RISK SIMULATOR

User Manual



RISK SIMULATOR 2011

This manual, and the software described in it, are furnished under license and may only be used or copied in
accordance with the terms of the end user license agreement. Information in this document is provided for
informational purposes only, is subject to change without notice, and does not represent a commitment as to
merchantability or fitness for a particular purpose by Real Options Valuation, Inc.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of Real Options
Valuation, Inc.

Materials based on copyrighted publications by Dr. Johnathan Mun, Founder and CEO, Real Options Valuation, Inc.
Written by Dr. Johnathan Mun.

Written, designed, and published in the United States of America.

To purchase additional copies of this document, contact Real Options Valuation, Inc., at the e-mail address below:
Admin@RealOptionsValuation.com

or visit www.realoptionsvaluation.com.

© 2005-2011 by Dr. Johnathan Mun. All rights reserved.

Microsoft® is a registered trademark of Microsoft Corporation in the U.S. and other countries.
Other product names mentioned herein may be trademarks and/or registered trademarks of the respective holders.



TABLE OF CONTENTS

1. INTRODUCGTION auucuiiiiiiniiieninneeccsssnneeecssssseecssssnesesssssessssssssseesssssssesssssassssssssesssssssssssssssssssssssss 8
Welcome to the Risk Simulator SOftWAre..............cccccovvuiiiiiiiiiieiciiie et 8
Installation Requirements and ProCedures ................cccoouvieioiiiiiiiiiiiieie e 9
LECOISITG ..ottt e e e et e e et e e e e e e et ataaaee s 9

WHAT’S NEW IN VERSION 2011 ..ccciciiiiiiinneeciisnrenccsssaneccsssnneccssssecsssssesssssssssesssssasesssssases 13
A Comprehensive List of Risk Simulator’s Capabilities................ccccccoeecvieveeiiuieeeiiiieaennnn. 13

2. MONTE CARLO SIMULATION....cuuntiiiinnrinissnrencssssnnecssssneeccsssssesssssssesssssssssscsssssasesssssases 18
What Is Monte Carlo Simulation?................cccoeioiiiiie ettt 18
Getting Started With Risk SIMUIGLOT................ccccviiiiiiiii i 19

A High-Level Overview of the SOftWATe ..............ccccociiiiiiiiiiiiiiiiiii et 19
Running a Monte Carlo SIMUIGLION ...................cccooiiiiiiiiiiiiiiiii i 20
1. Starting a New Simulation Profile ...............c.ccccoooiiiiiiiiiiiiiiiiiiii it 20
2. Defining INput ASSUIMPDITONS. ...........ccouiiiiiiiit ettt ettt et 23
3. Defining OUIPUL FOFECASLS ..........cuuiiiuiiiiiiiieiit ettt ettt ettt ettt sttt 25
4. RUNNING the STMUIATION ..ottt 26
5. Interpreting the FOrecast RESUILS...............ccccccoiiiiiiimiiiiiiiiit ettt 27
Correlations and PreciSion CORIOL.................cccooveiiiiiiiiiiiiiee e 34
The Basics Of COTFEIAIONS ..............ccccuiimiiiiiiiiiii ittt 34
Applying Correlations in Risk SIMULGLOF.................ccccoviiiiiiiiiiiiiiiiiii e 35
The Effects of Correlations in Monte Carlo Simulation.....................ccccoceeeviiiiieiiiiiieiieeeeie e 35
Precision and Evror CONEFOL .................ccociiiiiiiii ettt 37
Understanding the FOrecast STALISTICS .........cccoueimiiiieeriiiieeeeciie et eire e e 40
Measuring the Center of the Distribution—the First MOMENTt ................cccccccveeieiviiiieaniieeaineeaanns 40
Measuring the Spread of the Distribution—the Second MOment ...................ccccooveeieieeiiineeninnen, 40
Measuring the Skew of the Distribution—the Third MOmMENL..................ccccccocviieieiiiiianiiaeeiieeen, 42
Measuring the Catastrophic Tail Events in a Distribution—the Fourth Moment............................. 43
The FUNCHONS Of MOMEHLS ...........cccooiiiiiiiiiit ettt ettt ettt et 44
Understanding Probability Distributions for Monte Carlo Simulation ...................cc........... 45
DiSCrete DISIFTDUIIONS .......cc..oeeiiieiiie ettt 47
Bernoulli or Yes/NO DiStFIDUIION..............c..cccciiiiiiiiiii ittt 47
Binomial DiStFEDULION .............c...ooiiiiieiieis ettt et e et e e e et eeeinaee e 48

User Manual (Risk Simulator Software) 3 © 2005-2011 Real Options Valuation, Inc.



DISCTEE UNIfO I ...ttt ettt ettt 49

GeOMELFIC DISIFIDULION ...ttt e et e et e e e e e e e 49
Hypergeometric DIStFIDULION. ................ccciiiii ittt ettt 50
Negative Binomial DISTFIDULION ...............c..cccciiiiiiiiiiiiiii ittt 52
PaSCAL DIStFEDULION ...ttt ettt et e ettt e e et eeeeineee e 53
POISSON DISHFIDULION ...ttt e et et e e e tbee e e e entaeeeeineeaaes 54
CoNtinUOUS DISTFIDUIIONS. ........ocueeieii ettt ettt 55
AVCSING DISIFIDULION. ..o e ettt et e et e et e et e e e st e e e e nnseeeeeseeeenes 55
Beta DISIFIDUIION ... ettt et e e et e et a et e e 55
Beta 3 and Beta 4 DiStFIDULIONS. ............ccccciviiiiiiiiiit ittt 56
Cauchy Distribution, or Lorentzian or Breit-Wigner DiStriDUtION ................ccccocecevoiiiniiiiniieninenan, 57
Chi-SQUATe DiStFIDULION. ............cociiiiiiiiiit ettt ettt 57
COSING DIESIFIDULION. ...t e ettt et e et e e e et eeeenaaeaeenees 58
Double Lo DiSIFTDULION ..............cc.cooiiiiiiiiiiie ettt ettt et 59
ETIang DISIFEDULION. .........c...coooiiiiiiiii ittt 60
Exponential DISTFEDULION ..............c..ccciiiiiiiiiiiiii ettt ettt 61
Exponential 2 DISIFIDULION ................ccccouiiimiiiiiii ittt ettt 61
Extreme Value Distribution, or Gumbel DiStribUtion ...................cccccviiiiiiiiiiiiiiiiiiiii e 62
F Distribution, or Fisher-Snedecor DiStFIDULION ...................cccccviiiiriiiiiiiiniiiiii it 62
Gamma Distribution (Evlang DiStFIDULION)..................cccceiieiiieiaiiee e 63
Laplace DISIFIDULION ..............cc.coiiiiiiiiiiii ettt et ettt 64
LOGISHIC DISIFIDULION ...ttt et ettt 65
Lognormal DISIFIDULION ...............cccouiiiiiiiiiiiii ittt ettt ettt 66
Lognormal 3 DISIFIDULION. ............c...ccouiiiiiiiiie ittt 67
INOFIIAL DIESIFTDULION. ...ttt e et et e et eeeentseaeeenaeeanes 67
Parabolic DiStFIDULION ..................ccccuieiiiii ettt e et e et e e st eeeiaeeeens 68
Pareto DIStFIDULION ...............cccui i e ettt et e et e e e et eeeeineee e 68
Pearson V DISIFIDULION .................cccoueiiiii ettt e et e et eeeinaee e 69
Pearson VI DISIFIDULION ................cccouiiiiii ettt e et eeeiaaee e 70
PERT DiSEFIDUIION ...ttt et e et et e ettt e e et eeeenineeeanes 71
POWEF DISIFIDULION ...ttt e e e ettt e e e et eeeeineee e 71
POWEF 3 DISIFIDULION. ...ttt e et et e ettt e e e e e nsseeeeinaeeees 72
StUAENt’S  DISIFIDULION ........c...coviiiiii ittt et 72
Triangular DISIFIDULION. .............c.ccciiiiiiiiiii ettt ettt 73
URIfOrm DISIFIDULION ..........ccoueiiiiiiiiiii ettt ettt 74
Weibull Distribution (Rayleigh DiStribULiON) .............c.c...ccciiiiiiiiiiieiiiie et 75
WeibUIL 3 DISHFIDULION. ...........oooeeieeee ettt e et e et aeeenseeeeenneeens 76

User Manual (Risk Simulator Software) 4 © 2005-2011 Real Options Valuation, Inc.



3. FORECASTING . ...ccttiiriennneensssensseenssnessssesssasessssesssasesssssessssssssasessssssssasasssasssssssessasasssanessans 77

Different Types of Forecasting TeCRNIGQUES ...............ccccueeeeeiiieeiiiiiieeeeiiie et 77
Running the Forecasting Tool in Risk SImulator.................ccccccooeviiieiviiiiiiiiiiiieeeiiee e 82
TimeE-SErieS AMALYSIS .....cccuvvveeiiiiie ettt e e et e e e et e e e et eeeeirteeaaesasaeaas 83
MUltivariare REGIESSION ............c....coecuviieieiiiie ettt e et e e e e a e enevee s 86
SLOCRASIIC FOPECASTING ......ooooiie ettt e e et e et e ettt e e e saaabaeaens 90
NORIINEAT EXIFAPOLALION. ... et e e et e e as 92
Box-Jenkins ARIMA Advanced Time-Series ............cccoucueioiiiiiiiiiiie i 94
AUTO ARIMA (Box-Jenkins ARIMA Advanced Time-Series) ............cccccvveeeeveeeesiivneannnnnnn 99
BaSIC ECONOMEIFICS ...ttt 100
J=S CUFVE FFOT@CASES ..ottt e e 102
GARCH Volatility FOFECASLS .........covueeieaeiiiieesiiie ettt e eiate e 103
MAFKOV CRAIIS. ... ettt e 106
Limited Dependent Variables: Logit, Probit, Tobit Using Maximum Likelihood Estimationl07
Spline (Cubic Spline Interpolation and Extrapolation)..............c....cccoceveevciiiieenciineannnnnnn. 110
4. OPTIMIZATION ...uuuiiruicrenserisuecsesseesssesssessssssssssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssss 112
Optimization MethodOIOZIES................cccooiiiiiiiiiii et 112
Optimization with Continuous Decision Variables................c.ccccocccovviiiiiiiiiniieiiiienee, 114
Optimization with Discrete Integer Variables ................cccccovviiiiiiiiiiiiiiiiiiiieie e, 119
Efficient Frontier and Advanced Optimization Settings..............cccccccevveemviuieeeeieraeinnnnnns 123
StOCRASEIC OPHIIZALION. ......ccvveeeiiie e ettt e ettt ettt e e et e e e isbeaeearaeeeeensbeens 124
5. RISK SIMULATOR ANALYTICAL TOOLS ...cccouieniinvirnencsnecssenssseessessssssssesssesssessssssssses 130
Tornado and Sensitivity Tools in SIMulation................cccocccoiiiiiiiiiiniiieiieeee e, 130
SENSTHVIEY ATALYSIS ..ottt et 138
Distributional Fitting: Single Variable and Multiple Variables..................cccc.ooevvveeennn... 142
Bootstrap Simularion. .............occcooiiiiiiie e 146
HYPOIRESTS TOSHING ...ttt 148
Data Extraction and Saving Simulation ReSUILS ................cccoevvieiiiiiiiiiiiiiiiieieeee e 151
CFOALE ROPOT L.ttt e e e e ettt e e e e e ettt e e e e e e e nneeeeas 152
Regression and Forecasting Diagnostic TOOL...................cccceeeveiiiiiiiiiiiieiiiiiieeeiie e 153
Statistical ANALYSTS TOOL ..............ccccuiiieeiiiie ettt e e 160
Distributional ARGLYSIS TOOL.............c...coooiiuiiiiiiiiiie et 164

User Manual (Risk Simulator Software) 5 © 2005-2011 Real Options Valuation, Inc.



