variables and, hence, a range of optimal 
values for each decision variable, also known as a stochastic optimization.  
 
Finally, an Efficient Frontier optimization procedure applies the concepts of marginal increments and 
shadow pricing in optimization. That is, what would happen to the results of the optimization if one of the 
constraints were relaxed slightly? Say, for instance, the budget constraint is set at $1 million. What would 
happen to the portfolio’s outcome and optimal decisions if the constraint were now $1.5 million, or $2 
million, and so forth? This is the concept of the Markowitz efficient frontiers in investment finance, 
whereby one can determine what additional returns the portfolio will generate if the portfolio standard 
deviation is allowed to increase slightly. This process is similar to the dynamic optimization process with 
the exception that one of the constraints is allowed to change, and with each change, the simulation and 
optimization process is run. This process is best applied manually using Risk Simulator. That is, run a 
dynamic or stochastic optimization, then rerun another optimization with a constraint, and repeat that 
procedure several times. This manual process is important because by changing the constraint, the analyst 
can determine if the results are similar or different, and, hence, whether it is worthy of any additional 
analysis, or the analyst can determine how far a marginal increase in the constraint should be to obtain a 
significant change in the objective and decision variables.  
 
One item is worthy of consideration. There exist other software products that supposedly perform 
stochastic optimization but, in fact, they do not. For instance, after a simulation is run, then one iteration 
of the optimization process is generated, and then another simulation is run, then the second optimization 
iteration is generated and so forth. This approach is simply a waste of time and resources. That is, in 
optimization, the model is put through a rigorous set of algorithms, where multiple iterations (ranging 
from several to thousands of iterations) are required to obtain the optimal results. Hence, generating one 
iteration at a time is a waste of time and resources. The same portfolio can be solved using Risk 
Simulator in under a minute as compared to multiple hours using such a backward approach. Also, such a 
simulation-optimization approach will typically yield bad results, and it is not a stochastic optimization 
approach. Be extremely careful of such methodologies when applying optimization to your models.  
 
The next two sections provide examples of optimization problems. One uses continuous decision 
variables while the other uses discrete integer decision variables. In either model, you can apply discrete 
optimization, dynamic optimization, stochastic optimization, or even the efficient frontiers with shadow 
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pricing. Any of these approaches can be used for these two examples. Therefore, for simplicity, only the 
model setup is illustrated and it is up to the user to decide which optimization process to run. Also, the 
continuous model uses the nonlinear optimization approach (because the portfolio risk computed is a 
nonlinear function, and the objective is a nonlinear function of portfolio returns divided by portfolio risks) 
and integer optimization is an example of a linear optimization model (its objective and all of its 
constraints are linear). Therefore, these two examples encapsulate all of the procedures aforementioned. 

Optimization with Continuous Decision Variables 

Figure 4.1 illustrates the sample continuous optimization model. The example here uses the Continuous 
Optimization file found either on the start menu at Start | Real Options Valuation | Risk Simulator | 
Examples or accessed directly through Risk Simulator | Example Models. In this example, there are 10 
distinct asset classes (e.g., different types of mutual funds, stocks, or assets) where the idea is to most 
efficiently and effectively allocate the portfolio holdings such that the best bang for the buck is obtained; 
that is, to generate the best portfolio returns possible given the risks inherent in each asset class. To truly 
understand the concept of optimization, we will have to delve deeply into this sample model to see how 
the optimization process can best be applied.  
 
As mentioned, the model shows the 10 asset classes each with its own set of annualized returns and 
annualized volatilities. These return and risk measures are annualized values such that they can be 
consistently compared across different asset classes. Returns are computed using the geometric average of 
the relative returns, while the risks are computed using the logarithmic relative stock returns approach.  

 
Figure 4.1 – Continuous Optimization Model  
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Referring to Figure 4.1, column E (Allocation Weights) holds the decision variables, which are the 
variables that need to be tweaked and tested such that the total weight is constrained at 100% (cell E17). 
Typically, to start the optimization, we set these cells to a uniform value, where in this case, cells E6 to 
E15 are set at 10% each. In addition, each decision variable may have specific restrictions in its allowed 
range. In this example, the lower and upper allocations allowed are 5% and 35%, as seen in columns F 
and G. This means that each asset class may have its own allocation boundaries. Next, column H shows 
the return to risk ratio, which is simply the return percentage divided by the risk percentage, where the 
higher this value, the higher the bang for the buck. Columns I through L show the individual asset class 
rankings by returns, risk, return to risk ratio, and allocation. In other words, these rankings show at a 
glance which asset class has the lowest risk, or the highest return, and so forth.  
 
The portfolio’s total returns in cell C17 is SUMPRODUCT(C6:C15, E6:E15), that is, the sum of the 
allocation weights multiplied by the annualized returns for each asset class. In other words, we 
have DDCCBBAAP RRRRR   , where RP is the return on the portfolio, RA,B,C,D are the 

individual returns on the projects, and A,B,C,D are the respective weights, or capital allocation, across each 
project.  
 
In addition, the portfolio’s diversified risk in cell D17 is computed by taking 
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 . Here, i,j are the respective cross-correlations between the 

asset classes––hence, if the cross-correlations are negative, there are risk diversification effects, and the 
portfolio risk decreases. However, to simplify the computations here, we assume zero correlations among 
the asset classes through this portfolio risk computation, but assume the correlations when applying 
simulation on the returns as will be seen later. Therefore, instead of applying static correlations among 
these different asset returns, we apply the correlations in the simulation assumptions themselves, creating 
a more dynamic relationship among the simulated return values.  
 
Finally, the return to risk ratio, or Sharpe ratio, is computed for the portfolio. This value is seen in cell 
C18, and represents the objective to be maximized in this optimization exercise. To summarize, we have 
the following specifications in this example model: 
 
Objective:    Maximize Return to Risk Ratio (C18)   
Decision Variables:   Allocation Weights (E6:E15)   
Restrictions on Decision Variables: Minimum and Maximum Required (F6:G15)   
Constraints:    Total Allocation Weights Sum to 100% (E17) 
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Procedure 
 Open the example file and start a new profile by clicking on Risk Simulator | New Profile and 

provide it a name. 
 The first step in optimization is to set the decision variables. Select cell E6, set the first decision 

variable (Risk Simulator | Optimization | Set Decision), and click on the link icon to select the 
name cell (B6), as well as the lower bound and upper bound values at cells F6 and G6. Then, 
using Risk Simulator’s copy, copy this cell E6 decision variable and paste it to the remaining 
cells in E7 to E15.  

 The second step in optimization is to set the constraint. There is only one constraint here, that is, 
the total allocation in the portfolio must sum to 100%. So, click on Risk Simulator | 
Optimization | Constraints… and select ADD to add a new constraint. Then, select the cell E17 
and make it equal (=) to 100%. Click OK when done.  

 The final step in optimization is to set the objective function and start the optimization by 
selecting the objective cell C18 and Risk Simulator | Optimization | Run Optimization and 
then selecting the optimization of choice (Static Optimization, Dynamic Optimization, or 
Stochastic Optimization). To get started, select Static Optimization. Check to make sure the 
objective cell is set for C18 and select Maximize. You can now review the decision variables and 
constraints if required, or click OK to run the static optimization.  

 Once the optimization is complete, you may select Revert to revert back to the original values of 
the decision variables as well as the objective, or select Replace to apply the optimized decision 
variables. Typically, Replace is chosen after the optimization is done.  

 
Figure 4.2 shows the screen shots of these procedural steps. You can add simulation assumptions on the 
model’s returns and risk (columns C and D) and apply the dynamic optimization and stochastic 
optimization for additional practice.  
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Figure 4.2 Running Continuous Optimization in Risk Simulator 
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Results Interpretation 
The optimization’s final results are shown in Figure 4.3, where the optimal allocation of assets for the 
portfolio is seen in cells E6:E15. That is, given the restrictions of each asset fluctuating between 5% and 
35%, and where the sum of the allocation must equal 100%, the allocation that maximizes the return to 
risk ratio can be identified from the data provided in Figure 4.3.  
 
A few important things have to be noted when reviewing the results and optimization procedures 
performed thus far: 
 

 The correct way to run the optimization is to maximize the bang for the buck, or returns to risk 
Sharpe ratio, as we have done.  

 If instead we maximized the total portfolio returns, the optimal allocation result is trivial and does 
not require optimization to obtain. That is, simply allocate 5% (the minimum allowed) to the 
lowest eight assets, 35% (the maximum allowed) to the highest returning asset, and the remaining 
(25%) to the second-best returns asset. Optimization is not required. However, when allocating 
the portfolio this way, the risk is a lot higher as compared to when maximizing the returns to risk 
ratio, although the portfolio returns by themselves are higher.  

 In contrast, one can minimize the total portfolio risk, but the returns will now be less.  
 
Table 4.1 illustrates the results from the three different objectives being optimized and shows that the best 
approach is to maximize the returns to risk ratio, that is, for the same amount of risk, this allocation 
provides the highest amount of return. Conversely, for the same amount of return, this allocation provides 
the lowest amount of risk possible. This approach of bang for the buck, or returns to risk ratio, is the 
cornerstone of the Markowitz efficient frontier in modern portfolio theory. That is, if we constrained the 
total portfolio risk level and successively increased it over time, we will obtain several efficient portfolio 
allocations for different risk characteristics. Thus, different efficient portfolio allocations can be obtained 
for different individuals with different risk preferences.  
 
 

Objective 
   

Portfolio 
Returns 

Portfolio 
Risk 

Portfolio 
Returns to 
Risk Ratio 

Maximize Returns to Risk Ratio 12.69% 4.52% 2.8091 
Maximize Returns    13.97% 6.77% 2.0636 
Minimize Risk   12.38% 4.46% 2.7754 

 
Table 4.1 – Optimization Results 

 
 



User Manual (Risk Simulator Software)   119 © 2005-2011 Real Options Valuation, Inc.  
 

 
Figure 4.3 – Continuous Optimization Results  

Optimization with Discrete Integer Variables 

Sometimes, the decision variables are not continuous but are discrete integers (e.g., 0 and 1). We can use 
optimization with discrete integer variables as on-off switches or go/no-go decisions. Figure 4.4 illustrates 
a project selection model with 12 projects listed. The example here uses the Discrete Optimization file 
found either on the start menu at Start | Real Options Valuation | Risk Simulator | Examples or 
accessed directly through Risk Simulator | Example Models. Each project has its own returns (ENPV 
and NPV, for expanded net present value and net present value––the ENPV is simply the NPV plus any 
strategic real options values), costs of implementation, risks, and so forth. If required, this model can be 
modified to include required full-time equivalences (FTE) and other resources of various functions, and 
additional constraints can be set on these additional resources. The inputs into this model are typically 
linked from other spreadsheet models. For instance, each project will have its own discounted cash flow 
or returns on investment model. The application here is to maximize the portfolio’s Sharpe ratio subject to 
some budget allocation. Many other versions of this model can be created, for instance, maximizing the 
portfolio returns or minimizing the risks, or adding constraints where the total number of projects chosen 
cannot exceed 6, and so forth and so on. All of these items can be run using this existing model.  
 
Procedure 

 Open the example file and start a new profile by clicking on Risk Simulator | New Profile and 
provide it a name. 

 The first step in optimization is to set up the decision variables. Set the first decision variable by 
selecting cell J4, select Risk Simulator | Optimization | Set Decision, click on the link icon to 
select the name cell (B4), and select the Binary variable. Then, using Risk Simulator’s copy, 
copy this cell J4 decision variable and paste the decision variable to the remaining cells in J5 to 
J15. This is the best method if you have only several decision variables and you can name each 
decision variable with a unique name for identification later.  

 The second step in optimization is to set the constraint. There are two constraints here: the total 
budget allocation in the portfolio must be less than $5,000 and the total number of projects must 
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not exceed 6. So, click on Risk Simulator | Optimization | Constraints… and select ADD to 
add a new constraint. Then, select the cell D17 and make it less than or equal to (<=) 5000. 
Repeat by setting cell J17 <= 6.  

 The final step in optimization is to set the objective function and start the optimization by 
selecting cell C19 and Risk Simulator | Optimization | Set Objective. Then run the 
optimization using Risk Simulator | Optimization | Run Optimization and selecting the 
optimization of choice (Static Optimization, Dynamic Optimization, or Stochastic Optimization). 
To get started, select Static Optimization. Check to make sure that the objective cell is either the 
Sharpe ratio or portfolio returns to risk ratio and select Maximize. You can now review the 
decision variables and constraints if required, or click OK to run the static optimization.  

 
Figure 4.5 shows the screen shots of these procedural steps. You can add simulation assumptions on the 
model’s ENPV and risk (columns C and E), and apply the dynamic optimization and stochastic 
optimization for additional practice.  
 

 
 

Figure 4.4 – Discrete Integer Optimization Model  
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Figure 4.5 – Running Discrete Integer Optimization in Risk Simulator 
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Results Interpretation 
Figure 4.6 shows a sample optimal selection of projects that maximizes the Sharpe ratio. In 
contrast, one can always maximize total revenues, but, as before, this is a trivial process and 
simply involves choosing the highest returning project and going down the list until you run out 
of money or exceed the budget constraint. Doing so will yield theoretically undesirable projects 
as the highest yielding projects typically hold higher risks. Now, if desired, you can replicate the 
optimization using a stochastic or dynamic optimization by adding assumptions in the ENPV 
and/or cost, and/or risk values.  
 

 
Figure 4.6 – Optimal Selection of Projects That Maximizes the Sharpe Ratio 

 
For additional hands-on examples of optimization in action, see the case study in Chapter 11 on 
Integrated Risk Management in the book, Real Options Analysis: Tools and Techniques, 2nd 
Edition (Wiley Finance, 2005), by Dr. Johnathan Mun. That case study illustrates how an 
efficient frontier can be generated and how forecasting, simulation, optimization, and real options 
can be combined into a seamless analytical process. 
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Efficient Frontier and Advanced Optimization Settings 

The middle graphic in Figure 4.5 shows the constraints set for the example optimization. Within 
this function, if you click on the Efficient Frontier button after you have set some constraints, you 
can make the constraints changing. That is, each of the constraints can be created to step through 
between some maximum and minimum value. As an example, the constraint in cell J17 <= 6 can 
be set to run between 4 and 8 (Figure 4.7). Thus, five optimizations will be run, each with the 
following constraints: J17 <= 4, J17 <= 5, J17 <= 6, J17 <= 7, and J17 <= 8. The optimal results 
will then be plotted as an efficient frontier and the report will be generated (Figure 4.8). 
Specifically, here are the steps required to create a changing constraint: 
 

 In an optimization model (i.e., a model with Objective, Decision Variables, and 
Constraints already set up), click on Risk Simulator | Optimization | Constraints and 
click on Efficient Frontier. 