Scenario ANALYSTS TOOL................coocuiiiiiiiii ettt 168
Segmentation CIUStering TOOL ..............cccccuveiiiiiieiiiiiiie et 170

Risk SIMUlator 2011 INEW TOOIS ...cceeeereereeeneeeeenneceeeencereesececesssscccsssssessssssecssssssssssssssssssssssesssses 171

Random Number Generation, Monte Carlo versus Latin Hypercube, and Correlation Copula

MEIROGS ... et 171
Deseasonalizing and Detrending DAt ...................cccouvievciiiiiiiiiieaieiiiee e 172
Principal CompoRent ANGLYSIS ..............ccocuiiieiiiiieeeieie ettt 174
Structural Bre@k ANGLYSIS............coocuiiiiiiii ettt ettt e e 174
TVENAIINE FOT@CASLS ...ttt 176
Model Checking TOO! .............coccuoiiiiiiiiie et 176
Percentile Distributional Fitting TOOL...............cccccooovuiiiiiiiiiiiiiiiiee et 178
Distribution Charts and Tables: Probability Distribution Tool ................cccccovevvieeeenn... 179
ROV BIZSIALS....c..ee oottt 183
Neural Network and Combinatorial Fuzzy Logic Forecasting Methodologies.................... 187
OPUMIZET GOAL SEEK ...ttt e et e e 190
Single Variable OPLIMizZer ..............cccc.ooeeuiie ittt ettt e e 191
Genetic AIGOTIthm OPLIMIZATION. .............cccuuveeeiiiieeeiii ettt e e eiaae e e 192
Helpful Tips and TeChNIUES .........cceervvvvrmmeiiieiiiisescnsnneiiiccssssssssntiisssssssssnnsssssssssssssssssssssssssseses 194
TIPS: Assumptions (Set Input Assumption User INerface) ...............c.ccccoceieroiiiniiiiniiiiniiiniiiiiiens 194
TIPS: COPY QRIA PASIE ...ttt ettt ettt 194
TIPS: COFFOIATIONS. ...ttt e et et e e ettt e e e et e e e eneneeeees 195
TIPS: Data Diagnostics and StatiStical ANQIYSIS.............cccccciiiiiiiiiiiiiiiic ittt 195
TIPS: Distributional Analysis, Charts and Probability Tables...............c...cccccoovciiioiinniinniiininn. 196
TIPS: EffiCIONt FFORMEIET ............ccoouiiiiiei ittt ettt sttt 196
TIPS: FOFPECASt CeIIS..........ooeeiieii ettt ettt e et e e e et eeeiaeee e 196
TIPS: FOFeCASt CRATLS ........oeoee ettt ettt e et e et e e e st eeenaaeeans 196
TIPS: FOFECASIING. ...t et 197
TIPS: Forecasting: ARIMA ............cc..ccooiiiiiimiiiiiiiiiiit et 197
TIPS: Forecasting: Basic ECONOMEIVICS ...............cccccomiiiiiiimiiiiiiiiiiiic et 197
TIPS: Forecasting: Logit, Probit, and TODIt ..................ccc.coocveiiiiiiiiiiieiie e 197
TIPS: Forecasting: StOCRASIIC PrOCESSES...........ccccccciimiiiriiiiiii ettt 197
TIPS: Forecasting: TrendliNes ...............ccccooviiiiiiimiiiiiii ittt ettt e 198
TIPS: FURCHON CAILS ...t ettt e ettt e e et eeeiaaee e 198
TIPS: Getting Started Exercises and Getting Started Videos ................cc.ccccoovivoviiniiiniiiniiiininns 198

User Manual (Risk Simulator Software) 6 © 2005-2011 Real Options Valuation, Inc.



TIPS: HardWare ID ...............cccooouuoeeiiiieeeeeee e 198

TIPS: Latin Hypercube Sampling (LHS) vs. Monte Carlo Simulation (MCS) ............c.ccoccovvvannren. 199
TIPS: ONIINE RESOUFCES ........c.eeiiiiiiii ettt et ettt ettt ettt 199
TIPS: OPHIIZATION ...t et 199
TIPS PFOJIIES ...ttt ettt ettt et ettt 199
TIPS: Right-Click Shortcut and Other SROFtCUt KeYs ............cccccoviiiiniiiiiiiiiniiiiiiiiiiciie e 200
TIPS: SAVE.......iiiiiii ettt ettt ettt ettt ettt ettt ettt ettt et 200
TIPS: Sampling and Simulation TECANIGUES .................ccccocoiiiiiiiiiiiiiiiiiii et 201
TIPS: Software Development Kit (SDK) and DLL LiDraries.................cc.ccccoovevoiiinoiiiniiiiniiiciiens 201
TIPS: Starting Risk Simulator With EXCel.................cccoccimiiiiiiiiiiiiiiiiiicii it 201
TIPS: Super Speed SiMUIALION. ................cccoiiiiiiiiiiiii ittt 201
TIPS: TOFRAAO ANGLYSIS ...ttt ettt ettt 202
TIPS TrOUDIESHOOLEF ...ttt ettt ettt et 202

User Manual (Risk Simulator Software) 7 © 2005-2011 Real Options Valuation, Inc.



1. INTRODUCTION

Welcome to the Risk Simulator Software

The Risk Simulator is a Monte Carlo simulation, Forecasting, and Optimization software. The software is
written in Microsoft .NET C# and functions together with Excel as an add-in. This software is also
compatible and often used with the Real Options Super Lattice Solver (SLS) software and Employee
Stock Options Valuation Toolkit (ESOV) software, also developed by Real Options Valuation, Inc. Note
that although we attempt to be thorough in this user manual, the manual is absolutely not a substitute for
the Training DVD, live training courses, and books written by the software’s creator (e.g., Dr. Johnathan
Mun’s Real Options Analysis, 2nd Edition, Wiley Finance, 2005; Modeling Risk: Applying Monte Carlo
Simulation, Real Options Analysis, Forecasting, and Optimization, 2nd Edition, Wiley Finance, 2010;
and Valuing Employee Stock Options (2004 FAS 123R), Wiley Finance, 2004). Please visit our website at

www.realoptionsvaluation.com for more information about these items.

The Risk Simulator software has the following modules:

e Monte Carlo Simulation (runs parametric and nonparametric simulation of 42 probability
distributions with different simulation profiles, truncated and correlated simulations,
customizable distributions, precision and error-controlled simulations, and many other
algorithms)

e Forecasting (runs Box-Jenkins ARIMA, multiple regression, nonlinear extrapolation, stochastic
processes, and time-series analysis)

e Optimization Under Uncertainty (runs optimizations using discrete integer and continuous
variables for portfolio and project optimization with and without simulation)

e Modeling and Analytical Tools (runs tornado, spider, and sensitivity analysis, as well as bootstrap
simulation, hypothesis testing, distributional fitting, etc.)

Real Options SLS software is used for computing simple and complex options and includes the ability to
create customizable option models. This oftware has the following modules:

o Single Asset SLS (for solving abandonment, chooser, contraction, deferment, and expansion
options, as well as for solving customized options)

e Multiple Asset and Multiple Phase SLS (for solving multiphased sequential options, options with
multiple underlying assets and phases, combination of multiphased sequential with abandonment,
chooser, contraction, deferment, expansion, and switching options; it can also be used to solve
customized options)

e Multinomial SLS (for solving trinomial mean-reverting options, quadranomial jump-diffusion
options, and pentanomial rainbow options)

e Excel Add-In Functions (for solving all the above options plus closed-form models and
customized options in an Excel-based environment)
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Installation Requirements and Procedures

To install the software, follow the on-screen instructions. The minimum requirements for this software

arc:

e Pentium IV processor or later (dual core recommended)

e Windows XP, Vista, or Windows 7

e  Microsoft Excel XP, 2003, 2007, 2010, or later

e Microsoft NET Framework 2.0 or later (versions 3.0, 3.5, and so forth)
e 350 MB free space

e 1GB RAM minimum (2-4GB recommended)

e Administrative rights to install software

Most new computers come with Microsoft .NET Framework 2.0/3.0 already installed. However, if an
error message pertaining to requiring .NET Framework occurs during the installation of Risk Simulator,
exit the installation. Then, install the relevant .NET Framework software included in the CD (choose your
own language). Complete the .NET installation, restart the computer, and then reinstall the Risk
Simulator software.

There is a default 10-day trial license file that comes with the software. To obtain a full corporate license,
please contact Real Options Valuation, Inc., at admin@realoptionsvaluation.com or call (925) 271-4438

or visit our website at www.realoptionsvaluation.com. Please visit this website and click on
DOWNLOAD to obtain the latest software release, or click on the FAQ link to obtain any updated

information on licensing or installation issues and fixes.

Licensing

If you have installed the software and have purchased a full license to use the software, you will need to
e-mail us your Hardware ID so that we can generate a license file for you. Follow the instructions below:

Start Excel XP/2003/2007/2010, click on the License icon or click on Risk Simulator | License and copy
down and e-mail your 11 to 20 digit and alphanumeric HARDWARE ID that starts with the prefix “RS™
(you can also select the Hardware ID and do a right-click copy or click on the e-mail Hardware ID link) to

admin@realoptionsvaluation.com. Once we have obtained this ID, a newly generated permanent license

will be e-mailed to you. Once you obtain this license file, simply save it to your hard drive (if it is a
zipped file, first unzip its contents and save them to your hard drive). Start Excel, click on Risk
Simulator | License or click on the License icon and click on Install License and point to this new
license file. Restart Excel and you are done. The entire process will take less than a minute and you will
be fully licensed.
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Once installation is complete, start Microsoft Excel and if the installation was successful, you should see
an additional “Risk Simulator” item on the menu bar in Excel XP/2003 or under the new icon group in
Excel 2007/2010, and a new icon bar on Excel as seen in Figure 1.1 (A and B). In addition, a splash
screen will appear as seen in Figure 1.2, indicating that the software is functioning and loaded into Excel.
Figure 1.3 (A and B) also shows the Risk Simulator toolbar. If these items exist in Excel, you are now
ready to start using the software. The remainder of this user manual provides step-by-step instructions for
using the software.

|@ Microsoft Excel - Book1
@_] Eile Edit ‘iew Insett Format Tools Data  Window Help | Simulation | Adobe PDF

P23 A N B o | TR ew Smulation Profile SN
: frial 210 5| B Z U |===5]|8$ % & Edit Simulation Profile . a1
: : JE® Change Simulation Profile
CRAAMB X %I B s & b
=FE] iz P ‘_ Set Input Assumption
A | E I | 5] | & | F Wil St output Forecast
;_ -':' B Copy Parameter
T Paste Parameter
4 ¥ Remove Parameter
% 5 B Edit Correlations
[E= Mew Risk Simulator lcon Bar.
7 Slm 1 * Run Simulation
% - I’ Step Simulation
10| B Reset Simulation
11 F Forecasting 3
12 5 i
13 New Risk Simulater Menu &5 Optimization
14 Taols »
15 B opi
Wz Options. ..
15 | .
17 License. ..
18 &) About Risk Simulator. ..
19 fes
== Hel
20 > Hand

Figure 1.1A — Risk Simulator Menu and Icon Bar in Excel XP and Excel 2003
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Figure 1.1B — Risk Simulator Menu and Icon Bar in Excel 2007/2010
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Figure 1.2 — Risk Simulator Splash Screen
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1.3A — Risk Simulator Icon Toolbar in Excel XP and Excel 2003

Lk 2 i COrHOohE = p Snowen = B @O

Risk Mew Change Edit SetInput Set Output Copy Paste Remove Run RunSuper Step Reset Forecasting Run : Analytical | Options Help License
simulator= || Profile Profile Profile | Assumption Forecast Spee - Optimization & Set Constraint || 115 - - -
Menu Profile Assumptions Forecasts Editing Simulation Run Forecasting Optimization Tools Options Help License

"y S - - o - - S - Lo - - " L
(& & L E iy BHOoON - 5 & i (ST e B W ey
Risk New Change SetInput Set Qutput Run  Super Reset ARIMA  Auto Auto Basic Combinatorial Cubic GARCH J-5  Markov MLE Meural MNonlinear Regression Stochastic Time Series Trendline
Simulator~ | Profile Profile Assumption Forecast Speed ARIMA Econometrics Econometrics  Fuzzy Logic  Spline Curves Chain LUMDEP Network Extrapolation Analysis Processes  Analysis

Menu Profile Assumptions Forecasts Simulation Run Forecasting

Figure

£
Next

icon
Icon

&
Mext

icon
Iton

2 bz s - i - e — : =
£ | ¢ & . ® # Z B e e P o = @ B 2
Risk ROV Check  Create Data Trend Data Diagnostic Distribution Edit. Fitting Hypothesis Nonparametric Overlay PCA Seasonal Segment Sensitivity Scenario Statistical Structural Tornado
Simulator = | BizStats Model Report - & Seasons Extraction~  Tool Analysis = Correlations = Testing Bootstrap  Charts Test & Cluster Analysis Analysis Analysis Break Test Analysis
Menu ROV BizStats Analytical Tools

&
Next

icon
Ican

icon
Icon

2 ' i 5 o 7 =,
s = i LA EHoB € O D € ﬂj@'ﬁ&
Risk Mew Change SetInput  Set Output Copy e Remove Run RunSuper Reset Run Set Set Set Example Help User
Simulator = || Profile Profile Assumption Forecast Speed Optimization Objective Decision Constraint || Models = Manual
Menu Profile Assumptions Forecasts Editing Simulation Run Optimization Help

Figure 1.3B — Risk Simulator Icon Toolbars in Excel 2007/2010
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WHAT’S NEW IN VERSION 2011

A Comprehensive List of Risk Simulator’s Capabilities

The following lists the main capabilities of Risk Simulator, where the highlighted items indicate the latest

additions to version 2011.