 Select the constraint you want to change or step (e.g., J17), enter in the parameters for 
Min, Max, and Step Size (Figure 4.7), click ADD, and then click OK and OK again. You 
should deselect the D17 <= 5000 constraint before running. 

 Run Optimization as usual (Risk Simulator | Optimization | Run Optimization). You 
can choose static, dynamic, or stochastic.  

 The results will be shown as a user interface (Figure 4.8). Click on Create Report to 
generate a report worksheet with all the details of the optimization runs. 

 
Figure 4.7 – Generating Changing Constraints in an Efficient Frontier 
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Figure 4.8 – Efficient Frontier Results 

Stochastic Optimization  

This example illustrates the application of stochastic optimization using a sample model with four 
asset classes each with different risk and return characteristics. The idea here is to find the best 
portfolio allocation such that the portfolio’s bang for the buck, or returns to risk ratio, is 
maximized. That is, the goal is to allocate 100% of an individual’s investment among several 
different asset classes (e.g., different types of mutual funds or investment styles: growth, value, 
aggressive growth, income, global, index, contrarian, momentum, etc.). This model is different 
from others in that there exists several simulation assumptions (risk and return values for each 
asset in columns C and D), as seen in Figure 4.9.  
    
A simulation is run, then optimization is executed, and the entire process is repeated multiple 
times to obtain distributions of each decision variable. The entire analysis can be automated using 
Stochastic Optimization.  To run an optimization, several key specifications on the model have to 
be identified first:  
Objective:     Maximize Return to Risk Ratio (C12)  
Decision Variables:    Allocation Weights (E6:E9)  
Restrictions on Decision Variables:  Minimum and Maximum Required (F6:G9)  
Constraints:     Portfolio Total Allocation Weights 100%  

(E11 is set to 100%)  
Simulation Assumptions:   Return and Risk Values (C6:D9) 
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The model shows the various asset classes. Each asset class has its own set of annualized returns 
and annualized volatilities. These return and risk measures are annualized values such that they 
can be consistently compared across different asset classes. Returns are computed using the 
geometric average of the relative returns, while the risks are computed using the logarithmic 
relative stock returns approach.   
   
In Figure 4.9, column E (Allocation Weights) holds the decision variables, which are the 
variables that need to be tweaked and tested such that the total weight is constrained at 100% (cell 
E11). Typically, to start the optimization, we set these cells to a uniform value. In this case, cells 
E6 to E9 are set at 25% each. In addition, each decision variable may have specific restrictions in 
its allowed range. In this example, the lower and upper allocations allowed are 10% and 40%, as 
seen in columns F and G. This setting means that each asset class may have its own allocation 
boundaries.     
 

 
Figure 4.9 – Asset Allocation Model Ready for Stochastic Optimization 

 
Next, column H shows the return to risk ratio, which is simply the return percentage divided by 
the risk percentage for each asset, where the higher this value, the higher the bang for the buck. 
The remaining parts of the model show the individual asset class rankings by returns, risk, return 
to risk ratio, and allocation. In other words, these rankings show at a glance which asset class has 
the lowest risk, or the highest return, and so forth. 
 
Running an Optimization  
To run this model, simply click on Risk Simulator | Optimization | Run Optimization. 
Alternatively, and for practice, you can set up the model using the following steps illustrated in 
Figure 4.10: 
 Start a new profile (Risk Simulator | New Profile). 

1. For stochastic optimization, set distributional assumptions on the risk and returns for 
each asset class. That is, select cell C6, set an assumption (Risk Simulator | Set 
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Input Assumption), and designate your own assumption as required. Repeat for cells 
C7 to D9.  

2. Select cell E6, and define the decision variable (Risk Simulator | Optimization | Set 
Decision or click on the Set Decision D icon) and make it a Continuous Variable. 
Then link the decision variable’s name and minimum/maximum required to the 
relevant cells (B6, F6, G6). 

3. Then use Risk Simulator’s copy on cell E6, select cells E7 to E9, and use Risk 
Simulator’s paste (Risk Simulator | Copy Parameter and Risk Simulator | Paste 
Parameter or use the copy and paste icons). Remember not to use Excel’s regular 
copy and paste functions. 

4. Next, set up the optimization’s constraints by selecting Risk Simulator | 
Optimization | Constraints, selecting ADD, and selecting the cell E11 and making it 
equal 100% (total allocation, and do not forget the % sign). 

5. Select cell C12, the objective to be maximized, and make it the objective: Risk 
Simulator | Optimization | Set Objective or click on the O icon.   

6. Run the optimization by going to Risk Simulator | Optimization | Run 
Optimization. Review the different tabs to make sure that all the required inputs in 
steps 2 and 3 are correct. Select Stochastic Optimization and let it run for 500 trials 
repeated 20 times. Click OK when the simulation completes and a detailed stochastic 
optimization report will be generated along with forecast charts of the decision 
variables. 

  



User Manual (Risk Simulator Software)   127 © 2005-2011 Real Options Valuation, Inc.  
 

 

 
Figure 4.10 – Setting Up the Stochastic Optimization Problem 
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Viewing and Interpreting Forecast Results 
Stochastic optimization is performed when a simulation is run first and then the optimization is 
run. Then the whole analysis is repeated multiple times. As shown in Figure 4.11 for the example 
optimization, the result is a distribution of each decision variable rather than a single-point 
estimate. This means that instead of saying you should invest 30.69% in Asset 1, the results show 
that the optimal decision is to invest between 30.35% and 31.04% as long as the total portfolio 
sums to 100%. This way, the results provide management or decision makers a range of 
flexibility in the optimal decisions while accounting for the risks and uncertainties in the inputs.   
 
Notes 

 Super Speed Simulation with Optimization. You can also run stochastic optimization 
with super speed simulation. To do this, first reset the optimization by resetting all four 
decision variables back to 25%. Next, Run Optimization, click on the Advanced button 
(Figure 4.10), and select the checkbox for Run Super Speed Simulation. Then, in the run 
optimization user interface, select Stochastic Optimization on the Method tab and set it to 
run 500 trials and 20 optimization runs, and click OK. This approach will integrate the 
super speed simulation with optimization. Notice how much faster the stochastic 
optimization runs. You can now quickly rerun the optimization with a higher number of 
simulation trials.     

 Simulation Statistics for Stochastic and Dynamic Optimization. Notice that if there 
are input simulation assumptions in the optimization model (i.e., these input assumptions 
are required in order to run the dynamic or stochastic optimization routines), the Statistics 
tab is now populated in the Run Optimization user interface. You can select from the 
drop-down list the statistics you want, such as average, standard deviation, coefficient of 
variation, conditional mean, conditional variance, a specific percentile, and so forth. This 
means that if you run a stochastic optimization, a simulation of thousands of trials will 
first run, then the selected statistic will be computed and this value will be temporarily 
placed in the simulation assumption cell, then an optimization will be run based on this 
statistic, and then the entire process is repeated multiple times. This method is important 
and useful for banking applications in computing conditional Value at Risk, or 
conditional VaR.  
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Figure 4.11 – Simulated Results from the Stochastic Optimization Approach 
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  5. RISK SIMULATOR ANALYTICAL TOOLS 

This chapter covers Risk Simulator’s analytical tools, providing detailed discussions of the 
applicability of each tool and through example applications, complete with step-by-step 
illustrations. These tools are very valuable to analysts working in the realm of risk analysis. 

Tornado and Sensitivity Tools in Simulation 

Theory 
Tornado analysis is a powerful simulation tool that captures the static impacts of each variable on 
the outcome of the model. That is, the tool automatically perturbs each variable in the model a 
preset amount, captures the fluctuation on the model’s forecast or final result, and lists the 
resulting perturbations ranked from the most significant to the least. Figures 5.1 through 5.6 
illustrate the application of a tornado analysis. For instance, Figure 5.1 is a sample discounted 
cash flow model where the input assumptions in the model are shown. The question is what are 
the critical success drivers that affect the model’s output the most? That is, what really drives the 
net present value of $96.63 or which input variable impacts this value the most?  
 
The tornado chart tool can be accessed through Risk Simulator  | Tools | Tornado Analysis. To 
follow along the first example, open the Tornado and Sensitivity Charts (Linear) file in the 
examples folder. Figure 5.2 shows this sample model where cell G6 containing the net present 
value is chosen as the target result to be analyzed. The target cell’s precedents in the model are 
used in creating the tornado chart. Precedents are all the input and intermediate variables that 
affect the outcome of the model. For instance, if the model consists of A = B + C, and where C = 
D + E, then B, D, and E are the precedents for A (C is not a precedent as it is only an intermediate 
calculated value). Figure 5.2 also shows the testing range of each precedent variable used to 
estimate the target result. If the precedent variables are simple inputs, then the testing range will 
be a simple perturbation based on the range chosen (e.g., the default is ±10%). Each precedent 
variable can be perturbed at different percentages if required. A wider range is important as it is 
better able to test extreme values rather than smaller perturbations around the expected values. In 
certain circumstances, extreme values may have a larger, smaller, or unbalanced impact (e.g., 
nonlinearities may occur where increasing or decreasing economies of scale and scope creep in 
for larger or smaller values of a variable) and only a wider range will capture this nonlinear 
impact.  
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Figure 5.1 – Sample Model 
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Procedure  
 Select the single output cell (i.e., a cell with a function or equation) in an Excel model 

(e.g., cell G6 is selected in our example). 
 Select Risk Simulator | Tools | Tornado Analysis.  
 Review the precedents and rename them as needed (renaming the precedents to shorter 

names allows a more visually pleasing tornado and spider chart), and click OK. 
 

 
Figure 5.2 – Running Tornado Analysis  
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 Results Interpretation  
Figure 5.3 shows the resulting tornado analysis report, which indicates that capital investment has 
the largest impact on net present value, followed by tax rate, average sale price, quantity 
demanded of the product lines, and so forth. The report contains four distinct elements: 
 

 A statistical summary listing the procedure performed.  
 A sensitivity table (Figure 5.4) showing the starting NPV base value of 96.63 and how 

each input is changed (e.g., Investment is changed from $1,800 to $1,980 on the upside 
with a +10% swing, and from $1,800 to $1,620 on the downside with a –10% swing. The 
resulting upside and downside values on NPV is –$83.37 and $276.63, with a total 
change of $360, making investment the variable with the highest impact on NPV.) The 
precedent variables are ranked from the highest impact to the lowest impact.  

 A spider chart (Figure 5.5) illustrating the effects graphically. The y-axis is the NPV 
target value while the x-axis depicts the percentage change on each of the precedent 
values (the central point is the base case value at 96.63 at 0% change from the base value 
of each precedent). A positively sloped line indicates a positive relationship or effect, 
while negatively sloped lines indicate a negative relationship (e.g., Investment is 
negatively sloped, which means that the higher the investment level, the lower the NPV). 
The absolute value of the slope indicates the magnitude of the effect (a steep line 
indicates a higher impact on the NPV y-axis given a change in the precedent x-axis).  

 A tornado chart illustrating the effects in another graphical manner, where the highest 
impacting precedent is listed first. The x-axis is the NPV value, with the center of the 
chart being the base case condition. Green bars in the chart indicate a positive effect, 
while red bars indicate a negative effect. Therefore, for investments, the red bar on the 
right side indicates a negative effect of investment on higher NPV––in other words, 
capital investment and NPV are negatively correlated. The opposite is true for price and 
quantity of products A to C (their green bars are on the right side of the chart).  
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Precedent Cell
Output 

Downside
Output 
Upside

Effective 
Range

Input 
Downside

Input 
Upside

Base Case 
Value

Investment $276.63 ($83.37) 360.00 $1,620.00 $1,980.00 $1,800.00
Tax Rate $219.73 ($26.47) 246.20 36.00% 44.00% 40.00%
A Price $3.43 $189.83 186.40 $9.00 $11.00 $10.00
B Price $16.71 $176.55 159.84 $11.03 $13.48 $12.25
A Quantity $23.18 $170.07 146.90 45.00 55.00 50.00
B Quantity $30.53 $162.72 132.19 31.50 38.50 35.00
C Price $40.15 $153.11 112.96 $13.64 $16.67 $15.15
C Quantity $48.05 $145.20 97.16 18.00 22.00 20.00
Discount Rate $138.24 $57.03 81.21 13.50% 16.50% 15.00%
Price Erosion $116.80 $76.64 40.16 4.50% 5.50% 5.00%
Sales Growth $90.59 $102.69 12.10 1.80% 2.20% 2.00%
Depreciation $95.08 $98.17 3.08 $9.00 $11.00 $10.00
Interest $97.09 $96.16 0.93 $1.80 $2.20 $2.00
Amortization $96.16 $97.09 0.93 $2.70 $3.30 $3.00
Capex $96.63 $96.63 0.00 $0.00 $0.00 $0.00
Net Capital $96.63 $96.63 0.00 $0.00 $0.00 $0.00

Result

Base Value: 96.6261638553219 Input Changes

Tornado and Spider Charts

Statistical Summary

One of the powerful simulation tools is the tornado chart枛 it captures the static impacts of each variable on the outcome of the model. That is, the tool automatically perturbs each
precedent variable in the model a user-specified preset amount, captures the fluctuation on the model抯 forecast or final result, and lists the resulting perturbations ranked from the most
significant to the least. Precedents are all the input and intermediate variables that affect the outcome of the model. For instance, if the model consists of A = B + C, where C = D + E,
then B, D, and E are the precedents for A (C is not a precedent as it is only an intermediate calculated value). The range and number of values perturbed is user-specified and can be set
to test extreme values rather than smaller perturbations around the expected values. In certain circumstances, extreme values may have a larger, smaller, or unbalanced impact (e.g.,
nonlinearities may occur where increasing or decreasing economies of scale and scope creep occurs for larger or smaller values of a variable) and only a wider range will capture this
nonlinear impact.