General Capabilities

1.

10.

11.

12.

13.

14.

15.

16.

17.

Available in 10 languages—English, French, German, Italian, Japanese, Korean, Portuguese,
Spanish, Simplified Chinese, and Traditional Chinese.

Books—analytical theory, application, and case studies are supported by 10 books.

Commented Cells—turn cell comments on or off and decide if you wish to show cell comments
on all input assumptions, output forecasts, and decision variables.

Detailed Example Models—24 example models in Risk Simulator and over 300 models in
Modeling Toolkit.

Detailed Reports—all analyses come with detailed reports.

Detailed User Manual—step-by-step user manual.

Flexible Licensing—certain functionalities can be turned on or off to allow you to customize
your risk analysis experience. For instance, if you are only interested in the forecasting tools in
Risk Simulator, you may be able to obtain a special license that activates only the forecasting
tools and leaves the other modules deactivated, thereby saving some costs on the software.
Flexible Requirements—works in Window 7, Vista, and XP; integrates with Excel 2010, 2007,
2003; and works in MAC operating systems running virtual machines.

Fully customizable colors and charts—tilt, 3D, color, chart type, and much more!

Hands-on Exercises—detailed step-by-step guide to running Risk Simulator, including guides
on interpreting the results.

Multiple Cell Copy and Paste—allows assumptions, decision variables, and forecasts to be
copied and pasted.

Profiling—allows multiple profiles to be created in a single model (different scenarios of
simulation models can be created, duplicated, edited, and run in a single model).

Revised Icons in Excel 2007/2010—a completely reworked icon toolbar that is more intuitive
and user friendly. There are four sets of icons that fit most screen resolutions (1280 x 760 and
above).

Right-Click Shortcuts—access all of Risk Simulator's tools and menus using a mouse right-
click.

ROV Software Integration—works well with other ROV software including Real Options SLS,
Modeling Toolkit, Basel Toolkit, ROV Compiler, ROV Extractor and Evaluator, ROV Modeler,
ROV Valuator, ROV Optimizer, ROV Dashboard, ESO Valuation Toolkit, and others!

RS Functions in Excel—insert RS functions for setting assumptions and forecasts, and right-
click support in Excel.

Troubleshooter—allows you to reenable the software, check for your system requirements,
obtain the Hardware ID, and others.
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18.

19.

Turbo Speed Analysis—runs forecasts and other analyses tools at blazingly fast speeds
(enhanced in version 5.2). The analyses and results remain the same but are now computed very
quickly; reports are generated very quickly as well.

Web Resources, Case Studies, and Videos—download free models, getting-started videos, case
studies, whitepapers, and other materials from our website.

Simulation Module

20.

21.
22.

23.

24.
25.

26.
27.
28.
29.
30.

6 random number generators—ROV Advanced Subtractive Generator, Subtractive Random
Shuffle Generator, Long Period Shuffle Generator, Portable Random Shuffle Generator, Quick
IEEE Hex Generator, and Basic Minimal Portable Generator.

2 sampling methods—Monte Carlo and Latin Hypercube.

3 Correlation Copulas—applying Normal Copula, T Copula, and Quasi-Normal Copula for
correlated simulations.

42 probability distributions—arcsine, Bernoulli, beta, beta 3, beta 4, binomial, Cauchy, chi-
square, cosine, custom, discrete uniform, double log, Erlang, exponential, exponential 2, F
distribution, gamma, geometric, Gumbel max, Gumbel min, hypergeometric, Laplace, logistic,
lognormal (arithmetic) and lognormal (log), lognormal 3 (arithmetic) and lognormal 3 (log),
negative binomial, normal, parabolic, Pareto, Pascal, Pearson V, Pearson VI, PERT, Poisson,
power, power 3, Rayleigh, t and t2, triangular, uniform, Weibull, Weibull 3.

Alternate Parameters—using percentiles as an alternate way of inputting parameters.

Custom Nonparametric Distribution—make your own distributions for running historical
simulations, and applying the Delphi method.

Distribution Truncation—enabling data boundaries.

Excel Functions—set assumptions and forecasts using functions inside Excel

Multidimensional Simulation—simulation of uncertain input parameters.

Precision Control—determines if the number of simulation trials run is sufficient.

Super Speed Simulation—runs 100,000 trials in a few seconds.

Forecasting Module

31.
32.
33.

34.
35.
36.
37.

38.
39.
40.
41.

42.

ARIMA—autoregressive integrated moving average models ARIMA (P,D,Q).

Auto ARIMA—runs the most common combinations of ARIMA to find the best-fitting model.
Auto Econometrics—runs thousands of model combinations and permutations to obtain the
best-fitting model for existing data (linear, nonlinear, interacting, lag, leads, rate, difference).
Basic Econometrics—econometric and linear/nonlinear and interacting regression models.
Combinatorial Fuzzy Logic Forecasts—time-series forecast methods

Cubic Spline—nonlinear interpolation and extrapolation.

GARCH—uvolatility projections using generalized autoregressive conditional heteroskedasticity
models: GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH, EGARCH-T, GIJR-
GARCH, and GJR-TGARCH.

J-Curve—exponential J curves.

Limited Dependent Variables—Logit, Probit, and Tobit.

Markov Chains—two competing elements over time and market share predictions.

Multiple Regression—regular linear and nonlinear regression, with stepwise methodologies
(forward, backward, correlation, forward-backward).

Neural Network Forecasts—linear, nonlinear logistic, hyperbolic tangent, and cosine
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43.
44,
45.

46.

Nonlinear Extrapolation—nonlinear time-series forecasting.

S Curve—logistic S curves.

Time-Series Analysis—S8 time-series decomposition models for predicting levels, trends, and
seasonalities.

Trendlines—forecasting and fitting using linear, nonlinear polynomial, power, logarithmic,
exponential, and moving averages with goodness of fit.

Optimization Module

47.
48.

49.
50.
51.
52.

53.
54.

55.

56.

57.

Linear Optimization—multiphasic optimization and general linear optimization.

Nonlinear Optimization—detailed results including Hessian matrices, LaGrange functions, and
more.

Static Optimization—quick runs for continuous, integers, and binary optimizations.

Dynamic Optimization—simulation with optimization.

Stochastic Optimization—quadratic, tangential, central, forward, and convergence criteria.
Efficient Frontie—combinations of stochastic and dynamic optimizations on multivariate
efficient frontiers.

Genetic Algorithms—used for a variety of optimization problems.

Multiphasic Optimization—testing for local versus global optimum allowing better control over
how the optimization is run, and increases the accuracy and dependency of the results.
Percentiles and Conditional Means—additional statistics for stochastic optimization, including
percentiles as well as conditional means, which are critical in computing conditional value at
risk measures.

Search Algorithm—simple, fast, and efficient search algorithms for basic single decision
variable and goal seek applications.

Super Speed Simulation in Dynamic and Stochastic Optimization—runs simulation at super
speed while integrated with optimization.

Analytical Tools Module

58.
59.
60.
61.
62.

63.

64.

65.

66.

67.
68.

69.

Check Model—tests for the most common mistakes in your model.

Correlation Editor—allows large correlation matrices to be directly entered and edited.

Create Report—automates report generation of assumptions and forecasts in a model.

Create Statistics Report—generates comparative report of all forecast statistics.

Data Diagnostics—runs tests on heteroskedasticity, micronumerosity, outliers, nonlinearity,
autocorrelation, normality, sphericity, nonstationarity, multicollinearity, and correlations.

Data Extraction and Export—extracts data to Excel or flat text files and Risk Sim files, runs
statistical reports and forecast result reports.

Data Open and Import—retrieves previous simulation run results.

Deseasonalization and Detrending—deasonalizes and detrends your data.

Distributional Analysis—computes exact PDF, CDF, and ICDF of all 42 distributions and
generates probability tables.

Distributional Designer—allows you to create custom distributions.

Distributional Fitting (Multiple)— runs multiple variables simultaneously, accounts for
correlations and correlation significance.

Distributional Fitting (Single)}—Kolmogorov-Smirnov and chi-square tests on continuous
distributions, complete with reports and distributional assumptions.
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70.
71.

72.

73.

74.
75.
76.
77.
78.
79.

Hypothesis Testing—tests if two forecasts are statistically similar or different.

Nonparametric Bootstrap—simulation of the statistics to obtain the precision and accuracy of
the results.

Overlay Charts—fully customizable overlay charts of assumptions and forecasts together (CDF,
PDF, 2D/3D chart types).

Principal Component Analysis—tests the best predictor variables and ways to reduce the data
array.

Scenario Analysis—hundreds and thousands of static two-dimensional scenarios.

Seasonality Test—tests for various seasonality lags.

Segmentation Clustering—groups data into statistical clusters for segmenting your data.
Sensitivity Analysis—dynamic sensitivity (simultaneous analysis).

Structural Break Test—tests if your time-series data has statistical structural breaks.

Tornado Analysis—static perturbation of sensitivities, spider and tornado analysis, and scenario
tables.

Statistics and BizStats Module

80.

81.

82.

83.

Percentile Distributional Fitting—using percentiles and optimization to find the best-fitting
distribution.

Probability Distributions’ Charts and Tables—run 45 probability distributions, their four
moments, CDF, ICDF, PDF, charts, and overlay multiple distributional charts, and generate
probability distribution tables.

Statistical Analysis—descriptive statistics, distributional fitting, histograms, charts, nonlinear
extrapolation, normality test, stochastic parameters estimation, time-series forecasting, trendline
projections, etc.

ROV BIZSTATS—over 130 business statistics and analytical models:

Absolute Values, ANOVA: Randomized Blocks Multiple Treatments, ANOVA: Single Factor Multiple
Treatments, ANOVA: Two Way Analysis, ARIMA, Auto ARIMA, Autocorrelation and Partial
Autocorrelation, Autoeconometrics (Detailed), Autoeconometrics (Quick), Average, Combinatorial
Fuzzy Logic Forecasting, Control Chart: C, Control Chart: NP, Control Chart: P, Control Chart: R,
Control Chart: U, Control Chart: X, Control Chart: XMR, Correlation, Correlation (Linear, Nonlinear),
Count, Covariance, Cubic Spline, Custom Econometric Model, Data Descriptive Statistics,
Deseasonalize, Difference, Distributional Fitting, Exponential J Curve, GARCH, Heteroskedasticity, Lag,
Lead, Limited Dependent Variables (Logit), Limited Dependent Variables (Probit), Limited Dependent
Variables (Tobit), Linear Interpolation, Linear Regression, LN, Log, Logistic S Curve, Markov Chain,
Max, Median, Min, Mode, Neural Network, Nonlinear Regression, Nonparametric: Chi-Square Goodness
of Fit, Nonparametric: Chi-Square Independence, Nonparametric: Chi-Square Population Variance,
Nonparametric: Friedman’s Test, Nonparametric: Kruskal-Wallis Test, Nonparametric: Lilliefors Test,
Nonparametric: Runs Test, Nonparametric: Wilcoxon Signed-Rank (One Var), Nonparametric: Wilcoxon
Signed-Rank (Two Var), Parametric: One Variable (T) Mean, Parametric: One Variable (Z) Mean,
Parametric: One Variable (Z) Proportion, Parametric: Two Variable (F) Variances, Parametric: Two
Variable (T) Dependent Means, Parametric: Two Variable (T) Independent Equal Variance, Parametric:
Two Variable (T) Independent Unequal Variance, Parametric: Two Variable (Z) Independent Means,
Parametric: Two Variable (Z) Independent Proportions, Power, Principal Component Analysis, Rank
Ascending, Rank Descending, Relative LN Returns, Relative Returns, Seasonality, Segmentation
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Clustering, Semi-Standard Deviation (Lower), Semi-Standard Deviation (Upper), Standard 2D Area,
Standard 2D Bar, Standard 2D Line, Standard 2D Point, Standard 2D Scatter, Standard 3D Area,
Standard 3D Bar, Standard 3D Line, Standard 3D Point, Standard 3D Scatter, Standard Deviation
(Population), Standard Deviation (Sample), Stepwise Regression (Backward), Stepwise Regression
(Correlation), Stepwise Regression (Forward), Stepwise Regression (Forward-Backward), Stochastic
Processes (Exponential Brownian Motion), Stochastic Processes (Geometric Brownian Motion),
Stochastic Processes (Jump Diffusion), Stochastic Processes (Mean Reversion with Jump Diffusion),
Stochastic Processes (Mean Reversion), Structural Break, Sum, Time-Series Analysis (Auto), Time-
Series Analysis (Double Exponential Smoothing), Time-Series Analysis (Double Moving Average),
Time-Series Analysis (Holt-Winter’s Additive), Time-Series Analysis (Holt-Winter’s Multiplicative),
Time-Series Analysis (Seasonal Additive), Time-Series Analysis (Seasonal Multiplicative), Time-Series
Analysis (Single Exponential Smoothing), Time-Series Analysis (Single Moving Average), Trend Line
(Difference Detrended), Trend Line (Exponential Detrended), Trend Line (Exponential), Trend Line
(Linear Detrended), Trend Line (Linear), Trend Line (Logarithmic Detrended), Trend Line
(Logarithmic), Trend Line (Moving Average Detrended), Trend Line (Moving Average), Trend Line
(Polynomial Detrended), Trend Line (Polynomial), Trend Line (Power Detrended), Trend Line (Power),
Trend Line (Rate Detrended), Trend Line (Static Mean Detrended), Trend Line (Static Median
Detrended), Variance (Population), Variance (Sample), Volatility: EGARCH, Volatility: EGARCH-T,
Volatility: GARCH, Volatility: GARCH-M, Volatility: GJR GARCH, Volatility: GJR TGARCH,
Volatility: Log Returns Approach, Volatility: TGARCH, Volatility: TGARCH-M, Yield Curve (Bliss),
and Yield Curve (Nelson-Siegel).
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2. MONTE CARLO SIMULATION

Monte Carlo simulation, named for the famous gambling capital of Monaco, is a very potent
methodology. For the practitioner, simulation opens the door for solving difficult and complex but
practical problems with great ease. Monte Carlo creates artificial futures by generating thousands and
even millions of sample paths of outcomes and looks at their prevalent characteristics. For analysts in a
company, taking graduate-level advanced math courses is just not logical or practical. A brilliant analyst
would use all available tools at his or her disposal to obtain the same answer the easiest and most practical
way possible. And in all cases, when modeled correctly, Monte Carlo simulation provides similar answers
to the more mathematically elegant methods. So, what is Monte Carlo simulation and how does it work?