A tornado chart lists all the inputs that drive the model, starting from the input variable that has the most effect on the results. The chart is obtained by perturbing each precedent input at
some consistent range (e.g., ? 0% from the base case) one at a time, and comparing their results to the base case. A spider chart looks like a spider with a central body and its many
legs protruding. The positively sloped lines indicate a positive relationship, while a negatively sloped line indicates a negative relationship. Further, spider charts can be used to visualize
linear and nonlinear relationships. The tornado and spider charts help identify the critical success factors of an output cell in order to identify the inputs to simulate. The identified critical
variables that are uncertain are the ones that should be simulated. Do not waste time simulating variables that are neither uncertain nor have little impact on the results.

 
Figure 5.3 – Tornado Analysis Report  

 
Notes 
Remember that tornado analysis is a static sensitivity analysis applied on each input variable in 
the model––that is, each variable is perturbed individually and the resulting effects are tabulated. 
This approach makes tornado analysis a key component to execute before running a simulation. 
One of the very first steps in risk analysis is capturing and identifying the most important impact 
drivers in the model. The next step is to identify which of these important impact drivers are 
uncertain. These uncertain impact drivers are the critical success drivers of a project, where the 
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results of the model depend on these critical success drivers. These variables are the ones that 
should be simulated. Do not waste time simulating variables that are neither uncertain nor have 
little impact on the results. Tornado charts assist in identifying these critical success drivers 
quickly and easily. Following this example, it might be that price and quantity should be 
simulated, assuming that the required investment and effective tax rate are both known in 
advance and unchanging.  
 

 
Figure 5.4 – Sensitivity Table 

 
Figure 5.5 – Spider Chart 
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Figure 5.6 – Tornado Chart  

 
Although the tornado chart is easier to read, the spider chart is important for determining if there 
are any nonlinearities in the model. For instance, Figure 5.7 shows another spider chart where 
nonlinearities are fairly evident (the lines on the graph are not straight but curved). The model 
used is Tornado and Sensitivity Charts (Nonlinear), which uses the Black-Scholes option pricing 
model as an example. Such nonlinearities cannot be ascertained from a tornado chart and may be 
important information in the model or provide decision makers with important insight into the 
model’s dynamics.  
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Figure 5.7 – Nonlinear Spider Chart 

 
Additional Notes on Tornado  
Figure 5.2 shows the Tornado analysis tool’s user interface. Notice that there are a few new 
enhancements starting in Risk Simulator version 4 and beyond. Here are some tips on running 
Tornado analysis and details on the new enhancements: 
 

 Tornado analysis should never be run just once. It is meant as a model diagnostic tool, 
which means that it should ideally be run several times on the same model. For instance, 
in a large model, Tornado can be run the first time using all of the default settings and all 
precedents should be shown (select Show All Variables). The result may be a large report 
and long (and potentially unsightly) Tornado charts. Nonetheless, this analysis provides a 
great starting point to determine how many of the precedents are considered critical 
success factors. For example, the Tornado chart may show that the first 5 variables have 
high impact on the output, while the remaining 200 variables have little to no impact, in 
which case, a second Tornado analysis is run showing fewer variables. For example, 
select the Show Top 10 Variables if the first 5 are critical, thereby creating a nice report 
and Tornado chart that shows a contrast between the key factors and less critical factors. 
(You should never show a Tornado chart with only the key variables. You need to show 
some less critical variables as a contrast to their effects on the output). Finally, the default 
testing points can be increased from the ±10% of the parameter to some larger value to 
test for nonlinearities (the Spider chart will show nonlinear lines and Tornado charts will 
be skewed to one side if the precedent effects are nonlinear). 

 Selecting Use Cell Address is always a good idea if your model is large, as it allows you 
to identify the location (worksheet name and cell address) of a precedent cell. If this 
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option is not selected, the software will apply its own fuzzy logic in an attempt to 
determine the name of each precedent variable (in a large model, the names might 
sometimes end up being confusing, with repeated variables or the names that are too 
long, possibly making the Tornado chart unsightly). 

 The Analyze This Worksheet and Analyze All Worksheets options allow you to control 
whether the precedents should only be part of the current worksheet or include all 
worksheets in the same workbook. This option comes in handy when you are only 
attempting to analyze an output based on values in the current sheet versus performing a 
global search of all linked precedents across multiple worksheets in the same workbook. 

 Selecting Use Global Setting is useful when you have a large model and wish to test all 
the precedents at, say, ±50% instead of the default 10%. Instead of having to change each 
precedent’s test values one at a time, you can select this option, change one setting and 
click somewhere else in the user interface to change the entire list of the precedents. 
Deselecting this option will allow you the control to change test points one precedent at a 
time. 

 Ignore Zero or Empty Values is an option turned on by default where precedent cells with 
zero or empty values will not be run in the Tornado analysis. This is the typical setting. 

 Highlight Possible Integer Values is an option that quickly identifies all possible 
precedent cells that currently have integer inputs. This function is sometimes important if 
your model uses switches (e.g., functions such as IF a cell is 1. then something happens, 
and IF a cell has a 0 value, something else happens, or integers such as 1, 2, 3, etc., which 
you do not wish to test). For instance, ±10% of a flag switch value of 1 will return a test 
value of 0.9 and 1.1, both of which are irrelevant and incorrect input values in the model, 
and Excel may interpret the function as an error. This option, when selected, will quickly 
highlight potential problem areas for Tornado analysis, and then you can determine 
which precedents to turn on or off manually, or you can use the Ignore Possible Integer 
Values function to turn all of them off simultaneously. 

Sensitivity Analysis 

Theory 
While tornado analysis (tornado charts and spider charts) applies static perturbations before a 
simulation run, sensitivity analysis applies dynamic perturbations created after the simulation run. 
Tornado and spider charts are the results of static perturbations, meaning that each precedent or 
assumption variable is perturbed a preset amount one at a time, and the fluctuations in the results 
are tabulated. In contrast, sensitivity charts are the results of dynamic perturbations in the sense 
that multiple assumptions are perturbed simultaneously and their interactions in the model and 
correlations among variables are captured in the fluctuations of the results. Tornado charts, 
therefore, identify which variables drive the results the most and, hence, are suitable for 
simulation, whereas sensitivity charts identify the impact to the results when multiple interacting 
variables are simulated together in the model. This effect is clearly illustrated in Figure 5.8. 
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Notice that the ranking of critical success drivers similar to the tornado chart in the previous 
examples. However, if correlations are added between the assumptions, a very different picture 
results, as shown in Figure 5.9. Notice, for instance, that price erosion had little impact on NPV, 
but when some of the input assumptions are correlated, the interaction that exists between these 
correlated variables makes price erosion have more impact.   
 
 

 
Figure 5.8 – Sensitivity Chart Without Correlations   

 

 
Figure 5.9 – Sensitivity Chart With Correlations   

 
Procedure 

 Open or create a model, define assumptions and forecasts, and run the simulation (the 
example here uses the Tornado and Sensitivity Charts (Linear) file).   

 Select Risk Simulator | Tools | Sensitivity Analysis.  
 Select the forecast of choice to analyze and click OK (Figure 5.10) 
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Figure 5.10 – Running Sensitivity Analysis  

 
Results Interpretation 
The results of the sensitivity analysis comprise a report and two key charts. The first is a 
nonlinear rank correlation chart (Figure 5.11) that ranks from highest to lowest the assumption-
forecast correlation pairs. These correlations are nonlinear and nonparametric, making them free 
of any distributional requirements (i.e., an assumption with a Weibull distribution can be 
compared to another with a beta distribution). The results from this chart are fairly similar to that 
of the tornado analysis seen previously (of course, without the capital investment value, which we 
decided was a known value and, hence, was not simulated), with one special exception: Tax rate 
was relegated to a much lower position in the sensitivity analysis chart (Figure 5.11) as compared 
to the tornado chart (Figure 5.6). This is because by itself, tax rate will have a significant impact, 
but once the other variables are interacting in the model, it appears that tax rate has less of a 
dominant effect (because tax rate has a smaller distribution as historical tax rates tend not to 
fluctuate too much, and also because tax rate is a straight percentage value of the income before 
taxes, where other precedent variables have a larger effect on). This example proves that 
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performing sensitivity analysis after a simulation run is important to ascertain if there are any 
interactions in the model and if the effects of certain variables still hold. The second chart (Figure 
5.12) illustrates the percent variation explained. That is, of the fluctuations in the forecast, how 
much of the variation can be explained by each of the assumptions after accounting for all the 
interactions among variables? Notice that the sum of all variations explained is usually close to 
100% (there are sometimes other elements that impact the model but that cannot be captured here 
directly), and if correlations exist, the sum may sometimes exceed 100% (due to the interaction 
effects that are cumulative).  
 

 
Figure 5.11 – Rank Correlation Chart  

 
Figure 5.12 – Contribution to Variance Chart 

Notes 
Tornado analysis is performed before a simulation run, while sensitivity analysis is performed 
after a simulation run. Spider charts in tornado analysis can consider nonlinearities, while rank 
correlation charts in sensitivity analysis can account for nonlinear and distributional-free 
conditions.  
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Distributional Fitting: Single Variable and Multiple Variables 

Theory 
Another powerful simulation tool is distributional fitting, that is, determining which distribution 
to use for a particular input variable in a model and what the relevant distributional parameters 
are. If no historical data exist, then the analyst must make assumptions about the variables in 
question. One approach is to use the Delphi method where a group of experts are tasked with 
estimating the behavior of each variable. For instance, a group of mechanical engineers can be 
tasked with evaluating the extreme possibilities of a spring coil’s diameter through rigorous 
experimentation or guesstimates. These values can be used as the variable’s input parameters 
(e.g., uniform distribution with extreme values between 0.5 and 1.2). When testing is not possible 
(e.g., market share and revenue growth rate), management can still make estimates of potential 
outcomes and provide the best-case, most-likely case, and worst-case scenarios.  
 
However, if reliable historical data are available, distributional fitting can be accomplished. 
Assuming that historical patterns hold and that history tends to repeat itself, then historical data 
can be used to find the best-fitting distribution with their relevant parameters to better define the 
variables to be simulated. Figures 5.13, 5.14, and 5.15 illustrate a distributional-fitting example. 
This illustration uses the Data Fitting file in the examples folder.  
 
Procedure 

 Open a spreadsheet with existing data for fitting. 
 Select the data you wish to fit (data should be in a single column with multiple rows). 
 Select Risk Simulator | Tools | Distributional Fitting (Single-Variable).  
 Select the specific distributions you wish to fit to or keep the default where all 

distributions are selected and click OK (Figure 5.13). 
 Review the results of the fit, choose the relevant distribution you want, and click OK 

(Figure 5.14).    
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Figure 5.13 – Single Variable Distributional Fitting 

 
 
Results Interpretation 
The null hypothesis being tested is such that the fitted distribution is the same distribution as the 
population from which the sample data to be fitted comes. Thus, if the computed p-value is lower 
than a critical alpha level (typically 0.10 or 0.05), then the distribution is the wrong distribution. 
Conversely, the higher the p-value, the better the distribution fits the data. Roughly, you can think 
of p-value as a percentage explained; that is, if the p-value is 0.9727 (Figure 5.14), then setting a 
normal distribution with a mean of 99.28 and a standard deviation of 10.17 explains about 
97.27% of the variation in the data, indicating an especially good fit. Both the results (Figure 
5.14) and the report (Figure 5.15) show the test statistic, p-value, theoretical statistics (based on 
the selected distribution), empirical statistics (based on the raw data), the original data (to 
maintain a record of the data used), and the assumption complete with the relevant distributional 
parameters (i.e., if you selected the option to automatically generate assumption and if a 
simulation profile already exists). The results also rank all the selected distributions and how well 
they fit the data.  
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Figure 5.14 – Distributional Fitting Result 
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Figure 5.15 – Distributional Fitting Report 

 
For fitting multiple variables, the process is fairly similar to fitting individual variables. However, 
the data should be arranged in columns (i.e., each variable is arranged as a column) and all the 
variables are fitted one at a time.  
 
Procedure 

 Open a spreadsheet with existing data for fitting. 
 Select the data you wish to fit (data should be in a multiple columns with multiple rows). 
 Select Risk Simulator | Tools | Distributional Fitting (Multi-Variable).  
 Review the data, choose the relevant types of distribution you want and click OK.  

 
Notes 
Notice that the statistical ranking methods used in the distributional fitting routines are the chi-
square test and Kolmogorov-Smirnov test. The former is used to test discrete distributions and the 
latter, continuous distributions. Briefly, a hypothesis test coupled with an internal optimization 
routine is used to find the best-fitting parameters on each distribution tested, and the results are 
ranked from the best fit to the worst fit.  
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Bootstrap Simulation 

Theory 
Bootstrap simulation is a simple technique that estimates the reliability or accuracy of forecast 
statistics or other sample raw data. Essentially, bootstrap simulation is used in hypothesis testing. 
Classical methods used in the past relied on mathematical formulas to describe the accuracy of 
sample statistics. These methods assume that the distribution of a sample statistic approaches a 
normal distribution, making the calculation of the statistic’s standard error or confidence interval 
relatively easy. However, when a statistic’s sampling distribution is not normally distributed or 
easily found, these classical methods are difficult to use or are invalid. In contrast, bootstrapping 
analyzes sample statistics empirically by repeatedly sampling the data and creating distributions 
of the different statistics from each sampling.  
 
Procedure 

 Run a simulation.  
 Select Risk Simulator | Tools | Nonparametric Bootstrap. 
 Select only one forecast to bootstrap, select the statistic(s) to bootstrap, enter the number 

of bootstrap trials, and click OK (Figure 5.16). 

 
Figure 5.16 – Nonparametric Bootstrap Simulation 
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Results Interpretation 
In essence, nonparametric bootstrap simulation can be thought of as simulation based on a 
simulation. Thus, after running a simulation, the resulting statistics are displayed, but the 
accuracy of such statistics and their statistical significance are sometimes in question. For 
instance, if a simulation run’s skewness statistic is –0.10, is this distribution truly negatively 
skewed or is the slight negative value attributable to random chance? What about –0.15, –0.20, 
and so forth? That is, how far is far enough such that this distribution is considered to be 
negatively skewed? The same question can be applied to all the other statistics. Is one distribution 
statistically identical to another distribution with regard to some computed statistics or are they 
significantly different? Suppose for instance, the 90% confidence for the skewness statistic is 
between –0.0189 and 0.0952, such that the value 0 falls within this confidence, indicating that on 
a 90% confidence, the skewness of this forecast is not statistically significantly different from 0, 
or that this distribution can be considered as symmetrical and not skewed. Conversely, if the 
value 0 falls outside of this confidence, then the opposite is true, and the distribution is skewed 
(positively skewed if the forecast statistic is positive, and negatively skewed if the forecast 
statistic is negative). Figure 5.17 illustrates some sample bootstrap results.  

 

 
Figure 5.17 – Bootstrap Simulation Results 
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Notes 
The term bootstrap comes from the saying, “to pull oneself up by one’s own bootstraps,” and is 
applicable because this method uses the distribution of statistics themselves to analyze the 
statistics’ accuracy. Nonparametric simulation is simply randomly picking golf balls from a large 
basket with replacement where each golf ball is based on a historical data point. Suppose there 
are 365 golf balls in the basket (representing 365 historical data points). Imagine that the value of 
each golf ball picked at random is written on a large whiteboard. The results of the 365 balls 
picked with replacement are written in the first column of the board with 365 rows of numbers. 
Relevant statistics (e.g., mean, median, standard deviation, etc.) are calculated on these 365 rows. 
The process is then repeated, say, five thousand times. The whiteboard will now be filled with 
365 rows and 5,000 columns. Hence, 5,000 sets of statistics (i.e., there will be 5,000 means, 5,000 
medians, 5,000 standard deviations, etc.) are tabulated and their distributions shown. The relevant 
statistics of the statistics are then tabulated, where from these results one can ascertain how 
confident the simulated statistics are. In other words, in a simple 10,000-trial simulation, say the 
resulting forecast average is found to be $5.00. How certain is the analyst of the results? 
Bootstrapping allows the user to ascertain the confidence interval of the calculated mean statistic, 
indicating the distribution of the statistics. Finally, bootstrap results are important because 
according to the Law of Large Numbers and the Central Limit Theorem in statistics, the mean of 
the sample means is an unbiased estimator and approaches the true population mean when the 
sample size increases.  

Hypothesis Testing  

Theory 
A hypothesis test is performed when testing the means and variances of two distributions to 
determine if they are statistically identical or statistically different from one another; that is, 
whether the differences are based on random chance or if they are, in fact, statistically significant.  
 
Procedure 

 Run a simulation.  
 Select Risk Simulator | Tools | Hypothesis Testing. 
 Select only two forecasts to test at a time, select the type of hypothesis test you wish to 

run, and click OK (Figure 5.18). 
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Figure 5.18 – Hypothesis Testing 

 
 

Report Interpretation 
A two-tailed hypothesis test is performed on the null hypothesis (H0) such that the two variables' 
population means are statistically identical to one another. The alternative hypothesis (Ha) is such 
that the population means are statistically different from one another. If the calculated p-values 
are less than or equal to 0.01, 0.05, or 0.10, this means that the null hypothesis is rejected, which 
implies that the forecast means are statistically significantly different at the 1%, 5%, and 10% 
significance levels. If the null hypothesis is not rejected when the p-values are high, the means of 
the two forecast distributions are statistically similar to one another. The same analysis is 
performed on variances of two forecasts at a time using the pairwise F-test. If the p-values are 
small, then the variances (and standard deviations) are statistically different from one another; 
otherwise, for large p-values, the variances are statistically identical to one another. 
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Figure 5.19 – Hypothesis Testing Results  

 
 
Notes  
The two-variable t-test with unequal variances (the population variance of forecast 1 is expected 
to be different from the population variance of forecast 2) is appropriate when the forecast 
distributions are from different populations (e.g., data collected from two different geographical 
locations or two different operating business units). The two-variable t-test with equal variances 
(the population variance of forecast 1 is expected to be equal to the population variance of 
forecast 2) is appropriate when the forecast distributions are from similar populations (e.g., data 
collected from two different engine designs with similar specifications). The paired dependent 
two-variable t-test is appropriate when the forecast distributions are from the exact same 
population (e.g., data collected from the same group of customers but on different occasions). 
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Data Extraction and Saving Simulation Results 

A simulation’s raw data can be very easily extracted using Risk Simulator’s Data Extraction 
routine. Both assumptions and forecasts can be extracted, but a simulation must first be run. The 
extracted data can then be used for a variety of other analysis.  
 
Procedure 

 Open or create a model, define assumptions and forecasts, and run the simulation. 
 Select Risk Simulator | Tools | Data Extraction.  
 Select the assumptions and/or forecasts you wish to extract the data from and click OK.     

 
The data can be extracted to various formats: 
 

 Raw data in a new worksheet where the simulated values (both assumptions and 
forecasts) can then be saved or further analyzed as required 

 Flat text file where the data can be exported into other data analysis software 
 Risk Simulator file where the results (both assumptions and forecasts) can be retrieved 

at a later time by selecting Risk Simulator | Tools | Data Open/Import  
 
The third option is the most popular selection, that is, to save the simulated results as a *.risksim 
file where the results can be retrieved later and a simulation does not have to be rerun each time. 
Figure 5.20 shows the dialog box for extracting or exporting and saving the simulation results.  

 
Figure 5.20 – Sample Simulation Report  
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Create Report 

After a simulation is run, you can generate a report of the assumptions and forecasts used in the 
simulation run, as well as the results obtained during the simulation run.   
 
Procedure 

 Open or create a model, define assumptions and forecasts, and run the simulation. 
 Select Risk Simulator | Create Report (Figure 5.21). 

 
Figure 5.21 – Sample Simulation Report  



User Manual (Risk Simulator Software)   153 © 2005-2011 Real Options Valuation, Inc.  
 

Regression and Forecasting Diagnostic Tool 

The regression and forecasting Diagnostic tool in Risk Simulator is an advanced analytical tool 
used to determine the econometric properties of your data. The diagnostics include checking the 
data for heteroskedasticity, nonlinearity, outliers, specification errors, micronumerosity, 
stationarity and stochastic properties, normality and sphericity of the errors, and multicollinearity. 
Each test is described in more detail in its respective report in the model.     
    
 
Procedure 

 Open the example model (Risk Simulator | Examples | Regression Diagnostics), go to 
the Time-Series Data worksheet, and select the data, including the variable names (cells 
C5:H55). 

 Click on Risk Simulator | Tools | Diagnostic Tool.      
 Check the data and select from the Dependent Variable Y drop-down menu. Click OK 

when finished (Figure 5.22).         

 
Figure 5.22 – Running the Data Diagnostic Tool 

 
A common violation in forecasting and regression analysis is heteroskedasticity, that is, the 
variance of the errors increases over time (see Figure 5.23 for test results using the Diagnostic 
tool). Visually, the width of the vertical data fluctuations increases, or fans out, over time, and, 
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typically, the coefficient of determination (R-squared coefficient) drops significantly when 
heteroskedasticity exists. If the variance of the dependent variable is not constant, then the error’s 
variance will not be constant. Unless the heteroskedasticity of the dependent variable is 
pronounced, its effect will not be severe: The least-squares estimates will still be unbiased, and 
the estimates of the slope and intercept will either be normally distributed if the errors are 
normally distributed, or at least normally distributed asymptotically (as the number of data points 
becomes large) if the errors are not normally distributed. The estimate for the variance of the 
slope and overall variance will be inaccurate, but the inaccuracy is not likely to be substantial if 
the independent-variable values are symmetric about their mean.  
 
If the number of data points is small (micronumerosity), it may be difficult to detect assumption 
violations. With small sample sizes, assumption violations such as non-normality or 
heteroskedasticity of variances are difficult to detect even when they are present. With a small 
number of data points, linear regression offers less protection against violation of assumptions. 
With few data points, it may be hard to determine how well the fitted line matches the data, or 
whether a nonlinear function would be more appropriate. Even if none of the test assumptions are 
violated, a linear regression on a small number of data points may not have sufficient power to 
detect a significant difference between the slope and zero, even if the slope is nonzero. The power 
depends on the residual error, the observed variation in the independent variable, the selected 
significance alpha level of the test, and the number of data points. Power decreases as the residual 
variance increases, decreases as the significance level is decreased (i.e., as the test is made more 
stringent), increases as the variation in observed independent variable increases, and increases as 
the number of data points increases.  
  
Values may not be identically distributed because of the presence of outliers which are 
anomalous values in the data. Outliers may have a strong influence over the fitted slope and 
intercept, giving a poor fit to the bulk of the data points. Outliers tend to increase the estimate of 
residual variance, lowering the chance of rejecting the null hypothesis, that is, creating higher 
prediction errors. They may be due to recording errors, which may be correctable, or they may be 
due to the dependent-variable values not all being sampled from the same population. Apparent 
outliers may also be due to the dependent-variable values being from the same, but non-normal, 
population. However, a point may be an unusual value in either an independent or dependent 
variable without necessarily being an outlier in the scatter plot. In regression analysis, the fitted 
line can be highly sensitive to outliers. In other words, least squares regression is not resistant to 
outliers, thus, neither is the fitted-slope estimate. A point vertically removed from the other points 
can cause the fitted line to pass close to it, instead of following the general linear trend of the rest 
of the data, especially if the point is relatively far horizontally from the center of the data.   
 
However, great care should be taken when deciding if the outliers should be removed. Although 
in most cases when outliers are removed, the regression results look better, a priori justification 
must first exist. For instance, if one is regressing the performance of a particular firm’s stock 
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returns, outliers caused by downturns in the stock market should be included; these are not truly 
outliers as they are inevitabilities in the business cycle. Forgoing these outliers and using the 
regression equation to forecast one’s retirement fund based on the firm’s stocks will yield 
incorrect results at best. In contrast, suppose the outliers are caused by a single nonrecurring 
business condition (e.g., merger and acquisition) and such business structural changes are not 
forecast to recur. These outliers, then, should be removed and the data cleansed prior to running a 
regression analysis. The analysis here only identifies outliers and it is up to the user to determine 
if they should remain or be excluded. 
 
Sometimes, a nonlinear relationship between the dependent and independent variables is more 
appropriate than a linear relationship. In such cases, running a linear regression will not be 
optimal. If the linear model is not the correct form, then the slope and intercept estimates and the 
fitted values from the linear regression will be biased, and the fitted slope and intercept estimates 
will not be meaningful. Over a restricted range of independent or dependent variables, nonlinear 
models may be well approximated by linear models (this is, in fact, the basis of linear 
interpolation), but for accurate prediction, a model appropriate to the data should be selected. A 
nonlinear transformation should first be applied to the data before running a regression. One 
simple approach is to take the natural logarithm of the independent variable (other approaches 
include taking the square root or raising the independent variable to the second or third power) 
and run a regression or forecast using the nonlinearly transformed data.  
  

 
Figure 5.23 – Results from Tests of Outliers, Heteroskedasticity, Micronumerosity, and Nonlinearity 
 
Another typical issue when forecasting time-series data is whether the independent-variable 
values are truly independent of each other or are actually dependent. Dependent variable values 
collected over a time series may be autocorrelated. For serially correlated dependent-variable 
values, the estimates of the slope and intercept will be unbiased, but the estimates of their forecast 
and variances will not be reliable and, hence, the validity of certain statistical goodness-of-fit tests 
will be flawed. For instance, interest rates, inflation rates, sales, revenues, and many other time-
series data are typically autocorrelated, where the value in the current period is related to the 
value in a previous period, and so forth (clearly, the inflation rate in March is related to 
February’s level, which, in turn, is related to January’s level, etc.). Ignoring such blatant 
relationships will yield biased and less accurate forecasts. In such events, an autocorrelated 
regression model, or an ARIMA model, may be better suited (Risk Simulator | Forecasting | 
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ARIMA). Finally, the autocorrelation functions of a series that is nonstationary tend to decay 
slowly (see the nonstationary report in the model).    
    
If autocorrelation AC(1) is nonzero, it means that the series is first-order serially correlated. If 
AC(k) dies off more or less geometrically with increasing lag, it implies that the series follows a 
low-order autoregressive process. If AC(k) drops to zero after a small number of lags, it implies 
that the series follows a low-order moving-average process. Partial correlation PAC(k) measures 
the correlation of values that are k periods apart after removing the correlation from the 
intervening lags. If the pattern of autocorrelation can be captured by an autoregression of order 
less than k, then the partial autocorrelation at lag k will be close to zero. Ljung-Box Q-statistics 
and their p-values at lag k have the null hypothesis that there is no autocorrelation up to order k. 
The dotted lines in the plots of the autocorrelations are the approximate two standard error 
bounds. If the autocorrelation is within these bounds, it is not significantly different from zero at 
the 5% significance level.          
 
Autocorrelation measures the relationship to the past of the dependent Y variable to itself. 
Distributive lags, in contrast, are time-lag relationships between the dependent Y variable and 
different independent X variables. For instance, the movement and direction of mortgage rates 
tend to follow the federal funds rate but at a time lag (typically 1 to 3 months). Sometimes, time 
lags follow cycles and seasonality (e.g., ice cream sales tend to peak during the summer months 
and are, hence, related to last summer’s sales, 12 months in the past). The distributive lag analysis 
(Figure 5.24) shows how the dependent variable is related to each of the independent variables at 
various time lags, when all lags are considered simultaneously, to determine which time lags are 
statistically significant and should be considered.   

  
Figure 5.24 – Autocorrelation and Distributive Lag Results 
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Another requirement in running a regression model is the assumption of normality and sphericity 
of the error term. If the assumption of normality is violated or outliers are present, then the linear 
regression goodness-of-fit test may not be the most powerful or informative test available, and 
this could mean the difference between detecting a linear fit or not. If the errors are not 
independent and not normally distributed, it may indicate that the data might be autocorrelated or 
suffer from nonlinearities or other more destructive errors. Independence of the errors can also be 
detected in the heteroskedasticity tests (Figure 5.25).  
      
The Normality test on the errors performed is a nonparametric test, which makes no assumptions 
about the specific shape of the population from which the sample is drawn, allowing for smaller 
sample data sets to be analyzed. This test evaluates the null hypothesis of whether the sample 
errors were drawn from a normally distributed population, versus an alternate hypothesis that the 
data sample is not normally distributed. If the calculated D-statistic is greater than or equal to the 
D-critical values at various significance values, then reject the null hypothesis and accept the 
alternate hypothesis (the errors are not normally distributed). Otherwise, if the D-statistic is less 
than the D-critical value, do not reject the null hypothesis (the errors are normally distributed). 
The Normality test relies on two cumulative frequencies: one derived from the sample data set 
and the second from a theoretical distribution based on the mean and standard deviation of the 
sample data.   
 