What Is Monte Carlo Simulation?

Monte Carlo simulation in its simplest form is a random number generator that is useful for forecasting,
estimation, and risk analysis. A simulation calculates numerous scenarios of a model by repeatedly
picking values from a user-predefined probability distribution for the uncertain variables and using those
values for the model. As all those scenarios produce associated results in a model, each scenario can have
a forecast. Forecasts are events (usually with formulas or functions) that you define as important outputs
of the model. These usually are events such as totals, net profit, or gross expenses.

Simplistically, think of the Monte Carlo simulation approach as repeatedly picking golf balls out of a
large basket with replacement. The size and shape of the basket depend on the distributional input
assumption (e.g., a normal distribution with a mean of 100 and a standard deviation of 10, versus a
uniform distribution or a triangular distribution) where some baskets are deeper or more symmetrical than
others, allowing certain balls to be pulled out more frequently than others. The number of balls pulled
repeatedly depends on the number of frials simulated. For a large model with multiple related
assumptions, imagine a very large basket wherein many smaller baskets reside. Each small basket has its
own set of golf balls that are bouncing around. Sometimes these small baskets are linked with each other
(if there is a correlation between the variables) and the golf balls are bouncing in tandem, while other
times the balls are bouncing independently of one another. The balls that are picked each time from these
interactions within the model (the large central basket) are tabulated and recorded, providing a forecast
output result of the simulation.
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Getting Started with Risk Simulator

A High-Level Overview of the Software

The Risk Simulator software has several different applications including Monte Carlo simulation,

forecasting, optimization, and risk analytics.

@

The Simulation Module allows you to run simulations in your existing Excel-based models,
generate and extract simulation forecasts (distributions of results), perform distributional fitting
(automatically finding the best-fitting statistical distribution), compute correlations (maintain
relationships among simulated random variables), identify sensitivities (creating tornado and
sensitivity charts), test statistical hypotheses (finding statistical differences between pairs of
forecasts), run bootstrap simulation (testing the robustness of result statistics), and run custom
and nonparametric simulations (simulations using historical data without specifying any
distributions or their parameters for forecasting without data or applying expert opinion
forecasts).

The Forecasting Module can be used to generate automatic time-series forecasts (with and
without seasonality and trend), multivariate regressions (modeling relationships among
variables), nonlinear extrapolations (curve fitting), stochastic processes (random walks, mean-
reversions, jump-diffusion, and mixed processes), Box-Jenkins ARIMA (econometric forecasts),
Auto ARIMA, basic econometrics and auto econometrics (modeling relationships and generating
forecasts), exponential J curves, logistic S curves, GARCH models and their multiple variations
(modeling and forecasting volatility), maximum likelihood models for limited dependent
variables (logit, tobit, and probit models), Markov chains, trendlines, spline curves, and others.
The Optimization Module is used for optimizing multiple decision variables subject to constraints
to maximize or minimize an objective, and can be run either as a static optimization, dynamic,
and stochastic optimization under uncertainty together with Monte Carlo simulation, or as a
stochastic optimization with super speed simulations. The software can handle linear and
nonlinear optimizations with binary, integer, and continuous variables, as well as generate
Markowitz efficient frontiers.

The Analytical Tools Module allows you to run segmentation clustering, hypothesis testing,
statistical tests of raw data, data diagnostics of technical forecasting assumptions (e.g.,
heteroskedasticity, multicollinearity, and the like), sensitivity and scenario analyses, overlay chart
analysis, spider charts, tornado charts, and many other powerful tools.

The Real Options Super Lattice Solver is another standalone software that complements Risk
Simulator, used for solving simple to complex real options problems.

The following sections walk you through the basics of the Simulation Module in Risk Simulator, while

future chapters provide more details about the applications of other modules. To follow along, make sure

you have Risk Simulator installed on your computer to proceed.
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In_ fact, it is highly recommended that you first watch the getting started videos on the web

(www.realoptionsvaluation.com/risksimulator.html) or attempt the step-by-step exercises at the end of

this chapter before coming back and reviewing the text in this chapter. This approach is recommended

because the videos will get you started immediately, as will the exercises, whereas the text in this chapter
focuses more on the theory and detailed explanations of the properties of simulation.

Running a Monte Carlo Simulation

Typically, to run a simulation in your existing Excel model, the following steps have to be performed:

Start a new simulation profile or open an existing profile.
Define input assumptions in the relevant cells.

Define output forecasts in the relevant cells.

Run simulation.

O A e

Interpret the results.

If desired, and for practice, open the example file called Basic Simulation Model and follow along with
the examples below on creating a simulation. The example file can be found either on the start menu at
Start | Real Options Valuation | Risk Simulator | Examples or accessed directly through Risk
Simulator | Example Models.

1. Starting a New Simulation Profile

To start a new simulation, you will first need to create a simulation profile. A simulation profile contains
a complete set of instructions on how you would like to run a simulation, that is, all the assumptions,
forecasts, run preferences, and so forth. Having profiles facilitates creating multiple scenarios of
simulations. That is, using the same exact model, several profiles can be created, each with its own
specific simulation properties and requirements. The same person can create different test scenarios using
different distributional assumptions and inputs or multiple persons can test their own assumptions and

inputs on the same model.

¥ Start Excel and create a new model or open an existing one (you can use the Basic Simulation
Model example to follow along).

Click on Risk Simulator | New Simulation Profile.

Specify a title for your simulation as well as all other pertinent information (Figure 2.1).
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Figure 2.1 — New Simulation Profile

@ Title: Specifying a simulation title allows you to create multiple simulation profiles in a single
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Excel model. Thus you can now save different simulation scenario profiles within the same
model without having to delete existing assumptions and changing them each time a new
simulation scenario is required. You can always change the profile’s name later (Risk Simulator
| Edit Profile).

Number of trials: This is where the number of simulation trials required is entered. That is,
running 1,000 trials means that 1,000 different iterations of outcomes based on the input
assumptions will be generated. You can change this number as desired, but the input has to be
positive integers. The default number of runs is 1,000 trials. You can use precision and error
control later in this chapter to automatically help determine how many simulation trials to run
(see the section on precision and error control for details).

Pause simulation on error: If checked, the simulation stops every time an error is encountered in
the Excel model. That is, if your model encounters a computation error (e.g., some input values
generated in a simulation trial may yield a divide by zero error in one of your spreadsheet cells),
the simulation stops. This function is important to help audit your model to make sure there are
no computational errors in your Excel model. However, if you are sure the model works, then
there is no need for this preference to be checked.

Turn on correlations: If checked, correlations between paired input assumptions will be
computed. Otherwise, correlations will all be set to zero, and a simulation is run assuming no
cross-correlations between input assumptions. As an example, applying correlations will yield
more accurate results if, indeed, correlations exist, and will tend to yield a lower forecast
confidence if negative correlations exist. After turning on correlations here, you can later set the
relevant correlation coefficients on each assumption generated (see the section on correlations for

more details).
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@ Specify random number sequence: Simulation by definition will yield slightly different results
every time a simulation is run. This characteristic is by virtue of the random number generation
routine in Monte Carlo simulation and is a theoretical fact in all random number generators.
However, when making presentations, sometimes you may require the same results (especially
when the report being presented shows one set of results and during a live presentation you would
like to show the same results being generated, or when you are sharing models with others and
would like the same results to be obtained every time), so you would then check this preference
and enter in an initial seed number. The seed number can be any positive integer. Using the same
initial seed value, the same number of trials, and the same input assumptions, the simulation will

always yield the same sequence of random numbers, guaranteeing the same final set of results.

Note that once a new simulation profile has been created, you can come back later and modify these
selections. To do so, make sure that the current active profile is the profile you wish to modify, otherwise,
click on Risk Simulator | Change Simulation Profile, select the profile you wish to change and click
OK (Figure 2.2 shows an example where there are multiple profiles and how to activate a selected
profile). Then, click on Risk Simulator | Edit Simulation Profile and make the required changes. You
can also duplicate or rename an existing profile. When creating multiple profiles in the same Excel model,
make sure to provide each profile a unique name so you can tell them apart later on. Also, these profiles
are stored inside hidden sectors of the Excel *.xlIs file and you do not have to save any additional files.
The profiles and their contents (assumptions, forecasts, etc.) are automatically saved when you save the
Excel file. Finally, the last profile that is active when you exit and save the Excel file will be the one that
is opened the next time the Excel file is accessed.

,
[F2] Change Active Simulation E@M

Simulation Name ] Warkbook ] Date Created ] Last Saved ]
2010-10-14
Second Profile Book1 2001014 MNAA
Third Profile Book1 2010-10-14 MAA

[¥] View simulation profiles in all workbooks

| Delete | | Duplicate | ok | | cancel

Figure 2.2 — Change Active Simulation
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2. Defining Input Assumptions

The next step is to set input assumptions in your model. Note that assumptions can only be assigned to
cells without any equations or functions—typed-in numerical values that are inputs in a model—whereas
output forecasts can only be assigned to cells with equations and functions—outputs of a model. Recall
that assumptions and forecasts cannot be set unless a simulation profile already exists. Do the following
to set new input assumptions in your model:

¥ Make sure a Simulation Profile exists; open an existing profile or start a new profile (Risk
Simulator | New Simulation Profile).

¥ Select the cell you wish to set an assumption on (e.g., cell G8 in the Basic Simulation Model
example).

& Click on Risk Simulator | Set Input Assumption or click on the set input assumption icon in the
Risk Simulator icon toolbar.

¥ Select the relevant distribution you want, enter the relevant distribution parameters (e.g.,
Triangular distribution with /7, 2, 2.5 as the minimum, most likely, and maximum values), and hit
OK to insert the input assumption into your model (Figure 2.3).

i B
Assurmption Properties — =
*  Assumption Mame |Revenue E
|=
= (f 3) -
1.40 Minimum
MNormal Triangular \ Mean = 1.8333 i—'IE
2L : S\‘tdev =0.3118
y Most Likely
—— | 1.00 ¥ -0.3054 IW
\ '“ 0.80 L -0.6000
a 1 r Maximum
Uniform Custom 0.80 25
10.40
0.20
0.00 @ Regular Input
1.01 1.31 .
Arcsine Bernoulli g J () Percentile Input
— — = : Enable Correlation D bt Dats Homstiry
Triangular Distribution £ |§| Assumption | Location | Correlation —
The triangular distribution describes a|E| ot CheetllSAS? 0 Minimum |-Ir|fin'rt§r %i
situation where you know the minimum,'— : b I”—EI
maximum, and most likely values to occur. nfinity

For example, you could describe the
number of cars sold per week when past
sales show the minimum, maximum, and _ £

D Enable Dynamic Simulations

ok [ cancel |

Figure 2.3 — Setting an Input Assumption

Note that you can also set assumptions by selecting the cell you wish to set the assumption on and using
the mouse right-click, access the shortcut Risk Simulator menu to set an input assumption. In addition,
for expert users, you can set input assumptions using the Risk Simulator RS Functions: select the cell of
choice, click on Excel’s Insert, Function, select the All Category, and scroll down to the RS functions list
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(we do not recommend using RS functions unless you are an expert user). For the examples going

forward, we suggest following the basic instructions in accessing menus and icons.