 
Figure 5.25 – Test for Normality of Errors  

 
Sometimes, certain types of time-series data cannot be modeled using any other methods except 
for a stochastic process, because the underlying events are stochastic in nature. For instance, you 
cannot adequately model and forecast stock prices, interest rates, price of oil, and other 
commodity prices using a simple regression model because these variables are highly uncertain 
and volatile, and they do not follow a predefined static rule of behavior; in other words, the 
process is not stationary. Stationarity is checked using the Runs Test function, while another 
visual clue is found in the autocorrelation report (the ACF tends to decay slowly). A stochastic 
process is a sequence of events or paths generated by probabilistic laws. That is, random events 
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can occur over time but are governed by specific statistical and probabilistic rules. The main 
stochastic processes include random walk or Brownian motion, mean reversion, and jump 
diffusion. These processes can be used to forecast a multitude of variables that seemingly follow 
random trends but restricted by probabilistic laws. The process-generating equation is known in 
advance but the actual results generated are unknown (Figure 5.26).   
    
The Random Walk Brownian Motion process can be used to forecast stock prices, prices of 
commodities, and other stochastic time-series data given a drift or growth rate and volatility 
around the drift path. The Mean-Reversion process can be used to reduce the fluctuations of the 
Random Walk process by allowing the path to target a long-term value, making it useful for 
forecasting time-series variables that have a long-term rate such as interest rates and inflation 
rates (these are long-term target rates by regulatory authorities or the market). The Jump-
Diffusion process is useful for forecasting time-series data when the variable can occasionally 
exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks 
can make prices jump up or down). These processes can also be mixed and matched as required.  

 
Figure 5.26 – Stochastic Process Parameter Estimation 

 
A note of caution is required here. The stochastic parameters calibration shows all the parameters 
for all processes and does not distinguish which process is better and which is worse or which 
process is more appropriate to use. It is up to the user to make this determination. For instance, if 
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we see a 283% reversion rate, chances are, a mean-reversion process is inappropriate; or a very 
high jump rate of, say, 100% most probably means that a jump-diffusion process  is probably not 
appropriate; and so forth. Further, the analysis cannot determine what the variable is and what the 
data source is. For instance, is the raw data from historical stock prices or is it the historical prices 
of electricity or inflation rates or the molecular motion of subatomic particles, and so forth. Only 
the user would know about the raw data, and, hence, using a priori knowledge and theory, be able 
to pick the correct process to use (e.g., stock prices tend to follow a Brownian motion random 
walk, whereas inflation rates follow a mean-reversion process; or a jump-diffusion process is 
more appropriate should you be forecasting the price of electricity).  
 
Multicollinearity exists when there is a linear relationship between the independent variables. 
When this occurs, the regression equation cannot be estimated at all. In near collinearity 
situations, the estimated regression equation will be biased and provide inaccurate results. This 
situation is especially true when a stepwise regression approach is used, where the statistically 
significant independent variables will be thrown out of the regression mix earlier than expected, 
resulting in a regression equation that is neither efficient nor accurate. One quick test of the 
presence of multicollinearity in a multiple regression equation is that the R-squared value is 
relatively high, while the t-statistics are relatively low.   
   
Another quick test is to create a correlation matrix between the independent. A high cross-
correlation indicates a potential for autocorrelation. The rule of thumb is that a correlation with an 
absolute value greater than 0.75 is indicative of severe multicollinearity.   
 

 
Figure 5.27 – Multicollinearity Errors 

 
The Correlation Matrix lists the Pearson’s Product Moment Correlations (commonly referred to 
as the Pearson’s R) between variable pairs. The correlation coefficient ranges between –1.0 and + 
1.0 inclusive. The sign indicates the direction of association between the variables, while the 
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coefficient indicates the magnitude or strength of association. The Pearson’s R only measures a 
linear relationship and is less effective in measuring nonlinear relationships.   
 
To test whether the correlations are significant, a two-tailed hypothesis test is performed and the 
resulting p-values are listed. In Figure 5.27 (top), P-values less than 0.10, 0.05, and 0.01 are 
highlighted in blue to indicate statistical significance. In other words, a p-value for a correlation 
pair that is less than a given significance value is statistically significantly different from zero, 
indicating that there is significant a linear relationship between the two variables.  
    
The Pearson’s R between two variables (x and y) is related to the covariance (cov) measure, 

where 
yx

yx
yx ss

COV
R ,

,  . The benefit of dividing the covariance by the product of the two variables’ 

standard deviation (s) is that the resulting correlation coefficient is bounded between –1.0 and 
+1.0 inclusive. This makes the correlation a good relative measure to compare among different 
variables (particularly with different units and magnitude). The Spearman rank-based 
nonparametric correlation is also included in the report. The Spearman’s R is related to the 
Pearson’s R in that the data is first ranked and then correlated. The rank correlations provide a 
better estimate of the relationship between two variables when one or both of them is nonlinear. 
  
It must be stressed that a significant correlation does not imply causation. Associations between 
variables in no way imply that the change of one variable causes another variable to change. 
When two variables that are moving independently of each other but in a related path, they may 
be correlated but their relationship might be spurious (e.g., a correlation between sunspots and the 
stock market might be strong, but one can surmise that there is no causality and that this 
relationship is purely spurious).  Another test for multicollinearity is the use of the variance 
inflation factor (VIF), obtained by regressing each independent variable to all the other 
independent variables, obtaining the R-squared value, and calculating the VIF. A VIF exceeding 
2.0 can be considered as severe multicollinearity. A VIF exceeding 10.0 indicates destructive 
multicollinearity (Figure 5.27, bottom).  

Statistical Analysis Tool 

Another very powerful tool in Risk Simulator is the Statistical Analysis tool, which determines 
the statistical properties of the data. The diagnostics run include checking the data for various 
statistical properties, from basic descriptive statistics to testing for and calibrating the stochastic 
properties of the data. 
 
Procedure 

 Open the example model (Risk Simulator | Examples | Statistical Analysis), go to the 
Data worksheet, and select the data including the variable names (cells C5:E55). 

 Click on Risk Simulator | Tools | Statistical Analysis (Figure 5.28).   
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 Check the data type, whether the data selected are from a single variable or multiple 
variables arranged in rows. In our example, we assume that the data areas selected are 
from multiple variables. Click OK when finished.   

 Choose the statistical tests you wish to perform. The suggestion (and by default) is to 
choose all the tests. Click OK when finished (Figure 5.29).     

 
Spend some time going through the reports generated to get a better understanding of the 
statistical tests performed (sample reports are shown in Figures 5.30 through 5.33).  

 
Figure 5.28 – Running the Statistical Analysis Tool 

 
Figure 5.29 – Statistical Tests 
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Figure 5.30 – Sample Statistical Analysis Tool Report 
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Figure 5.31 – Sample Statistical Analysis Tool Report (Hypothesis Testing of One Variable) 

 

 
Figure 5.32 – Sample Statistical Analysis Tool Report (Normality Test) 
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Figure 5.33 – Sample Statistical Analysis Tool Report (Stochastic Parameter Estimation) 

Distributional Analysis Tool 

The Distributional Analysis tool is a statistical probability tool in Risk Simulator that is useful in 
a variety of settings. It can be used to compute the probability density function (PDF), which is 
also called the probability mass function (PMF) for discrete distributions (these terms are used 
interchangeably), where given some distribution and its parameters, we can determine the 
probability of occurrence given some outcome x. In addition, the cumulative distribution function 
(CDF) can be computed, which is the sum of the PDF values up to this x value. Finally, the 
inverse cumulative distribution function (ICDF) is used to compute the value x given the 
cumulative probability of occurrence.    
 
This tool is accessible via Risk Simulator | Tools | Distributional Analysis. As an example of 
its use, Figure 5.34 shows the computation of a binomial distribution (i.e., a distribution with two 
outcomes, such as the tossing of a coin, where the outcome is either Head or Tail, with some 
prescribed probability of heads and tails). Suppose we toss a coin two times. Setting the outcome 
Head as a success, we use the binomial distribution with Trials = 2 (tossing the coin twice) and 
Probability = 0.50 (the probability of success, of getting Heads). Selecting the PDF and setting 
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the range of values x as from 0 to 2 with a step size of 1 (this means we are requesting the values 
0, 1, 2 for x), the resulting probabilities, as well as the theoretical four moments of the 
distribution, are provided in tabular and in graphical formats. As the outcomes of the coin toss are 
Heads-Heads, Tails-Tails, Heads-Tails, and Tails-Heads, the probability of getting exactly no 
Heads is 25%, one Head is 50%, and two Heads is 25%. Similarly, we can obtain the exact 
probabilities of tossing the coin, say, 20 times, as seen in Figure 5.35. 
 

 
Figure 5.34 – Distributional Analysis Tool (Binomial Distribution with 2 Trials) 
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Figure 5.35 – Distributional Analysis Tool (Binomial Distribution with 20 Trials) 

 
Figure 5.36 shows the same binomial distribution for 20 trials, but now the CDF is computed. 
The CDF is simply the sum of the PDF values up to the point x. For instance, in Figure 5.35, we 
see that the probabilities of 0, 1, and 2 are 0.000001, 0.000019, and 0.000181, whose sum is 
0.000201, which is the value of the CDF at x = 2 in Figure 5.36. Whereas the PDF computes the 
probabilities of getting exactly 2 heads, the CDF computes the probability of getting no more than 
2 heads or up to 2 heads (or probabilities of 0, 1, and 2 heads). Taking the complement (i.e., 1 – 
0.00021) obtains 0.999799, or 99.9799%, which is the probability of getting at least 3 heads or 
more.  



User Manual (Risk Simulator Software)   167 © 2005-2011 Real Options Valuation, Inc.  
 

 
Figure 5.36 – Distributional Analysis Tool (Binomial Distribution’s CDF with 20 Trials) 

 
Using this Distributional Analysis tool in Risk Simulator, even more advanced distributions can 
be analyzed, such as the gamma, beta, negative binomial, and many others. As further example of 
the tool’s use in a continuous distribution and the ICDF functionality, Figure 5.37 shows the 
standard normal distribution (normal distribution with a mean of zero and standard deviation of 
one), where we apply the ICDF to find the value of x that corresponds to the cumulative 
probability of 97.50% (CDF). That is, a one-tail CDF of 97.50% is equivalent to a two-tail 95% 
confidence interval (there is a 2.50% probability in the right tail and 2.50% in the left tail, leaving 
95% in the center or confidence interval area, which is equivalent to a 97.50% area for one tail). 
The result is the familiar Z-score of 1.96. Therefore, using this Distributional Analysis tool, the 
standardized scores for other distributions and the exact and cumulative probabilities of other 
distributions can all be obtained quickly and easily.  
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Figure 5.37 – Distributional Analysis Tool (Normal Distribution’s ICDF and Z-Score) 

 

Scenario Analysis Tool 

The Scenario Analysis tool in Risk Simulator allows you to run multiple scenarios quickly and 
effortlessly by changing one or two input parameters to determine the output of a variable. Figure 
5.38 illustrates how this tool works on the discounted cash flow sample model (Model 7 in Risk 
Simulator’s Example Models folder). In this example, cell G6 (net present value) is selected as 
the output of interest, whereas cells C9 (effective tax rate) and C12 (product price) are selected as 
inputs to perturb. You can set the starting and ending values to test, as well as the step size, or the 
number of steps, to run between these starting and ending values. The result is a scenario analysis 
table (Figure 5.39), where the row and column headers are the two input variables and the body 
of the table shows the net present values. 
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Figure 5.38 – Scenario Analysis Tool 
 

 
Figure 5.39 – Scenario Analysis Table 
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Segmentation Clustering Tool 

A final analytical technique of interest is that of segmentation clustering. Figure 5.40 illustrates a 
sample dataset. You can select the data and run the tool through Risk Simulator | Tools | 
Segmentation Clustering. Figure 5.40 shows a sample segmentation of two groups. That is, 
taking the original data set, we run some internal algorithms (a combination or k-means 
hierarchical clustering and other method of moments in order to find the best-fitting groups or 
natural statistical clusters) to statistically divide, or segment, the original data set into two groups. 
You can see the two-group memberships in Figure 5.40. Clearly you can segment this data set 
into as many groups as you wish. This technique is valuable in a variety of settings including 
marketing (market segmentation of customers into various customer relationship management 
groups etc.), physical sciences, engineering, and others. 

 
Figure 5.40 – Segmentation Clustering Tool and Results 
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Risk Simulator 2011 New Tools 

Random Number Generation, Monte Carlo versus Latin Hypercube, and Correlation 
Copula Methods 

Starting with version 2011, there are 6 Random Number Generators, 3 Correlation Copulas, and 2 
Simulation Sampling Methods to choose from (Figure 5.41). These preferences are set through 
the Risk Simulator | Options location.  
 
The Random Number Generator (RNG) is at the heart of any simulation software. Based on the 
random number generated, different mathematical distributions can be constructed. The default 
method is the ROV Risk Simulator proprietary methodology, which provides the best and most 
robust random numbers. As noted, there are 6 supported random number generators and, in 
general, the ROV Risk Simulator default method and the Advanced Subtractive Random Shuffle 
method are the two approaches recommended for use. Do not apply the other methods unless 
your model or analytics specifically calls for their use, and even then, we recommended testing 
the results against these two recommended approaches. The further down the list of RNGs, the 
simpler the algorithm and the faster it runs, in comparison with the more robust results from 
RNGs further up the list.  
 
In the Correlations section, three methods are supported: the Normal Copula, T-Copula, and 
Quasi-Normal Copula. These methods rely on mathematical integration techniques, and when in 
doubt, the normal copula provides the safest and most conservative results. The t-copula provides 
for extreme values in the tails of the simulated distributions, whereas the quasi-normal copula 
returns results that are between the values derived by the other two methods.  
 
In the Simulation methods section, Monte Carlo Simulation (MCS) and Latin Hypercube 
Sampling (LHS) methods are supported. Note that Copulas and other multivariate functions are 
not compatible with LHS because LHS can be applied to a single random variable but not over a 
joint distribution. In reality, LHS has very limited impact on the model output's accuracy the 
more distributions there are in a model since LHS only applies to distributions individually. The 
benefit of LHS is also eroded if one does not complete the number of samples nominated at the 
beginning, that is, if one halts the simulation run in mid-simulation. LHS also applies a heavy 
burden on a simulation model with a large number of inputs because it needs to generate and 
organize samples from each distribution prior to running the first sample from a distribution. This 
can cause a long delay in running a large model without providing much more additional 
accuracy. Finally, LHS is best applied when the distributions are well behaved and symmetrical 
and without any correlations. Nonetheless, LHS is a powerful approach that yields a uniformly 
sampled distribution, where MCS can sometimes generate lumpy distributions (sampled data can 
sometimes be more heavily concentrated in one area of the distribution) as compared to a more 
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uniformly sampled distribution (every part of the distribution will be sampled) when LHS is 
applied.   