As shown in Figure 2.4, there are several key areas in the Assumption Properties worthy of mention.

@

Assumption Name: This is an optional area to allow you to enter in unique names for the
assumptions to help track what each of the assumptions represents. Good modeling practice is to
use short but precise assumption names.

Distribution Gallery: This area to the left shows all of the different distributions available in the
software. To change the views, right-click anywhere in the gallery and select large icons, small
icons, or list. There are over two dozen distributions available.

Input Parameters: Depending on the distribution selected, the required relevant parameters are
shown. You may either enter the parameters directly or link them to specific cells in your
worksheet. Hard coding or typing the parameters is useful when the assumption parameters are
assumed not to change. Linking to worksheet cells is useful when the input parameters need to be

visible or are allowed to be changed (click on the link icon to link an input parameter to a
worksheet cell).

Enable Data Boundary: These are typically not used by the average analyst but exist for
truncating the distributional assumptions. For instance, if a normal distribution is selected, the
theoretical boundaries are between negative infinity and positive infinity. However, in practice,
the simulated variable exists only within some smaller range, and this range can then be entered
to truncate the distribution appropriately.

Correlations: Pairwise correlations can be assigned to input assumptions here. If correlations are
required, remember to check the Turn on Correlations preference by clicking on Risk Simulator
| Edit Simulation Profile. See the discussion on correlations later in this chapter for more details
about assigning correlations and the effects correlations will have on a model. Notice that you can
either truncate a distribution or correlate it to another assumption, but not both.

Short Descriptions: These exist for each of the distributions in the gallery. The short
descriptions explain when a certain distribution is used as well as the input parameter
requirements. See the section in Understanding Probability Distributions for Monte Carlo
Simulation for details on each distribution type available in the software.

Regular Input and Percentile Input: This option allows the user to perform a quick due
diligence test of the input assumption. For instance, if setting a normal distribution with some
mean and standard deviation inputs, you can click on the percentile input to see what the
corresponding 10th and 90th percentiles are.

Enable Dynamic Simulation: This option is unchecked by default, but if you wish to run a
multidimensional simulation (i.e., if you link the input parameters of the assumption to another
cell that is itself an assumption, you are simulating the inputs, or simulating the simulation), then
remember to check this option. Dynamic simulation will not work unless the inputs are linked to
other changing input assumptions.
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Figure 2.4 — Assumption Properties

Note: If you are following along with the example, continue by setting another assumption on cell G9.
This time use the Uniform distribution with a minimum value of (.9 and a maximum value of /./. Then,
proceed to defining the output forecasts in the next step.

3. Defining Output Forecasts

The next step is to define output forecasts in the model. Forecasts can only be defined on output cells with
equations or functions. The following describes the set forecast process:

¥ Select the cell you wish to set a forecast (e.g., cell G10 in the Basic Simulation Model example).
& Click on Risk Simulator and select Set Output Forecast or click on the set output forecast icon on

the Risk Simulator icon toolbar (Figure 1.3).
¥ Enter the relevant information and click OK.

Note that you can also set output forecasts by selecting the cell you wish to set the forecast on and using
the mouse right-click, access the shortcut Risk Simulator menu to set an output forecast.

Figure 2.5 illustrates the set forecast properties.

@ Forecast Name: Specify the name of the forecast cell. This is important because when you have
a large model with multiple forecast cells, naming the forecast cells individually allows you to
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access the right results quickly. Do not underestimate the importance of this simple step. Good
modeling practice is to use short but precise forecast names.

@ TForecast Precision: Instead of relying on a guesstimate of how many trials to run in your
simulation, you can set up precision and error controls. When an error-precision combination has
been achieved in the simulation, the simulation will pause and inform you of the precision
achieved, making the required number of simulation trials an automated process rather than a
guessing game. Review the section on error and precision control later in this chapter for more
specific details.

@ Show Forecast Window: Allows the user to show or not show a particular forecast window. The
default is to always show a forecast chart.

i hy
i Forecast Properties [ﬂhj

Forecast Name ]Inu:u:ume EJ

Forecast Precision

Precision Level % Confidence
Error Level + % of Mean

or from the Mean
Options

[¥] Show Forecast Window

[ 0K | | Cancel

Figure 2.5 — Set Output Forecast

4. Running the Simulation

If everything looks right, simply click on Risk Simulator | Run Simulation or click on the Run icon on
the Risk Simulator toolbar and the simulation will proceed. You may also reset a simulation after it has
run to rerun it (Risk Simulator | Reset Simulation or the reset simulation icon on the toolbar) or to pause
it during a run. Also, the step function (Risk Simulator | Step Simulation or the step simulation icon on
the toolbar) allows you to simulate a single trial, one at a time, useful for educating others on simulation
(i.e., you can show that at each trial, all the values in the assumption cells are being replaced and the
entire model is recalculated each time). You can also access the run simulation menu by right-clicking
anywhere in the model and selecting Run Simulation.

Risk Simulator also allows you to run the simulation at extremely fast speed, called Super Speed. To do

this, click on Risk Simulator | Run Super Speed Simulation or use the run super speed icon. Notice
how much faster the super speed simulation runs. In fact, for practice, Reset Simulation and then Edit
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Simulation Profile and change the Number of Trials to 100,000, and Run Super Speed. It should only take
a few seconds to run. However, please be aware that super speed simulation will not run if the model has
errors, VBA (visual basic for applications), or links to external data sources or applications. In such
situations, you will be notified and the regular speed simulation will be run instead. Regular speed
simulations are always able to run even with errors, VBA, or external links.

5. Interpreting the Forecast Results

The final step in Monte Carlo simulation is to interpret the resulting forecast charts. Figures 2.6 through
2.13 show the forecast chart and the corresponding statistics generated after running the simulation.
Typically, the following elements are important in interpreting the results of a simulation:

@ Forecast Chart: The forecast chart shown in Figure 2.6 is a probability histogram that shows the
frequency counts of values occurring in the total number of trials simulated. The vertical bars
show the frequency of a particular x value occurring out of the total number of trials, while the
cumulative frequency (smooth line) shows the total probabilities of all values at and below x
occurring in the forecast.

@ Forecast Statistics: The forecast statistics shown in Figure 2.7 summarize the distribution of the
forecast values in terms of the four moments of a distribution. See the Understanding the
Forecast Statistics section later in this chapter for more details on what some of these statistics
mean. You can rotate between the histogram and statistics tabs by depressing the space bar.

Income - Risk Simulator Forecast = | =]
Histogram |Statistics IF‘rE.‘farences |Glptiuns |Currtmls |
o= Income (1000 Trials) - 11
204 1.0 5
09 =
0+ Las %
e F07
[ FOg o
g 40+ 05
E F04 3
L0323 E
20 g2 3
104 e
o120 0.4820 0.5880 1.4850 T5as0"
"
Type ITwn-TaiI vi -Irfirity Infinity | Certainty % | 100.00 5

Figure 2.6 — Forecast Chart
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Income - Risk Simulator Forecast I.Elﬂlihj
| Histogram | Statistics | Preferences |Options |Controls |
Statistics | Result 1
iNumber of Trals TOD0 ;
Mean 0 8267
Median (3545
Standard Deviation 0.3174
Varance 0.1007
Coefficient of Varation (3835
Mazimum 1.5512
Mirirnum 0.0537
Range 1.6045
Skewness 02173
Kurtosis 0.5752
25% Percertile (. 5930
Th% Percertile 1.0685
Percentage Emor Precision at 5% Confidence 237965

Figure 2.7 — Forecast Statistics

Forecast Chart Tabs

@

Preferences: The preferences tab in the forecast chart (Figure 2.8A) allows you to change the
look and feel of the charts. For instance, if A/ways On Top is selected, the forecast charts will
always be visible regardless of what other software are running on your computer. Histogram
Resolution allows you to change the number of bins of the histogram, anywhere from 5 bins to
100 bins. Also, the Data Update feature allows you to control how fast the simulation runs versus
how often the forecast chart is updated. For example, viewing the forecast chart updated at almost
every trial will slow down the simulation as more memory is being allocated to updating the chart
versus running the simulation. This is merely a user preference and in no way changes the results
of the simulation, just the speed of completing the simulation. To further increase the speed of the
simulation, you can minimize Excel while the simulation is running, thereby reducing the
memory required to visibly update the Excel spreadsheet and freeing up the memory to run the
simulation. The Clear All and Minimize All controls all the open forecast charts.

Options: As shown in Figure 2.8B, this forecast chart feature allows you to show all the forecast
data or to filter in/out values that fall within either some specified interval or some standard
deviation you choose. Also, the precision level can be set here for this specific forecast to show
the error levels in the statistics view. See the section on error and precision control later in this
chapter for more details. Show the following statistic on histogram is a user preference for
whether the mean, median, first quartile, and fourth quartile lines (25th and 75th percentiles)
should be displayed on the forecast chart.

Controls: As shown in Figure 2.8C, this tab has all the functionalities in allowing you to change
the type, color, size, zoom, tilt, 3D, and other things in the forecast chart, as well as to generate
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overlay charts (PDF, CDF) and run distributional fitting on your forecast data (see the Data
Fitting sections for more details on this methodology).

@ Global View versus Normal View: Figures 2.8A to 2.8C show the forecast chart’s Normal View
where the forecast chart user interface is divided into tabs, making it small and compact. In
contrast, Figure 2.9 shows the Global View where all elements are located in a single interface.
The results are identical in both views and selecting which view is a matter of personal
preference. You can switch between these two views by clicking on the link, located at the top
right corner, called “Global View” and “Local View.”

”
Income - Risk Simulator Forecast EM

|Hi5tng|am |Statistics Preferances |Dptions ICorrtrols | Global View
Display Control
] Always Show \Window On Top
[] Semitransparent \When Inactive

Histogram Rescolution

Faster - U Higher
SamlaOn i o 0l GO Bl Resolution

Datz Update Interval

Faster - U Faster
|Ipdate

Simulation

Figure 2.8A — Forecast Chart Preferences

"
Income - Risk Simulator Forecast E@ﬂ

| Histogram | Statistics | Preferences | Options | Controls | Global View
Data Filter
@ Show all data _ i
™ Show only data between [-Infinity [ and |Irfinity |
™) Show only data within |_-EE stamférd de'_uriatinr;is'.l
Statistic

Precision level used to calculate the error: W %

Show the following statistic(s) on the histogram:

] Mean [] Median [] 1stQuartile [7] 3rd Quartile
Show Decimals

Chart X-Axis|4 [2] Confidence [4 [24| Statistics [4 |2

Figure 2.8B — Forecast Chart Options
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Figure 2.8C — Forecast Chart Controls
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Figure 2.9 — Forecast Chart Global View
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Using Forecast Charts and Confidence Intervals

In forecast charts, you can determine the probability of occurrence called confidence intervals. That is,
given two values, what are the chances that the outcome will fall between these two values? Figure 2.10
illustrates that there is a 90% probability that the final outcome (in this case, the level of income) will be
between $0.2653 and $1.3230. The two-tailed confidence interval can be obtained by first selecting Two-
Tail as the type, entering the desired certainty value (e.g., 90) and hitting 748 on the keyboard. The two
computed values corresponding to the certainty value will then be displayed. In this example, there is a
5% probability that income will be below $0.2653 and another 5% probability that income will be above
$1.3230. That is, the two-tailed confidence interval is a symmetrical interval centered on the median, or
50th percentile, value. Thus, both tails will have the same probability.

Income - Risk Simulator Forecast E@M

Histogram |Stati5tics |F‘references |Options IControIs |

OO0 OO0 0 OO0 02 2

e

301 Income (1000 Trials) g
B0 ¥ L g
70 Bl
5 60 e
FO7 5
% 50+ | Ei
T 40 Fos =
& s 3
:

-
w
[=

-{IE.I{_HE‘{I 0.4880 0.9880 1.4880

Type |TwoTal +| (02653 | 13230 | Certainty %[ 903

Figure 2.10 — Forecast Chart Two-Tail Confidence Interval

Alternatively, a one-tail probability can be computed. Figure 2.11 shows a left-tail selection at 95%
confidence (i.e., choose Lefi-Tail < as the type, enter 95 as the certainty level, and hit 74AB on the
keyboard). This means that there is a 95% probability that the income will be below $1.3230 or a 5%
probability that income will be above $1.3230, corresponding perfectly with the results seen in Figure
2.10.
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Figure 2.11 — Forecast Chart One-Tail Confidence Interval

In addition to evaluating what the confidence interval is (i.e., given a probability level and finding the
relevant income values), you can determine the probability of a given income value. For instance, what is
the probability that income will be less than or equal to $1? To obtain the answer, select the Left-Tail <
probability type, enter / into the value input box, and hit 74B. The corresponding certainty will then be
computed (in this case, as shown in Figure 2.12, there is a 67.70% probability income will be at or below

$1).

Income - Risk Simulator Forecast @Eﬂ
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Figure 2.12 — Forecast Chart Probability Evaluation
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For the sake of completeness, you can select the Right-Tail > probability type, enter the value / in the
value input box, and hit 74B. The resulting probability indicates the right-tail probability past the value 1,

that is, the probability of income exceeding $1 (in this case, as shown in Figure 2.13, we see that there is a
32.30% probability of income exceeding $1). The sum of 67.70% and 32.30% is, of course, 100%, the
total probability under the curve.
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Figure 2.13 — Forecast Chart Probability Evaluation

The forecast window is resizable by clicking on and dragging the bottom right corner of the
forecast window.

It is also advisable that the current simulation be reset (Risk Simulator | Reset Simulation)
before rerunning a simulation.

Remember that you will need to hit 74B on the keyboard to update the chart and results when you
type in the certainty values or right- and left-tail values.

You can also hit the spacebar on the keyboard repeatedly to cycle among the histogram to
statistics, preferences, options, and control tabs.

In addition, if you click on Risk Simulator | Options you can access several different options for
Risk Simulator, including allowing Risk Simulator to start each time Excel starts or to only start
when you want it to (by going to Start | Programs | Real Options Valuation | Risk Simulator |
Risk Simulator), changing the cell colors of assumptions and forecasts, and turning cell
comments on and off (cell comments will allow you to see which cells are input assumptions and
which are output forecasts as well as their respective input parameters and names). Do spend
some time playing around with the forecast chart outputs and various bells and whistles,
especially the Controls tab.
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Correlations and Precision Control

The Basics of Correlations

The correlation coefficient is a measure of the strength and direction of the relationship between two
variables, and it can take on any value between —1.0 and +1.0. That is, the correlation coefficient can be
decomposed into its sign (positive or negative relationship between two variables) and the magnitude or
strength of the relationship (the higher the absolute value of the correlation coefficient, the stronger the
relationship).

The correlation coefficient can be computed in several ways. The first approach is to manually compute

the correlation, r, of two variables, x and y, using:

r., = nzxiyl‘ —inzyi
B SR A S

The second approach is to use Excel’s CORREL function. For instance, if the 10 data points for x and y
are listed in cells A1:B10, then the Excel function to use is CORREL (A1:A10, B1:B10).

The third approach is to run Risk Simulator’s Multi-Fit Tool, and the resulting correlation matrix will be
computed and displayed.

It is important to note that correlation does not imply causation. Two completely unrelated random
variables might display some correlation but this does not imply any causation between the two (e.g.,
sunspot activity and events in the stock market are correlated but there is no causation between the two).

There are two general types of correlations: parametric and nonparametric correlations. Pearson’s
correlation coefficient is the most common correlation measure and is usually referred to simply as the
correlation coefficient. However, Pearson’s correlation is a parametric measure, which means that it
requires both correlated variables to have an underlying normal distribution and that the relationship
between the variables is linear. When these conditions are violated, which is often the case in Monte
Carlo simulation, the nonparametric counterparts become more important. Spearman’s rank correlation
and Kendall’s tau are the two alternatives. The Spearman correlation is most commonly used and is most
appropriate when applied in the context of Monte Carlo simulation—there is no dependence on normal
distributions or linearity, meaning that correlations between different variables with different distribution
can be applied. To compute the Spearman correlation, first rank all the x and y variable values and then
apply the Pearson’s correlation computation.

In the case of Risk Simulator, the correlation used is the more robust nonparametric Spearman’s rank
correlation. However, to simplify the simulation process, and to be consistent with Excel’s correlation
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function, the correlation inputs required are the Pearson’s correlation coefficient. Risk Simulator will
then apply its own algorithms to convert them into Spearman’s rank correlation, thereby simplifying the
process. However, to simplify the user interface, we allow users to enter the more common Pearson’s
product-moment correlation (e.g., computed using Excel’s CORREL function), while in the mathematical
codes, we convert these simple correlations into Spearman’s rank-based correlations for distributional
simulations.

Applying Correlations in Risk Simulator

Correlations can be applied in Risk Simulator in several ways:

@ When defining assumptions (Risk Simulator |Set Input Assumption), simply enter the
correlations into the correlation matrix grid in the Distribution Gallery.

@ With existing data, run the Multi-Fit tool (Risk Simulator | Tools | Distributional
Fitting | Multiple Variables) to perform distributional fitting and to obtain the correlation matrix
between pairwise variables. If a simulation profile exists, the assumptions fitted will
automatically contain the relevant correlation values.

@ With existing assumptions, you can click on Risk Simulator |Tools |Edit Correlations to

enter the pairwise correlations of all the assumptions directly in one user interface.

Note that the correlation matrix must be positive definite. That is, the correlation must be mathematically
valid. For instance, suppose you are trying to correlate three variables: grades of graduate students in a
particular year, the number of beers they consume a week, and the number of hours they study a week.
One would assume that the following correlation relationships exist:

Grades and Beer: — The more they drink, the lower the grades (no-show on exams)
Grades and Study: +  The more they study, the higher the grades
Beer and Study: — The more they drink, the less they study (drunk and partying all the time)

However, if you input a negative correlation between Grades and Study, and assuming that the correlation
coefficients have high magnitudes, the correlation matrix will be nonpositive definite. It would defy logic,
correlation requirements, and matrix mathematics. However, smaller coefficients can sometimes still
work even with the bad logic. When a nonpositive or bad correlation matrix is entered, Risk Simulator
will automatically inform you, and offers to adjust these correlations to something that is semipositive
definite while still maintaining the overall structure of the correlation relationship (the same signs as well
as the same relative strengths).

The Effects of Correlations in Monte Carlo Simulation

Although the computations required to correlate variables in a simulation are complex, the resulting
effects are fairly clear. Figure 2.14 shows a simple correlation model (Correlation Effects Model in the
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example folder). The calculation for revenue is simply price multiplied by quantity. The same model is

replicated for no correlations, positive correlation (+0.8), and negative correlation (—0.8) between price

and quantity.

Correlation Model

Without Fositive Megative

Correlation  Correlation  Correlation
Frice $2.00 $2.00 $2.00
Quantity 1.00 1.00 1.00
Revenue $2.00 $2.00 $2.00

Figure 2.14 — Simple Correlation Model

The resulting statistics are shown in Figure 2.15. Notice that the standard deviation of the model without
correlations is 0.1450, compared to 0.1886 for the positive correlation and 0.0717 for the negative

correlation. That is, for simple models, negative correlations tend to reduce the average spread of the

distribution and create a tight and more concentrated forecast distribution as compared to positive

correlations with larger average spreads. However, the mean remains relatively stable. This implies that

correlations do little to change the expected value of projects but can reduce or increase a project’s risk.

.
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Maximum 24147 Maxdmum 22148
Minimum 16278 Mirimum 1.8197
Range 0.7869 Range 0.3951
Skewness 0.0738 Skewness 0.1040
Kurtosis -0.5641 Kurtosis 03191
25% Percentile 1.8475 25% Percentile 1.5437
75% Percentile 21480 75% Percentils 2.0487
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E Revenue Mo Correlation - Risk Simulator Forecast =& =)
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Number of Trials 1000
Mean 2.0036
Median 1.9935
E'Sféndard Devigtion T T250 ]
Variance 0.0210
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Figure 2.15 — Correlation Results

Figure 2.16 illustrates the results after running a simulation, extracting the raw data of the assumptions

and computing the correlations between the variables. The figure shows that the input assumptions are
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recovered in the simulation. That is, you enter +0.8 and —0.8 correlations and the resulting simulated

values have the same correlations.

Price Quantity Price Quantity
Positive Positive Negative Negative
Correlation Correlation Correlation Correlation
1.95 0.91 1.89 1.06
1.92 0.95 1.98 1.05
2.02 1.04 Pearson's Correlation: 1.89 1.09 Pearson's Correlafion:
2.04 1.03 1.58 1.04
1.80 0.91 0.80 1.96 093 -0.80
1.08 1.05 2.02 0.93
205 1.03 2.00 1.02
1.87 0.91 1.86 1.04
1.84 0.91 1.96 1.02
2.06 1.03 1.90 1.02
1.98 1.01 1.92 1.10

Figure 2.16 — Correlations Recovered

Precision and Error Control

One very powerful tool in Monte Carlo simulation is that of precision control. For instance, how many
trials are considered sufficient to run in a complex model? Precision control takes the guesswork out of
estimating the relevant number of trials by allowing the simulation to stop if the level of prespecified

precision is reached.

The precision control functionality lets you set how precise you want your forecast to be. Generally
speaking, as more trials are calculated, the confidence interval narrows and the statistics become more
accurate. The precision control feature in Risk Simulator uses the characteristic of confidence intervals to
determine when a specified accuracy of a statistic has been reached. For each forecast, you can set the
specific confidence interval for the precision level.

Make sure that you do not confuse three very different terms: error, precision, and confidence. Although
they sound similar, the concepts are significantly different from one another. A simple illustration is in
order. Suppose you are a taco shell manufacturer and are interested in finding out how many broken taco
shells there are on average in a box of 100 shells. One way to do this is to collect a sample of prepackaged
boxes of 100 taco shells, open them, and count how many of them are actually broken. You manufacture
1 million boxes a day (this is your population) but you randomly open only 10 boxes (this is your sample
size, also known as your number of #rials in a simulation). The number of broken shells in each box is as
follows: 24, 22, 4, 15, 33, 32, 4, 1, 45, and 2. The calculated average number of broken shells is 18.2.
Based on these 10 samples or trials, the average is 18.2 units, while based on the sample, the 80%
confidence interval is between 2 and 33 units (that is, 80% of the time, the number of broken shells is
between 2 and 33 based on this sample size or number of trials run). However, how sure are you that 18.2
is the correct average? Are 10 trials sufficient to establish this? The confidence interval between 2 and 33
is too wide and too variable. Suppose you require a more accurate average value where the error is £2
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taco shells 90% of the time—this means that if you open a/l 1 million boxes manufactured in a day,
900,000 of these boxes will have broken taco shells on average at some mean unit +2 taco shells. How
many more taco shell boxes would you then need to sample (or trials run) to obtain this level of
precision? Here, the 2 taco shells is the error level while the 90% is the level of precision. If sufficient
numbers of trials are run, then the 90% confidence interval will be identical to the 90% precision level,
where a more precise measure of the average is obtained such that 90% of the time, the error and, hence,
the confidence will be +2 taco shells. As an example, say the average is 20 units, then the 90% confidence
interval will be between 18 and 22 units with this interval being precise 90% of the time, where in
opening all 1 million boxes, 900,000 of them will have between 18 and 22 broken taco shells. The

. . . . .. . . . — N
number of trials required to hit this precision is based on the sampling error equation of X+ 27—,
n
S
Jn

obtained from the 90% precision level, s is the sample standard deviation, and # is the number of trials

where Z is the error of 2 taco shells, x is the sample average, Z is the standard-normal Z-score

required to hit this level of error with the specified precision. Figures 2.17 and 2.18 illustrate how
precision control can be performed on multiple simulated forecasts in Risk Simulator. This feature
prevents the user from having to decide how many trials to run in a simulation and eliminates all
possibilities of guesswork. Figure 2.17 illustrates the forecast chart with a 95% precision level set. This
value can be changed and will be reflected in the Statistics tab as shown in Figure 2.18.

r v
Income - Risk Simulator Forecast E@ﬁ

| Histogram | Statistics | Preferences | Options | Controls Global View
Data Filter
@ Show all data
™) Show only data between |-Infinity and | Infinity
i Show only data within [—E standard deviation(s)
Statistic
Precizion level used to calculate the error: gh-= %

Show the following statistic(s) on the histogram:
] Mean [] Median [] 1stQuartile [7] 3rd Quartile
Show Decimals

Chart X-fxis|4 | Confidence |4 (4| Statistics (4 £

Figure 2.17 — Setting the Forecast’s Precision Level
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Incame - Risk Simulator Forecast E@g
Histogram | Statistics | Preferences ID-ptims IC:mtmls |
Statistics | Result |
Mumber of Trials 1000
Mean 0.8267
Median 0.8545
Standard Deviation 03174
Varance 0.1007
Coefficient of Variation 0.3835
Maodrmum 15512
Minimum 40.0637
Range 1.6045
Skewness 42173
Kurtosis 1.5752
25% Percentile 05980
75% Percentile 1.0685
Percentage Emor Precision at 55% Corfidence 237567

Figure 2.18 — Computing the Error
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Understanding the Forecast Statistics

Most distributions can be defined up to four moments. The first moment describes a distribution’s
location or central tendency (expected returns); the second moment describes its width or spread (risks);
the third moment, its directional skew (most probable events); and the fourth moment, its peakedness or
thickness in the tails (catastrophic losses or gains). All four moments should be calculated in practice and
interpreted to provide a more comprehensive view of the project under analysis. Risk Simulator provides
the results of all four moments in its Statistics view in the forecast charts.