 
Figure 5.41 – Risk Simulator Options 

 

Deseasonalizing and Detrending Data  

The data deseasonalization and detrending tool removes any seasonal and trending components in 
your original data (Figure 5.42). In forecasting models, the process usually includes removing the 
effects of accumulating data sets from seasonality and trend to show only the absolute changes in 
values and to allow potential cyclical patterns to be identified after removing the general drift, 
tendency, twists, bends, and effects of seasonal cycles of a set of time-series data. For example, a 
detrended data set may be necessary to see a more accurate account of a company's sales in a 
given year more clearly by shifting the entire data set from a slope to a flat surface to better 
expose the underlying cycles and fluctuations. 
 
Many time-series data exhibit seasonality where certain events repeat themselves after some time 
period or seasonality period (e.g., ski resorts’ revenues are higher in winter than in summer, and 
this predictable cycle will repeat itself every winter). Seasonality periods represent how many 
periods would have to pass before the cycle repeats itself (e.g., 24 hours in a day, 12 months in a 
year, 4 quarters in a year, 60 minutes in an hour, etc.). For deseasonalized and detrended data, a 
seasonal index greater than 1 indicates a high period or peak within the seasonal cycle, and a 
value below 1 indicates a dip in the cycle.  



User Manual (Risk Simulator Software)   173 © 2005-2011 Real Options Valuation, Inc.  
 

 
Procedure (Deseasonalization and Detrending) 

 Select the data you wish to analyze (e.g., B9:B28) and click on Risk Simulator | 
Tools | Data Deseasonalization and Detrending.  

 Select Deseasonalize Data and/or Detrend Data, select any detrending models 
you wish to run, enter in the relevant orders (e.g., polynomial order, moving 
average order, difference order, and rate order), and click OK. 

 Review the two reports generated for more details on the methodology, 
application, and resulting charts and deseasonalized/detrended data. 

 
Procedure (Seasonality Test) 

 Select the data you wish to analyze (e.g., B9:B28) and click on Risk Simulator | 
Tools | Data Seasonality Test.   

 Enter in the maximum seasonality period to test. That is, if you enter 6, the tool 
will test the following seasonality periods: 1, 2, 3, 4, 5, and 6. Period 1, of course, 
implies no seasonality in the data. 

 Review the report generated for more details on the methodology, application, 
and resulting charts and seasonality test results. The best seasonality periodicity 
is listed first (ranked by the lowest RMSE error measure), and all the relevant 
error measurements are included for comparison: root mean squared error 
(RMSE), mean squared error (MSE), mean absolute deviation (MAD), and mean 
absolute percentage error (MAPE). 

 
 

 
Figure 5.42 – Deseasonalization and Detrending Data 
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Principal Component Analysis 

Principal Component Analysis is a way of identifying patterns in data and recasting the data in 
such a way as to highlight their similarities and differences (Figure 5.43). Patterns of data are 
very difficult to find in high dimensions when multiple variables exist, and higher dimensional 
graphs are very difficult to represent and interpret. Once the patterns in the data are found, they 
can be compressed, and the number of dimensions is now reduced. This reduction of data 
dimensions does not mean much reduction in loss of information. Instead, similar levels of 
information can now be obtained with a smaller number of variables. 
 
   Procedure 

 Select the data to analyze (e.g., B11:K30), click on Risk Simulator | Tools | 
Principal Component Analysis, and click OK. 

 Review the generated report for the computed results. 
 

 
Figure 5.43 – Principal Component Analysis 

Structural Break Analysis  

A structural break tests whether the coefficients in different data sets are equal, and this test is 
most commonly used in time-series analysis to test for the presence of a structural break (Figure 
5.44). A time-series data set can be divided into two subsets. Structural break analysis is used to 
test each subset individually and on one another and on the entire data set to statistically 
determine if, indeed, there is a break starting at a particular time period. The structural break test 
is often used to determine whether the independent variables have different impacts on different 
subgroups of the population, such as to test if a new marketing campaign, activity, major event, 
acquisition, divestiture, and so forth have an impact on the time-series data.  
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Suppose, for example, a data set has 100 time-series data points. You can set various breakpoints 
to test, for instance, data points 10, 30, and 51. (This means that three structural break tests will 
be performed: data points 1–9 compared with 10–100; data points 1–29 compared with 30–100; 
and 1–50 compared with 51–100 to see if there is a break in the underlying structure at the start of 
data points 10, 30, and 51.). A one-tailed hypothesis test is performed on the null hypothesis (H0) 
such that the two data subsets are statistically similar to one another, that is, there is no 
statistically significant structural break. The alternative hypothesis (Ha) is that the two data 
subsets are statistically different from one another, indicating a possible structural break. If the 
calculated p-values are less than or equal to 0.01, 0.05, or 0.10, then the hypothesis is rejected, 
which implies that the two data subsets are statistically significantly different at the 1%, 5%, and 
10% significance levels. High p-values indicate that there is no statistically significant structural 
break.  
  
Procedure 

 Select the data you wish to analyze (e.g., B15:D34), click on Risk Simulator | 
Tools | Structural Break Test, enter in the relevant test points you wish to apply 
on the data (e.g., 6, 10, 12), and click OK. 

 Review the report to determine which of these test points indicate a statistically 
significant break point in your data and which points do not. 

 

 
Figure 5.44 – Structural Break Analysis  
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Trendline Forecasts 

Trendlines can be used to determine if a set of time-series data follows any appreciable trend 
(Figure 5.45). Trends can be linear or nonlinear (such as exponential, logarithmic, moving 
average, power, polynomial, or power). 
 
Procedure 

 Select the data you wish to analyze, click on Risk Simulator | Forecasting | 
Trendline, select the relevant trendlines you wish to apply on the data (e.g., 
select all methods by default), enter in the number of periods to forecast (e.g., 6 
periods), and click OK. 

 Review the report to determine which of these test trendlines provide the best fit 
and best forecast for your data. 

 
Figure 5.45 – Trendline Forecasts 

Model Checking Tool 

After a model is created and after assumptions and forecasts have been set, you can run the 
simulation as usual or run the Check Model tool (Figure 5.46) to test if the model has been set up 
correctly. Alternatively, if the model does not run and you suspect that some settings may be 
incorrect, run this tool from Risk Simulator | Tools | Check Model to identify where there might 
be problems with your model. Note that while this tool checks for the most common model 
problems as well as for problems in Risk Simulator assumptions and forecasts, it is in no way 
comprehensive enough to test for all types of problems. It is still up to the model developer to 
make sure the model works properly.   



User Manual (Risk Simulator Software)   177 © 2005-2011 Real Options Valuation, Inc.  
 

 

 
Figure 5.46 – Model Checking Tool 
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Percentile Distributional Fitting Tool 

The Percentile Distributional Fitting tool (Figure 5.47) is another alternate way of fitting 
probability distributions. There are several related tools and each has its own uses and 
advantages: 
 

• Distributional Fitting (Percentiles)––using an alternate method of entry (percentiles and 
first/second moment combinations) to find the best-fitting parameters of a specified 
distribution without the need for having raw data. This method is suitable for use when 
there are insufficient data, only when percentiles and moments are available, or as a 
means to recover the entire distribution with only two or three data points but the 
distribution type needs to be assumed or known. 

• Distributional Fitting (Single Variable)––using statistical methods to fit your raw data to 
all 42 distributions to find the best fitting distribution and its input parameters. Multiple 
data points are required for a good fit, and the distribution type may or may not be known 
ahead of time. 

• Distributional Fitting (Multiple Variables)––using statistical methods to fit your raw data 
on multiple variables at the same time. This method uses the same algorithms as the 
single variable fitting, but incorporates a pairwise correlation matrix between the 
variables. Multiple data points are required for a good fit, and the distribution type may 
or may not be known ahead of time. 

• Custom Distribution (Set Assumption)––using nonparametric resampling techniques to 
generate a custom distribution with the existing raw data and to simulate the distribution 
based on this empirical distribution. Fewer data points are required, and the distribution 
type is not known ahead of time. 

 
Procedure 

 Click on Risk Simulator | Tools | Distributional Fitting (Percentiles), choose 
the probability distribution and types of inputs you wish to use, enter the 
parameters, and click Run to obtain the results. Review the fitted R-square results 
and compare the empirical versus theoretical fitting results to determine if your 
distribution is a good fit.  
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Figure 5.47 – Percentile Distributional Fitting Tool 

 

Distribution Charts and Tables:  Probability Distribution Tool 

Distributional Charts and Tables is a new Probability Distribution tool that is a very powerful 
and fast module used for generating distribution charts and tables (Figures 5.48 through 5.51). 
Note that there are three similar tools in Risk Simulator but each does very different things:  
 

• Distributional Analysis––used to quickly compute the PDF, CDF, and ICDF of the 42 
probability distributions available in Risk Simulator, and to return a probability table of 
these values.  

• Distributional Charts and Tables––the Probability Distribution tool described here used 
to compare different parameters of the same distribution (e.g., the shapes and PDF, CDF, 
ICDF values of a Weibull distribution with Alpha and Beta of [2, 2], [3, 5], and [3.5, 8], 
and overlays them on top of one another). 

• Overlay Charts––used to compare different distributions (theoretical input assumptions 
and empirically simulated output forecasts) and to overlay them on top of one another for 
a visual comparison. 
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Procedure 
 Run ROV BizStats at Risk Simulator | Distributional Charts and Tables, click 

on the Apply Global Inputs button to load a sample set of input parameters or 
enter your own inputs, and click Run to compute the results. The resulting four 
moments and CDF, ICDF, PDF are computed for each of the 45 probability 
distributions (Figure 5.48). 

 
Figure 5.48 – Probability Distribution Tool (45 Probability Distributions) 

 
 Click on the Charts and Tables tab (Figure 5.49), select a distribution [A] (e.g., 

Arcsine), choose if you wish to run the CDF, ICDF, or PDF [B], enter the 
relevant inputs, and click Run Chart or Run Table [C]. You can switch between 
the Charts and Table tab to view the results as well as try out some of the chart 
icons [E] to see the effects on the chart. 

 You can also change two parameters [H] to generate multiple charts and 
distribution tables by entering the From/To/Step input or using the Custom inputs 
and then hitting Run. For example, as illustrated in Figure 5.50, run the Beta 
distribution and select PDF [G], select Alpha and Beta to change [H] using 
custom [I] inputs and enter the relevant input parameters: 2;5;5 for Alpha and 
5;3;5 for Beta [J], and click Run Chart. This will generate three Beta 
distributions [K]: Beta (2,5), Beta (5,3), and Beta (5,5) [L]. Explore various chart 
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types, gridlines, language, and decimal settings [M], and try rerunning the 
distribution using theoretical versus empirically simulated values [N]. 

 Figure 5.51 illustrates the probability tables generated for a binomial distribution 
where the probability of success and number of successful trials (random variable 
X) are selected to vary [O] using the From/To/Step option. Try to replicate the 
calculation as shown and click on the Table tab [P] to view the created 
probability density function results. This example uses a binomial distribution 
with a starting input set of Trials = 20, Probability (of success) = 0.5, and 
Random X, or Number of Successful Trials, = 10, where the Probability of 
Success is allowed to change from 0., 0.25, …, 0.50 and is shown as the row 
variable, and the Number of Successful Trials is also allowed to change from 0, 
1, 2, …, 8, and is shown as the column variable. PDF is chosen and, hence, the 
results in the table show the probability that the given events occur. For instance, 
the probability of getting exactly 2 successes when 20 trials are run where each 
trial has a 25% chance of success is 0.0669, or 6.69%.  

 

 
Figure 5.49 – ROV Probability Distribution (PDF and CDF Charts) 
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Figure 5.50 – ROV Probability Distribution (Multiple Overlay Charts) 

 

 
Figure 5.51 – ROV Probability Distribution (Distribution Tables) 
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ROV BizStats 

This new ROV BizStats tool is a very powerful and fast module in Risk Simulator that is used for 
running business statistics and analytical models on your data. It covers more than 130 business 
statistics and analytical models (Figures 5.52 through 5.55). The following provides a few quick 
getting started steps on running the module and details on each of the elements in the software.  
 
Procedure 

 Run ROV BizStats at Risk Simulator | ROV BizStats and click on Example to load a 
sample data and model profile [A] or type in your data or copy/paste into the data grid 
[D] (Figure 5.52). You can add your own notes or variable names in the first Notes row 
[C]. 

 Select the relevant model [F] to run in Step 2 and using the example data input settings 
[G], enter in the relevant variables [H]. Separate variables for the same parameter using 
semicolons and use a new line (hit Enter to create a new line) for different parameters. 

 Click Run [I] to compute the results [J]. You can view any relevant analytical results, 
charts, or statistics from the various tabs in Step 3. 

 If required, you can provide a model name to save into the profile in Step 4 [L]. Multiple 
models can be saved in the same profile. Existing models can be edited or deleted [M] 
and rearranged in order of appearance [N], and all the changes can be saved [O] into a 
single profile with the file name extension *.bizstats.  

  Notes 
 The data grid size can be set in the menu, where the grid can accommodate up to 1,000 

variable columns with 1 million rows of data per variable. The menu also allows you to 
change the language settings and decimal settings for your data. 

 To get started, it is always a good idea to load the example file [A] that comes complete 
with some data and precreated models [S]. You can double-click on any of these models 
to run them and the results are shown in the report area [J], which sometimes can be a 
chart or model statistics [T/U]. Using this example file, you can now see how the input 
parameters [H] are entered based on the model description [G], and you can proceed to 
create your own custom models.  

 Click on the variable headers [D] to select one or multiple variables at once, and then 
right-click to add, delete, copy, paste, or visualize [P] the variables selected.  

 Models can also be entered using a Command console [V/W/X]. To see how this works, 
double-click to run a model [S] and go to the Command console [V]. You can replicate 
the model or create your own and click Run Command [X] when ready. Each line in the 
console represents a model and its relevant parameters. 