Measuring the Center of the Distribution—the First Moment

The first moment of a distribution measures the expected rate of return on a particular project. It measures
the location of the project’s scenarios and possible outcomes on average. The common statistics for the
first moment include the mean (average), median (center of a distribution), and mode (most commonly
occurring value). Figure 2.19 illustrates the first moment—where, in this case, the first moment of this

distribution is measured by the mean (i), or average, value.

Skew =0
KurtosisXS =0

M K1 7# M2 H2

Figure 2.19 — First Moment

Measuring the Spread of the Distribution—the Second Moment

The second moment measures the spread of a distribution, which is a measure of risk. The spread, or
width, of a distribution measures the variability of a variable, that is, the potential that the variable can fall
into different regions of the distribution—in other words, the potential scenarios of outcomes. Figure 2.20
illustrates two distributions with identical first moments (identical means) but very different second
moments or risks. The visualization becomes clearer in Figure 2.21. As an example, suppose there are two
stocks and the first stock’s movements (illustrated by the darker line) with the smaller fluctuation is
compared against the second stock’s movements (illustrated by the dotted line) with a much higher price
fluctuation. Clearly an investor would view the stock with the wilder fluctuation as riskier because the
outcomes of the more risky stock are relatively more unknown than the less risky stock. The vertical axis
in Figure 2.21 measures the stock prices, thus, the more risky stock has a wider range of potential
outcomes. This range is translated into a distribution’s width (the horizontal axis) in Figure 2.20, where
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the wider distribution represents the riskier asset. Hence, width, or spread, of a distribution measures a
variable’s risks.

Notice that in Figure 2.20, both distributions have identical first moments, or central tendencies, but the
distributions are clearly very different. This difference in the distributional width is measurable.
Mathematically and statistically, the width, or risk, of a variable can be measured through several
different statistics, including the range, standard deviation (o), variance, coefficient of variation, and
percentiles.

Skew =0
KurtosisXS =0

M1 = 2

Figure 2.20 — Second Moment

Stock prices
A

v

Time

Figure 2.21 — Stock Price Fluctuations
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Measuring the Skew of the Distribution—the Third Moment

The third moment measures a distribution’s skewness, that is, how the distribution is pulled to one side or
the other. Figure 2.22 illustrates a negative, or left, skew (the tail of the distribution points to the left) and
Figure 2.23 illustrates a positive, or right, skew (the tail of the distribution points to the right). The mean
is always skewed toward the tail of the distribution, while the median remains constant. Another way of
seeing this relationship is that the mean moves but the standard deviation, variance, or width may still
remain constant. If the third moment is not considered, then looking only at the expected returns (e.g.,
median or mean) and risk (standard deviation), a positively skewed project might be incorrectly chosen!
For example, if the horizontal axis represents the net revenues of a project, then clearly a left, or
negatively, skewed distribution might be preferred because there is a higher probability of greater returns
(Figure 2.22) as compared to a higher probability for lower level returns (Figure 2.23). Thus, in a skewed
distribution, the median is a better measure of returns, as the medians for both Figures 2.22 and 2.23 are
identical, risks are identical, and, hence, a project with a negatively skewed distribution of net profits is a
better choice. Failure to account for a project’s distributional skewness may mean that the incorrect
project could be chosen (e.g., two projects may have identical first and second moments, that is, they both
have identical returns and risk profiles, but their distributional skews may be very different).

Skew <0
KurtosisXS =0

i W2 H # Ho

Figure 2.22 — Third Moment (Left Skew)

O] =0y

Skew >0
KurtosisXS =0

W 7 o H H2

Figure 2.23 — Third Moment (Right Skew)
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Measuring the Catastrophic Tail Events in a Distribution—the Fourth Moment

The fourth moment, or kurtosis, measures the peakedness of a distribution. Figure 2.24 illustrates this
effect. The background (denoted by the dotted line) is a normal distribution with a kurtosis of 3.0, or an
excess kurtosis (KurtosisXS) of 0.0. Risk Simulator’s results show the KurtosisXS value, using 0 as the
normal level of kurtosis, which means that a negative KurtosisXS indicates flatter tails (platykurtic
distributions like the uniform distribution), while positive values indicate fatter tails (leptokurtic
distributions like the student’s t or lognormal distributions). The distribution depicted by the bold line has
a higher excess kurtosis, thus the area under the curve is thicker at the tails with less area in the central
body. This condition has major impacts on risk analysis. As shown for the two distributions in Figure
2.24, the first three moments (mean, standard deviation, and skewness) can be identical, but the fourth
moment (kurtosis) is different. This condition means that, although the returns and risks are identical, the
probabilities of extreme and catastrophic events (potential large losses or large gains) occurring are higher
for a high kurtosis distribution (e.g., stock market returns are leptokurtic, or have high kurtosis). Ignoring
a project’s kurtosis may be detrimental. Typically, a higher excess kurtosis value indicates that the
downside risks are higher (e.g., the Value at Risk of a project might be significant).

0] =02

Skew =0
Kurtosis > 0

M1 = H2

Figure 2.24 — Fourth Moment
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The Functions of Moments

Ever wonder why these risk statistics are called “moments”? In mathematical vernacular, moment means
raised to the power of some value. In other words, the third moment implies that in an equation, three is
most probably the highest power. In fact, the equations below illustrate the mathematical functions and
applications of some moments for a sample statistic. For example, notice that the highest power for the
first moment average is one, the second moment standard deviation is two, the third moment skew is
three, and the highest power for the fourth moment is four.

First Moment: Arithmetic Average or Simple Mean (Sample)

x=4L The Excel equivalent function is AVERAGE.

= The Excel equivalent function is STDEV for a sample standard deviation.

The Excel equivalent function is STDEVP for a population standard deviation.

Third Moment: Skew (Sample)

n —= 3
skew = n Z (x,=x) The Excel equivalent function is SKEW.
(n=1)(n=2)= s

Fourth Moment: Kurtosis (Sample)

n(n+1) < (xl.—)?)4_ 3(n-1)
(n—1)(n=2)(n-3)5 s (n-=2)(n-3)
The Excel equivalent function is KURT.

kurtosis =
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Understanding Probability Distributions for Monte Carlo Simulation

This section demonstrates the power of Monte Carlo simulation, but to get started with simulation, one
first needs to understand the concept of probability distributions. To begin to understand probability,
consider this example: You want to look at the distribution of nonexempt wages within one department of
a large company. First, you gather raw data—in this case, the wages of each nonexempt employee in the
department. Second, you organize the data into a meaningful format and plot the data as a frequency
distribution on a chart. To create a frequency distribution, you divide the wages into group intervals and
list these intervals on the chart’s horizontal axis. Then you list the number or frequency of employees in
each interval on the chart’s vertical axis. Now you can easily see the distribution of nonexempt wages
within the department.

A glance at the chart illustrated in Figure 2.25 reveals that most of the employees (approximately 60 out
of a total of 180) earn from $7.00 to $9.00 per hour.
60
50
Number of 40
Employees
30

20

10

7.00 7.50 8.00 8.50 9.00

Hourly Wage Ranges in Dollars

Figure 2.25 — Frequency Histogram I

You can chart this data as a probability distribution. A probability distribution shows the number of
employees in each interval as a fraction of the total number of employees. To create a probability
distribution, you divide the number of employees in each interval by the total number of employees and
list the results on the chart’s vertical axis.

The chart in Figure 2.26 shows you the number of employees in each wage group as a fraction of all
employees; you can estimate the likelihood or probability that an employee drawn at random from the
whole group earns a wage within a given interval. For example, assuming the same conditions exist at the
time the sample was taken, the probability is 0.33 (a one in three chance) that an employee drawn at
random from the whole group earns between $8.00 and $8.50 an hour.
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0.33

Probability

7.00 7.50 8.00 8.50 9.00

Hourly Wage Ranges in Dollars

Figure 2.26 — Frequency Histogram I1

Probability distributions are either discrete or continuous. Discrete probability distributions describe
distinct values, usually integers, with no intermediate values and are shown as a series of vertical bars. A
discrete distribution, for example, might describe the number of heads in four flips of a coin as 0, 1, 2, 3,
or 4. Continuous distributions are actually mathematical abstractions because they assume the existence
of every possible intermediate value between two numbers. That is, a continuous distribution assumes
there is an infinite number of values between any two points in the distribution. However, in many
situations, you can effectively use a continuous distribution to approximate a discrete distribution even
though the continuous model does not necessarily describe the situation exactly.

Selecting the Right Probability Distribution

Plotting data is one guide to selecting a probability distribution. The following steps provide another
process for selecting probability distributions that best describe the uncertain variables in your
spreadsheets:

* Look at the variable in question. List everything you know about the conditions surrounding this
variable. You might be able to gather valuable information about the uncertain variable from
historical data. If historical data are not available, use your own judgment, based on experience,
listing everything you know about the uncertain variable.

* Review the descriptions of the probability distributions.

* Select the distribution that characterizes this variable. A distribution characterizes a variable when the
conditions of the distribution match those of the variable.

Monte Carlo Simulation

Monte Carlo simulation in its simplest form is a random number generator that is useful for forecasting,
estimation, and risk analysis. A simulation calculates numerous scenarios of a model by repeatedly
picking values from a user-predefined probability distribution for the uncertain variables and using those
values for the model. As all those scenarios produce associated results in a model, each scenario can have
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a forecast. Forecasts are events (usually with formulas or functions) that you define as important outputs
of the model. These usually are events such as totals, net profit, or gross expenses.

Simplistically, think of the Monte Carlo simulation approach as repeatedly picking golf balls out of a
large basket with replacement. The size and shape of the basket depend on the distributional input
assumption (e.g., a normal distribution with a mean of 100 and a standard deviation of 10, versus a
uniform distribution or a triangular distribution) where some baskets are deeper or more symmetrical than
others, allowing certain balls to be pulled out more frequently than others. The number of balls pulled
repeatedly depends on the number of #rials simulated. For a large model with multiple related
assumptions, imagine a very large basket wherein many smaller baskets reside. Each small basket has its
own set of golf balls that are bouncing around. Sometimes these small baskets are linked with each other
(if there is a correlation between the variables) and the golf balls are bouncing in tandem, while other
times the balls are bouncing independent of one another. The balls that are picked each time from these
interactions within the model (the large central basket) are tabulated and recorded, providing a forecast
output result of the simulation.

With Monte Carlo simulation, Risk Simulator generates random values for each assumption’s probability
distribution that are totally independent. In other words, the random value selected for one trial has no
effect on the next random value generated. Use Monte Carlo sampling when you want to simulate real-
world what-if scenarios for your spreadsheet model.

The two following sections provide a detailed listing of the different types of discrete and continuous
probability distributions that can be used in Monte Carlo simulation.

Discrete Distributions

Bernoulli or Yes/No Distribution

The Bernoulli distribution is a discrete distribution with two outcomes (e.g., head or tails, success or
failure, 0 or 1). It is the binomial distribution with one trial and can be used to simulate Yes/No or
Success/Failure conditions. This distribution is the fundamental building block of other more complex

distributions. For instance:

e Binomial distribution: a Bernoulli distribution with higher number of » total trials that
computes the probability of x successes within this total number of trials.

e Geometric distribution: a Bernoulli distribution with higher number of trials that computes
the number of failures required before the first success occurs.

e Negative binomial distribution: a Bernoulli distribution with higher number of trials that
computes the number of failures before the Xth success occurs.
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The mathematical constructs for the Bernoulli distribution are as follows:

I-p forx=0
P(n) =

p forx =1
or
P(n)=p*(1-p)™
Mean=p
Standard Deviation =\/p(1- p)
Skewness = 1-2p

vr(l-p)
6p> —6p+1

Excess Kurtosis =

p(1-p)

Probability of success (p) is the only distributional parameter. Also, it is important to note that there is
only one trial in the Bernoulli distribution, and the resulting simulated value is either 0 or 1.

Input requirements:
Probability of success > 0 and < 1 (i.e., 0.0001 < p < 0.9999).

Binomial Distribution

The binomial distribution describes the number of times a particular event occurs in a fixed number of
trials, such as the number of heads in 10 flips of a coin or the number of defective items out of 50 items
chosen.

Conditions

The three conditions underlying the binomial distribution are:

* For each trial, only two outcomes are possible that are mutually exclusive.
* The trials are independent—what happens in the first trial does not affect the next trial.
* The probability of an event occurring remains the same from trial to trial.

The mathematical constructs for the binomial distribution are as follows:

P(x)

!
= e p A=p)"™ forn>0;x=0,1,2,..n;and0< p <1
x!l(n—x)!