 The entire *.bizstats profile (where data and multiple models are created and saved) can 
be edited directly in XML [Z] by opening the XML Editor from the File menu. Changes 
to the profile can be programmatically made here and takes effect once the file is saved. 
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 Click on the data grid’s column header(s) to select the entire column(s) or variable(s), 
and once selected, you can right-click on the header to Auto Fit the column, Cut, Copy, 
Delete, or Paste data. You can also click on and select multiple column headers to select 
multiple variables and right-click and select Visualize to chart the data. 

 If a cell has a large value that is not completely displayed, click on and hover your mouse 
over that cell and you will see a popup comment showing the entire value, or simply 
resize the variable column (drag the column to make it wider, double click on the 
column’s edge to auto fit the column, or right click on the column header and select auto 
fit). 

 Use the up, down, left, right keys to move around the grid, or use the Home and End keys 
on the keyboard to move to the far left and far right of a row. You can also use 
combination keys such as: Ctrl+Home to jump to the top left cell, Ctrl+End to the 
bottom right cell, Shift+Up/Down to select a specific area, and so forth. 

 You can enter short notes for each variable on the Notes row. Remember to make your 
notes short and simple.  

 Try out the various chart icons on the Visualize tab to change the look and feel of the 
charts (e.g., rotate, shift, zoom, change colors, add legend, and so forth). 

 The Copy button is used to copy the Results, Charts, and Statistics tabs in Step 3 after a 
model is run. If no models are run, then the copy function will only copy a blank page.  

 The Report button will only run if there are saved models in Step 4 or if there is data in 
the grid, else the report generated will be empty. You will also need Microsoft Excel to 
be installed to run the data extraction and results reports, and Microsoft PowerPoint 
available to run the chart reports. 

 When in doubt about how to run a specific model or statistical method, start the Example 
profile and review how the data is setup in Step 1 or how the input parameters are entered 
in Step 2. You can use these as getting started guides and templates for your own data and 
models. 

 The language can be changed in the Language menu. Note that currently there are 10 
languages available in the software with more to be added later. However, sometimes 
certain limited results will still be shown in English.  

 You can change how the list of models in Step 2 is shown by changing the View drop list. 
You can list the models alphabetically, categorically, and by data input requirements––
note that in certain Unicode languages (e.g., Chinese, Japanese, and Korean), there is no 
alphabetical arrangement and therefore the first option will be unavailable.  

 The software can handle different regional decimal and numerical settings (e.g., one 
thousand dollars and fifty cents can be written as 1,000.50 or 1.000,50 or 1’000,50 and so 
forth). The decimal settings can be set in ROV BizStats’ menu Data | Decimal Settings. 
However, when in doubt, please change the computer’s regional settings to English USA 
and keep the default North America 1,000.50 in ROV BizStats (this setting is guaranteed 
to work with ROV BizStats and the default examples).   
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Figure 5.52 – ROV BizStats (Statistical Analysis) 

 

 
Figure 5.53 – ROV BizStats (Data Visualization and Results Charts) 



User Manual (Risk Simulator Software)   186 © 2005-2011 Real Options Valuation, Inc.  
 

 
Figure 5.54 – ROV BizStats (Command Console) 

 

 
Figure 5.55 – ROV BizStats (XML Editor)  
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Neural Network and Combinatorial Fuzzy Logic Forecasting Methodologies 

The term Neural Network is often used to refer to a network or circuit of biological neurons, 
while modern usage of the term often refers to artificial neural networks comprising artificial 
neurons, or nodes, recreated in a software environment. Such networks attempt to mimic the 
neurons in the human brain in ways of thinking and identifying patterns and, in our situation, 
identifying patterns for the purposes of forecasting time-series data. In Risk Simulator, the 
methodology is found inside the ROV BizStats module located at Risk Simulator | ROV 
BizStats | Neural Network as well as in Risk Simulator | Forecasting | Neural Network. 
Figure 5.56 shows the Neural Network forecast methodology.  
 
Procedure 

 Click on Risk Simulator | Forecasting | Neural Network. 
 Start by either manually entering data or pasting some data from the clipboard (e.g., 

select and copy some data from Excel, start this tool, and paste the data by clicking on the 
Paste button). 

 Select if you wish to run a Linear or Nonlinear Neural Network model, enter in the 
desired number of Forecast Periods (e.g., 5), the number of hidden Layers in the Neural 
Network (e.g., 3), and number of Testing Periods (e.g., 5). 

 Click Run to execute the analysis and review the computed results and charts. You can 
also Copy the results and chart to the clipboard and paste it in another software 
application.  

 
Note that the number of hidden layers in the network is an input parameter and will need to be 
calibrated with your data. Typically, the more complicated the data pattern, the higher the number 
of hidden layers you would need and the longer it would take to compute. It is recommended that 
you start at 3 layers. The testing period is simply the number of data points used in the final 
calibration of the Neural Network model, and we recommend using at least the same number of 
periods you wish to forecast as the testing period.  
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Figure 5.56 – Neural Network Forecast 

 
In contrast, the term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is 
approximate rather than accurate––as opposed to crisp logic, where binary sets have binary logic, 
fuzzy logic variables may have a truth value that ranges between 0 and 1 and is not constrained to 
the two truth values of classic propositional logic. This fuzzy weighting schema is used together 
with a combinatorial method to yield time-series forecast results in Risk Simulator as illustrated 
in Figure 5.57, and is most applicable when applied to time-series data that has seasonality and 
trend. This methodology is found inside the ROV BizStats module in Risk Simulator, at Risk 
Simulator | ROV BizStats | Combinatorial Fuzzy Logic as well as in Risk Simulator | 
Forecasting | Combinatorial Fuzzy Logic.  
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Procedure 
 Click on Risk Simulator | Forecasting | Combinatorial Fuzzy Logic. 
 Start by either manually entering data or pasting some data from the clipboard (e.g., 

select and copy some data from Excel, start this tool, and paste the data by clicking on the 
Paste button) 

 Select the variable you wish to run the analysis on from the drop-down list, and enter in 
the seasonality period (e.g., 4 for quarterly data, 12 for monthly data, etc.) and the desired 
number of Forecast Periods (e.g., 5). 

 Click Run to execute the analysis and review the computed results and charts. You can 
also Copy the results and chart to the clipboard and paste it in another software 
application.  

 
Note that neither neural networks nor fuzzy logic techniques have yet been established as valid 
and reliable methods in the business forecasting domain, on either a strategic, tactical, or 
operational level. Much research is still required in these advanced forecasting fields. 
Nonetheless, Risk Simulator provides the fundamentals of these two techniques for the purposes 
of running time-series forecasts. We recommend that you do not use any of these techniques in 
isolation, but, rather, in combination with the other Risk Simulator forecasting methodologies to 
build more robust models.  
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Figure 5.57 – Fuzzy Logic Time-Series Forecast 

Optimizer Goal Seek  

The Goal Seek tool is a search algorithm applied to find the solution of a single variable within a 
model. If you know the result that you want from a formula or a model, but are not sure what 
input value the formula needs to get that result, use the Risk Simulator | Tools | Goal Seek 
feature. Note that Goal Seek works only with one variable input value. If you want to accept more 
than one input value, use Risk Simulator’s advanced Optimization routines. Figure 5.58 shows 
how Goal Seek is applied to a simple model. 
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Figure 5.58 – Goal Seek 

 

Single Variable Optimizer  

The Single Variable Optimizer tool is a search algorithm used to find the solution of a single 
variable within a model, just like the goal seek routine discussed previously. If you want the 
maximum or minimum possible result from a model but are not sure what input value the formula 
needs to get that result, use the Risk Simulator | Tools | Single Variable Optimizer feature 
(Figure 5.59). Note that this tool runs very quickly but is only applicable to finding one variable 
input. If you want to accept more than one input value, use Risk Simulator’s advanced 
Optimization routines. Note that this tool is included in Risk Simulator because if you require a 
quick optimization computation for a single decision variable, this tool provides that capability 
without having to set up an optimization model with profiles, simulation assumptions, decision 
variables, objectives, and constraints.  
 
 

 
Figure 5.59 – Single Variable Optimizer   
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Genetic Algorithm Optimization 

Genetic Algorithms belong to the larger class of evolutionary algorithms that generate solutions 
to optimization problems using techniques inspired by natural evolution, such as inheritance, 
mutation, selection, and crossover.  Genetic Algorithm is a search heuristic that mimics the 
process of natural evolution and is routinely used to generate useful solutions to optimization and 
search problems.  
 
The genetic algorithm is available in Risk Simulator | Tools | Genetic Algorithm (Figure 5.60). 
Care should be taken in calibrating the model’s inputs as the results will be fairly sensitive to the 
inputs (the default inputs are provided as a general guide to the most common input levels), and it 
is recommended that the Gradient Search Test option be chosen for a more robust set of results 
(you can deselect this option to get started and then select this choice, rerun the analysis, and 
compare the results).  
 
Notes 
In many problems, genetic algorithms may have a tendency to converge towards local optima or 
even arbitrary points rather than the global optimum of the problem. This means that it does not 
know how to sacrifice short-term fitness to gain longer-term fitness. For specific optimization 
problems and problem instances, other optimization algorithms may find better solutions than 
genetic algorithms (given the same amount of computation time). Therefore, it is recommended 
that you first run the Genetic Algorithm and then rerun it by selecting the Apply Gradient Search 
Test option (Figure 5.60) to check the robustness of the model. This gradient search test will 
attempt to run combinations of traditional optimization techniques with Genetic Algorithm 
methods and return the best possible solution. Finally, unless there is a specific theoretical need to 
use Genetic Algorithm, we recommend using Risk Simulator’s Optimization module, which 
allows you to run more advanced risk-based dynamic and stochastic optimization routines, for 
more robust results. 
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Figure 5.60 – Genetic Algorithm 
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Helpful Tips and Techniques 

The following are some quick helpful tips and shortcut techniques for advanced users of 
Risk Simulator. For details on using specific tools, refer to the relevant sections in this 
user manual. 
 

TIPS: Assumptions (Set Input Assumption User Interface) 

 Quick Jump––select any distribution and type in any letter and it will jump to the 
first distribution starting with that letter (e.g., click on Normal and type in W and 
it will take you to the Weibull distribution). 

 Right-Click Views––select any distribution, right-click, and select the different 
views of the distributions (large icons, small icons, list). 

 Tab to Update Charts––after entering some new input parameters (e.g., you type 
in a new mean or standard deviation value), hit TAB on the keyboard or click 
anywhere on the user interface away from the input box to see the distributional 
chart automatically update. 

 Enter Correlations––enter pairwise correlations directly here (the columns are 
resizable as needed), use the multiple distributional fitting tool to automatically 
compute and enter all pairwise correlations, or, after setting some assumptions, 
use the edit correlation tool to enter your correlation matrix. 

 Equations in an Assumption Cell––only empty cells or cells with static values 
can be set as assumptions; however, there might be times when a function or 
equation is required in an assumption cell, and this can be done by first entering 
the input assumption in the cell and then typing in the equation or function (when 
the simulation is being run, the simulated values will replace the function, and 
after the simulation completes, the function or equation is again shown). 

 

TIPS: Copy and Paste 

 Copy and Paste using Escape––when you select a cell and use the Risk 
Simulator Copy function, it copies everything into Windows clipboard, including 
the cell’s value, equation, function, color, font, and size, as well as Risk 
Simulator assumptions, forecasts, or decision variables. Then, as you apply the 
Risk Simulator Paste function, you have two options. The first option is to apply 
the Risk Simulator Paste directly, and all cell values, color, font, equation, 
functions and parameters will be pasted into the new cell. The second option is to 
first click Escape on the keyboard, and then apply the Risk Simulator Paste. 
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Escape tells Risk Simulator that you wish to paste only the Risk Simulator 
assumption, forecast, or decision variable, and not the cell’s values, color, 
equation, function, font, and so forth. Hitting Escape before pasting allows you to 
maintain the target cell’s values and computations, and pastes only the Risk 
Simulator parameters. 

 Copy and Paste on Multiple Cells––select multiple cells for copy and paste (with 
contiguous and noncontiguous assumptions).  

 

TIPS: Correlations 

 Set Assumption––set pairwise correlations using the set input assumption dialog 
(ideal for entering only several correlations). 

 Edit Correlations––set up a correlation matrix by manually entering or pasting 
from Windows clipboard (ideal for large correlation matrices and multiple 
correlations). 

 Multiple Distributional Fitting––automatically computes and enters pairwise 
correlations (ideal when performing multiple variable fitting to automatically 
compute the correlations for deciding what constitutes a statistically significant 
correlation). 

 

TIPS: Data Diagnostics and Statistical Analysis 

 Stochastic Parameter Estimation––in the Statistical Analysis and Data 
Diagnostic reports, there is a tab on stochastic parameter estimations that 
estimates the volatility, drift, mean-reversion rate, and jump-diffusion rates based 
on historical data. Be aware that these parameter results are based solely on 
historical data used, and the parameters may change over time and depending on 
the amount of fitted historical data. Further, the analysis results show all 
parameters and do not imply which stochastic process model (e.g., Brownian 
Motion, Mean-Reversion, Jump-Diffusion, or mixed process) is the best fit. It is 
up to the user to make this determination depending on the time-series variable to 
be forecasted. The analysis cannot determine which process if best; only the user 
can do this (e.g., Brownian Motion process is best for modeling stock prices, but 
the analysis cannot determine that the historical data analyzed is from a stock or 
some other variable, and only the user will know this). Finally, a good hint is that 
if a certain parameter is out of the normal range, the process requiring this input 
parameter is most probably not the correct process (e.g., if the mean-reversion 
rate is 110%, chances are, mean-reversion is not the correct process). 
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TIPS: Distributional Analysis, Charts and Probability Tables 

 Distributional Analysis––used to quickly compute the PDF, CDF, and ICDF of 
the 42 probability distributions available in Risk Simulator, and to return a table 
of these values.  

 Distributional Charts and Tables––used to compare different parameters of the 
same distribution (e.g., takes the shapes and PDF, CDF, ICDF values of a 
Weibull distribution with Alpha and Beta of [2, 2], [3, 5], and [3.5, 8] and 
overlays them on top of one another). 

 Overlay Charts––used to compare different distributions (theoretical input 
assumptions and empirically simulated output forecasts) and overlay them on top 
of one another for a visual comparison. 

 

TIPS: Efficient Frontier 

 Efficient Frontier Variables––to access the frontier variables, first set the model’s 
Constraints before setting efficient frontier variables.  

 

TIPS: Forecast Cells 

 Forecast Cells with No Equations––you can set output forecasts on cells without 
any equations or values (simply ignore the warning message) but be aware that 
the resulting forecast chart will be empty. Output forecasts are typically set on 
empty cells when there are macros that are being computed and the cell will be 
continually updated.  

 

TIPS: Forecast Charts 

 TAB versus Spacebar––hit TAB on the keyboard to update the forecast chart and 
to obtain the percentile and confidence values after you enter some inputs, and hit 
the Spacebar to rotate among the various tabs in the forecast chart.  

 Normal versus Global View––click on these views to rotate between a tabbed 
interface and a global interface where all elements of the forecast charts are 
visible at once. 

 Copy––copies the forecast chart or the entire global view depending on whether 
you are in the normal or global view. 
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TIPS: Forecasting 

 Cell Link Address––if you first select the data in the spreadsheet and then run a 
forecasting tool, the cell address of the selected data will be automatically 
entered into the user interface Otherwise, you will have to manually enter in the 
cell address or use the link icon to link to the relevant data location.  

 Forecast RMSE––use as the universal error measure on multiple forecast models 
for direct comparisons of the accuracy of each model.  

 

TIPS: Forecasting: ARIMA 

 Forecast Periods––the number of exogenous data rows has to exceed the time-
series data rows by at least the desired forecast periods (e.g., if you wish to 
forecast 5 periods into the future and have 100 time-series data points, you will 
need to have at least 105 or more data points on the exogenous variable). 
Otherwise, just run ARIMA without the exogenous variable to forecast as many 
periods as you wish without any limitations.  

 

TIPS: Forecasting: Basic Econometrics 

 Variable Separation with Semicolons––separate independent variables using a 
semicolon. 

 

TIPS: Forecasting: Logit, Probit, and Tobit 

 Data Requirements––the dependent variables for running logit and probit models 
must be binary only (0 and 1), whereas the tobit model can take binary and other 
numerical decimal values. The independent variables for all three models can 
take any numerical value.  

 

TIPS: Forecasting: Stochastic Processes 

 Default Sample Inputs––when in doubt, use the default inputs as a starting point 
to develop your own model.  

 Statistical Analysis Tool for Parameter Estimation––use this tool to calibrate the 
input parameters into the stochastic process models by estimating them from 
your raw data.  
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 Stochastic Process Model––sometimes if the stochastic process user interface 
hangs for a long time, chances are your inputs are incorrect and the model is not 
correctly specified (e.g., if the mean-reversion rate is 110%, mean-reversion is 
probably not the correct process). Try with different inputs or use a different 
model.  

 

TIPS: Forecasting: Trendlines 

 Forecast Results––scroll to the bottom of the report to see the forecasted values.  
 

TIPS: Function Calls 

 RS Functions––there are functions that you can use inside your Excel 
spreadsheet to set input assumption and get forecast statistics. To use these 
functions, you need to first install RS Functions (which include Start, Programs, 
Real Options Valuation, Risk Simulator, Tools, and Install Functions) and then 
run a simulation before setting the RS functions inside Excel. Refer to the 
example model 24 for examples on how to use these functions. 

 

TIPS: Getting Started Exercises and Getting Started Videos 

 Getting Started Exercises––there are multiple step-by-step hands-on examples 
and results interpretation exercises available in the Start, Programs, Real Options 
Valuation, Risk Simulator shortcut location. These exercises are meant to quickly 
get you up to speed with the use of the software. 

 Getting Started Videos––these are all available for free on our website:  
www.realoptionsvaluation.com/download.html or 
www.rovdownloads.com/download.html.   
 

TIPS: Hardware ID 

 Right-Click HWID Copy––in the Install License user interface, select or double-
click on the HWID to select its value, right-click to copy or click on the E-mail 
HWID link to generate an e-mail with the HWID. 

 Troubleshooter––run the Troubleshooter from the Start, Programs, Real Options 
Valuation, Risk Simulator folder, and run the Get HWID tool to obtain your 
computer’s HWID. 
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TIPS: Latin Hypercube Sampling (LHS) vs. Monte Carlo Simulation (MCS) 

 Correlations––when setting pairwise correlations among input assumptions, we 
recommend using the Monte Carlo setting in the Risk Simulator Options menu. 
Latin Hypercube Sampling is not compatible with the correlated copula method 
for simulation. 

 LHS Bins––a larger number of bins will slow down the simulation while 
providing a more uniform set of simulation results.  

 Randomness––all of the random simulation techniques in the Options menu have 
been tested and are all good simulators and approach the same levels of 
randomness when larger number of trials are run.  

 

TIPS: Online Resources 

 Books, Getting Started Videos, Models, White Papers––resources available on 
our website: www.realoptionsvaluation.com/download.html or 
www.rovdownloads.com/download.html. 

 

TIPS: Optimization 

 Infeasible Results––if the optimization run returns infeasible results, you can 
change the constraints from an Equal (=) to an Inequality (>= or <=) and try 
again. This also applies when you are running an efficient frontier analysis.  

 

TIPS: Profiles 

 Multiple Profiles––create and switch among multiple profiles in a single model. 
This allows you to run scenarios on simulation by being able to change input 
parameters or distribution types in your model to see the effects on the results. 

 Profile Required––Assumptions, Forecasts, or Decision Variables cannot be 
created if there is no active profile. However, once you have a profile, you no 
longer have to keep creating new profiles each time. In fact, if you wish to run a 
simulation model by adding additional assumptions or forecasts, you should keep 
the same profile. 

 Active Profile––the last profile used when you save Excel will be automatically 
opened the next time the Excel file is opened. 
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 Multiple Excel Files––when switching between several opened Excel models, the 
active profile will be from the current and active Excel model. 

 Cross Workbook Profiles––be careful when you have multiple Excel files open 
because if only one of the Excel files has an active profile and you accidentally 
switch to another Excel file and set assumptions and forecasts on this file, the 
assumptions and forecast will not run and will be invalid.  

 Deleting Profiles––you can clone existing profiles and delete existing profiles, 
but note that at least one profile must exist in the Excel file if you delete profiles.  

 Profile Location––the profiles you create (containing the assumptions, forecasts, 
decision variables, objectives, constraints, etc.) are saved as an encrypted hidden 
worksheet. This is why the profile is automatically saved when you save the 
Excel workbook file.  
 

TIPS: Right-Click Shortcut and Other Shortcut Keys 

 Right-Click––you can open the Risk Simulator shortcut menu by right-clicking 
on a cell anywhere in Excel.   

 

TIPS: Save 

 Saving the Excel File––saves the profile settings, assumptions, forecasts, 
decision variables, and your Excel model (including any Risk Simulator reports, 
charts, and data extracted).  

 Saving the Chart Settings––saves the forecast chart settings such that the same 
settings can be recovered and applied to future forecast charts (use the save and 
open icons in the forecast charts). 

 Saving and Extracting Simulated Data in Excel––extracts a simulated run’s 
assumptions and forecasts; the Excel file itself will still have to be saved in order 
to save the data for retrieval later. 

 Saving Simulated Data and Charts in Risk Simulator––using the Risk Simulator 
Data Extract and saving to a *.RiskSim file will allow you to reopen the dynamic 
and live forecast chart with the same data in the future without having to rerun 
the simulation. 

 Saving and Generating Reports––simulation reports and other analytical reports 
are extracted as separate worksheets in your workbook, and the entire Excel file 
will have to be saved in order to save the data for future retrieval later.  
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TIPS: Sampling and Simulation Techniques 

 Random Number Generator––there are six supported random number generators 
(see the user manual for details) and, in general, the ROV Risk Simulator default 
method and the Advanced Subtractive Random Shuffle method are the two 
recommended approaches to use. Do not apply the other methods unless your 
model or analytics specifically calls for their uses, and, even then, we 
recommended testing the results against these two recommended approaches.  

 

TIPS: Software Development Kit (SDK) and DLL Libraries 

 SDK, DLL, and OEM––all of the analytics in Risk Simulator can be called 
outside of this software and integrated in any user proprietary software. Contact 
admin@realoptionsvaluation.com for details on using our Software Development 
Kit to access the Dynamic Link Library (DLL) analytics files.  

 

TIPS: Starting Risk Simulator with Excel 

 ROV Troubleshooter––run this troubleshooter to obtain your computer’s HWID 
for licensing purposes, to view your computer settings and prerequisites, and to 
reenable Risk Simulator if it has been accidentally disabled.  

 Start Risk Simulator when Excel Starts––you can let Risk Simulator start 
automatically when Excel starts each time or start it manually from the Start, 
Programs, Real Options Valuation, Risk Simulator shortcut location. This 
preference can be set in the Risk Simulator, Options menu. 
 

TIPS: Super Speed Simulation 

 Model Development––if you wish to run super speed in your model, test run a 
few super speed simulations while the model is being constructed to make sure 
that the final product will run the super speed simulation. Do not wait until the 
final model is complete before testing super speed to avoid having to backtrack 
to identify where any broken links or incompatible functions exist. 

 Regular Speed––when in doubt, regular speed simulation always works.  
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TIPS: Tornado Analysis 

 Tornado Analysis––the tornado analysis should never be run just once. It is 
meant as a model diagnostic tool, which means that it should ideally be run 
several times on the same model. For instance, in a large model, Tornado can be 
run the first time using all of the default settings and all precedents should be 
shown (select Show All Variables). This single analysis may result in a large 
report and long (and potentially unsightly) Tornado charts. Nonetheless, it 
provides a great starting point to determine how many of the precedents are 
considered critical success factors. For example, the Tornado chart may show 
that the first 5 variables have high impact on the output, while the remaining 200 
variables have little to no impact, in which case, a second tornado analysis is run 
showing fewer variables. For the second run, select Show Top 10 Variables if the 
first 5 are critical, thereby creating a nice report and a Tornado chart that shows a 
contrast between the key factors and less critical factors. (You should never show 
a Tornado chart with only the key variables without showing some less critical 
variables as a contrast to their effects on the output.)  

 Default Values––the default testing points can be increased from the ±10% value 
to some larger value to test for nonlinearities (the Spider chart will show 
nonlinear lines and Tornado charts will be skewed to one side if the precedent 
effects are nonlinear). 

 Zero Values and Integers––inputs with zero or integer values only should be 
deselected in the Tornado analysis before it is run. Otherwise, the percentage 
perturbation may invalidate your model (e.g., if your model uses a lookup table 
where Jan = 1, Feb = 2, Mar = 3, etc., perturbing the value 1 at a ±10% value 
yields 0.9 and 1.1, which makes no sense to the model). 

 Chart Options––try various chart options to find the best options to turn on or off 
for your model.  

 

TIPS: Troubleshooter 

 ROV Troubleshooter––run this troubleshooter to obtain your computer’s HWID 
for licensing purposes, to view your computer settings and prerequisites, and to 
reenable Risk Simulator if it has been accidentally disabled. 
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price, 90 
probability, 8, 18, 27, 31, 32, 33, 42, 45, 46, 
47, 48, 49, 50, 51, 52, 53, 55, 57, 62, 67, 73 
Probability, 46, 48, 49, 50, 52 
profile, 20, 21, 22, 23, 35, 84, 116, 119, 125, 
143 
p-value, 156, 160 
random, 157, 158 
random number, 18, 22, 46 
range, 24, 40, 41, 55, 63, 113, 115, 125, 128, 
130, 155 
rank correlation, 160 
rate, 155, 158 
ratio, 124, 125 
regression, 8, 86, 87, 88, 92, 94, 95 
Regression, 86 
regression analysis, 153, 154, 155 
relative returns, 125 
Reliability, 130 
report, 22, 83, 88, 90, 92, 95, 133, 140, 143, 
152, 156, 157 
return, 124, 125 
returns, 124, 125, 155 
risk, 124, 125 
Risk Simulator, 126 
running, 155, 157 
sales, 155, 156 
sample, 154, 157 
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save, 9, 21, 151 
saving, 151 
seasonality, 156 
second moment, 40, 42 
sensitivity, 8, 134, 140, 141 
Sensitivity, 130, 139 
significance, 154, 156, 157, 160 
simulation, 8, 18, 19, 20, 21, 22, 23, 26, 27, 
28, 33, 34, 35, 36, 37, 45, 46, 47, 77, 84, 90, 
112, 113, 115, 116, 120, 122, 124, 126, 128, 
130, 134, 138, 139, 141, 142, 143, 146, 147, 
148, 151, 152, 153, 160 
Simulation, 18, 45, 130, 146, 148, 151, 152, 
153, 160, 164, 168, 170, 171, 172, 174, 176, 
178, 179, 183, 187, 190, 191, 192 
single, 128, 155, 161 
Single Asset SLS, 8 
skew, 40, 42 
Skew, 42 
skewness, 42, 43, 48, 49, 50, 51, 52, 54, 56, 
57, 58, 61, 62, 63, 64, 65, 66, 67, 69, 73, 74, 
75, 147 
SLS, 8 
Spearman, 34 
specification errors, 153 
spider, 8, 132, 133, 136, 138 
spread, 36, 40 
standard deviation, 18, 28, 36, 38, 41, 42, 43, 
47, 49, 51, 54, 57, 58, 61, 62, 63, 64, 66, 67, 
68, 73, 74, 90, 112, 113, 143, 148, 149, 157, 
160 
static, 157 
statistics, 27, 28, 36, 37, 40, 41, 95, 112, 113, 
143, 146, 147, 148 

stochastic, 8, 90, 112, 113, 116, 120, 122, 125, 
127, 129, 153, 157, 158 
stochastic optimization, 125, 127, 129 
stock price, 157, 158 
symmetric, 154 
t distribution, 72 
third moment, 40, 42 
time-series, 8, 78, 83, 84, 90, 92, 93, 94, 95, 
155, 157, 158 
time-series data, 155, 157, 158 
title, 20, 21 
toolbar, 10, 23, 25, 26 
tornado, 8, 130, 132, 133, 134, 136, 138, 140, 
141 
Tornado, 130, 132, 133, 134, 138, 139 
trends, 158 
trials, 18, 21, 22, 26, 27, 37, 47, 48, 49, 50, 
51, 52, 53, 61, 112, 113, 126, 146 
triangular, 18, 47, 73 
Triangular, 73 
t-statistic, 159 
types of, 124, 157 
uniform, 18, 47, 49, 74, 115, 125, 142 
Uniform, 74 
upper, 125 
validity of, 155 
value, 124, 125, 154, 155, 157, 158, 159, 160 
values, 124, 125, 154, 155, 156, 157, 160 
variance, 153, 154 
volatility, 158 
Weibull, 75 
Yes/No, 47 
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