Mean = np

Standard Deviation = \/np(1— p)
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1-2p
Vrp(1=p)
6p° —6p+1
np(1=p)

Skewness =

Excess Kurtosis =

Probability of success (p) and the integer number of total trials () are the distributional parameters. The
number of successful trials is denoted x. It is important to note that probability of success (p) of 0 or 1 are

trivial conditions that do not require any simulations and, hence, are not allowed in the software.

Input requirements:
Probability of success > 0 and < 1 (i.e., 0.0001 < p < 0.9999).
Number of trials > 1 or positive integers and < 1000 (for larger trials, use the normal distribution with the

relevant computed binomial mean and standard deviation as the normal distribution’s parameters).

Discrete Uniform

The discrete uniform distribution is also known as the equally likely outcomes distribution, where the
distribution has a set of NV elements and each element has the same probability. This distribution is related
to the uniform distribution but its elements are discrete and not continuous.

The mathematical constructs for the discrete uniform distribution are as follows:

P(x) = %

Mean = ranked value

(N-1D)(N+1)
12
Skewness = 0 (i.e., the distribution is perfectly symmetrical)
—6(N* +1)
S5(N-1)(N+1)

Standard Deviation = ranked value

ranked value

Excess Kurtosis =

Input requirements:

Minimum < maximum and both must be integers (negative integers and zero are allowed).

Geometric Distribution

The geometric distribution describes the number of trials until the first successful occurrence, such as the
number of times you need to spin a roulette wheel before you win.

Conditions
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The three conditions underlying the geometric distribution are:

¢ The number of trials is not fixed.
¢ The trials continue until the first success.
* The probability of success is the same from trial to trial.

The mathematical constructs for the geometric distribution are as follows:

P(x)=p(1-p)" forO<p<landx=12,..,n

Mean = l —1
p
Standard Deviation = 1- 2p
p
2
Skewness = S
Ji=p
2
—-6p+6
Excess Kurtosis = p ~oPTO
1-p

Probability of success (p) is the only distributional parameter. The number of successful trials simulated
is denoted x, which can only take on positive integers.

Input requirements:

Probability of success > 0 and < 1 (i.e., 0.0001 < p <0.9999). It is important to note that probability of
success (p) of 0 or 1 are trivial conditions that do not require any simulations and, hence, are not allowed
in the software.

Hypergeometric Distribution

The hypergeometric distribution is similar to the binomial distribution in that both describe the number of
times a particular event occurs in a fixed number of trials. The difference is that binomial distribution
trials are independent, whereas hypergeometric distribution trials change the probability for each
subsequent trial and are called “trials without replacement.” For example, suppose a box of manufactured
parts is known to contain some defective parts. You choose a part from the box, find it is defective, and
remove the part from the box. If you choose another part from the box, the probability that it is defective
is somewhat lower than for the first part because you have already removed a defective part. If you had
replaced the defective part, the probabilities would have remained the same, and the process would have
satisfied the conditions for a binomial distribution.

Conditions
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The three conditions underlying the hypergeometric distribution are:

* The total number of items or elements (the population size) is a fixed number, a finite population. The
population size must be less than or equal to 1,750.

* The sample size (the number of trials) represents a portion of the population.

* The known initial probability of success in the population changes after each trial.

The mathematical constructs for the hypergeometric distribution are as follows:

V,)! (N=N,)!

P(x) = 20V, =) (”_x])v!,(N_Nf “ED o x = Max(n—(N = N.).0),.... Min(n, N..)
nl(N —n)!

Mean = N.n

(N—-N_)N n(N —n)
N?(N -1)

Standard Deviation = \/

N -1
Skewness =
\/(N— N _)N n(N —n)

Excess Kurtosis = complex function

The number of items in the population or Population Size (%), trials sampled or Sample Size (n), and
number of items in the population that have the successful trait or Population Successes (N,) are the
distributional parameters. The number of successful trials is denoted x.

Input requirements:

Population Size > 2 and integer.

Sample Size > 0 and integer.

Population Successes > 0 and integer.
Population Size > Population Successes.
Sample Size < Population Successes.
Population Size < 1750.
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Negative Binomial Distribution

The negative binomial distribution is useful for modeling the distribution of the number of additional
trials required in addition to the number of successful occurrences required (R). For instance, in order to
close a total of 10 sales opportunities, how many extra sales calls would you need to make above 10 calls
given some probability of success in each call? The x-axis shows the number of additional calls required
or the number of failed calls. The number of trials is not fixed, the trials continue until the Rth success,
and the probability of success is the same from trial to trial. Probability of success (p) and number of
successes required (R) are the distributional parameters. It is essentially a superdistribution of the
geometric and binomial distributions. This distribution shows the probabilities of each number of trials in
excess of R to produce the required success R.

Conditions
The three conditions underlying the negative binomial distribution are:

¢ The number of trials is not fixed.
¢ The trials continue until the rth success.

* The probability of success is the same from trial to trial.

The mathematical constructs for the negative binomial distribution are as follows:

-1
P(x) =(x+;l)'19r(1—p))r forx=r,r+1,.;and0< p <1
(r—Dx!
Mean :M
p
Standard Deviation = rd _Zp )
p
2
Skewness = A
Jra-p)
2
—-6p+6
Excess Kurtosis = p —5p70
r(1-p)

Probability of success (p) and required successes (R) are the distributional parameters.

Input requirements:

Successes required must be positive integers > 0 and < 8000.

Probability of success > 0 and < 1 (that is, 0.0001 < p <0.9999). It is important to note that probability of
success (p) of 0 or 1 are trivial conditions that do not require any simulations and, hence, are not allowed
in the software.
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Pascal Distribution

The Pascal distribution is useful for modeling the distribution of the number of total trials required to
obtain the number of successful occurrences required. For instance, to close a total of 10 sales
opportunities, how many total sales calls would you need to make given some probability of success in
each call? The x-axis shows the total number of calls required, which includes successful and failed calls.
The number of trials is not fixed, the trials continue until the Rth success, and the probability of success is
the same from trial to trial. Pascal distribution is related to the negative binomial distribution. Negative
binomial distribution computes the number of events required in addition to the number of successes
required given some probability (in other words, the total failures), whereas the Pascal distribution
computes the total number of events required (in other words, the sum of failures and successes) to
achieve the successes required given some probability. Successes required and probability are the
distributional parameters.

Conditions
The three conditions underlying the negative binomial distribution are:

¢ The number of trials is not fixed.
¢ The trials continue until the »th success.
* The probability of success is the same from trial to trial.

The mathematical constructs for the Pascal distribution are shown below:
(x=1)!
f(x)=5 (x=s)!(s=D!

0 otherwise

p’(1-p)*° forallx >s

LD s
F(x)= ;(x_s)g(s_l)!p (I-p)" ™~ forallx > s

0 otherwise
Mean = 2
p
Standard Deviation =+s(1- p)p’
Skewness = 2——p
Vr(l=p)
_ p—6p+6

Excess Kurtosis
r(1-p)

Successes Required and Probability are the distributional parameters.

Input requirements:
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Successes required > 0 and is an integer.
0 < Probability < 1.

Poisson Distribution

The Poisson distribution describes the number of times an event occurs in a given interval, such as the
number of telephone calls per minute or the number of errors per page in a document.

Conditions
The three conditions underlying the Poisson distribution are:

* The number of possible occurrences in any interval is unlimited.
* The occurrences are independent. The number of occurrences in one interval does not affect the
number of occurrences in other intervals.

* The average number of occurrences must remain the same from interval to interval.

The mathematical constructs for the Poisson are as follows:
-4 1x

forxand A >0

P(x)= ¢

Mean = A
Standard Deviation = \/E

1
Skewness = —
N

1
Excess Kurtosis = Z

Rate, or Lambda (A), is the only distributional parameter.

Input requirements:
Rate > 0 and < 1000 (i.e., 0.0001 <rate < 1000).
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Continuous Distributions

Arcsine Distribution

The arcsine distribution is U-shaped and is a special case of the bBeta distribution when both shape and
scale are equal to 0.5. Values close to the minimum and maximum have high probabilities of occurrence
whereas values between these two extremes have very small probabilities of occurrence. Minimum and

maximum are the distributional parameters.

The mathematical constructs for the Arcsine distribution are shown below. The probability density
function (PDF) is denoted f{x) and the cumulative distribution function (CDF) is denoted F(x).

1 for0<x<l1
f(x)=< m\x(1-x)

0 otherwise

0 x<0

F(x)= %sin"l(\/;) for0<x<l

1 x>1

_ Min+ Max
- 2

—_— r 2
Standard Deviation = /w

Skewness = 0 for all inputs

Mean

Excess Kurtosis = 1.5 for all inputs
Minimum and maximum are the distributional parameters.

Input requirements:
Maximum > minimum (either input parameter can be positive, negative, or zero).

Beta Distribution

The beta distribution is very flexible and is commonly used to represent variability over a fixed range.
One of the more important applications of the beta distribution is its use as a conjugate distribution for the
parameter of a Bernoulli distribution. In this application, the beta distribution is used to represent the
uncertainty in the probability of occurrence of an event. It is also used to describe empirical data and
predict the random behavior of percentages and fractions, as the range of outcomes is typically between 0
and 1.
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The value of the beta distribution lies in the wide variety of shapes it can assume when you vary the two
parameters, alpha and beta. If the parameters are equal, the distribution is symmetrical. If either parameter
is 1 and the other parameter is greater than 1, the distribution is J-shaped. If alpha is less than beta, the
distribution is said to be positively skewed (most of the values are near the minimum value). If alpha is
greater than beta, the distribution is negatively skewed (most of the values are near the maximum value).

The mathematical constructs for the beta distribution are as follows:

O ) N
f(x)= {F(a)l“(ﬁ)} fora >0, 6>0,x>

I'a+p)

Mean =
a+pf

Standard Deviation = 205[3
(a+p) (+a+p)

20-a)J1+a+p
Q+a+pBfap

(a+B+D[af(a+p—-6)+2(a +,B)2]_3
aff(a+ B +2)a+[+3)

Skewness =

Excess Kurtosis =

Alpha (@) and beta () are the two distributional shape parameters, and I"is the Gamma function.

Conditions

The two conditions underlying the beta distribution are:

* The uncertain variable is a random value between 0 and a positive value.

» The shape of the distribution can be specified using two positive values.

Input requirements:

Alpha and beta both > 0 and can be any positive value.

Beta 3 and Beta 4 Distributions

The original Beta distribution only takes two inputs, Alpha and Beta shape parameters. However, the
output of the simulated value is between 0 and 1. In the Beta 3 distribution, we add an extra parameter
called Location or Shift, where we are not free to move away from this 0 to 1 output limitation, therefore
the Beta 3 distribution is also known as a Shifted Beta distribution. Similarly, the Beta 4 distribution adds
two input parameters, Location or Shift, and Factor. The original Bbeta distribution is multiplied by the
factor and shifted by the location, and, therefore the Beta 4 is also known as the Multiplicative Shifted
Beta distribution.

User Manual (Risk Simulator Software) 56 © 2005-2011 Real Options Valuation, Inc.



The mathematical constructs for the Beta 3 and Beta 4 distributions are based on those in the Beta
distribution, with the relevant shifts and factorial multiplication (e.g., the PDF and CDF will be adjusted
by the shift and factor, and some of the moments, such as the mean, will similarly be affected; the
standard deviation, in contrast, is only affected by the factorial multiplication, whereas the remaining
moments are not affected at all).

Input requirements:
Location >=< 0 (location can take on any positive or negative value including zero).
Factor > 0.

Cauchy Distribution, or Lorentzian or Breit-Wigner Distribution

The Cauchy distribution, also called the Lorentzian or Breit-Wigner distribution, is a continuous
distribution describing resonance behavior. It also describes the distribution of horizontal distances at

which a line segment tilted at a random angle cuts the x-axis.

The mathematical constructs for the cauchy or Lorentzian distribution are as follows:

_l y/2
f(x)—ﬁ (x—m)2+;/2/4

The Cauchy distribution is a special case because it does not have any theoretical moments (mean,
standard deviation, skewness, and kurtosis) as they are all undefined.

Mode location (@) and scale () are the only two parameters in this distribution. The location parameter
specifies the peak or mode of the distribution, while the scale parameter specifies the half-width at half-
maximum of the distribution. In addition, the mean and variance of a Cauchy, or Lorentzian, distribution

are undefined.

In addition, the Cauchy distribution is the Student’s T distribution with only 1 degree of freedom. This
distribution is also constructed by taking the ratio of two standard normal distributions (normal

distributions with a mean of zero and a variance of one) that are independent of one another.
Input requirements:
Location (Alpha) can be any value.

Scale (Beta) > 0 and can be any positive value.

Chi-Square Distribution

The chi-square distribution is a probability distribution used predominatly in hypothesis testing, and is
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related to the gamma and standard normal distributions. For instance, the sum of independent normal

distributions is distributed as a chi-square (y°) with k degrees of freedom:

d
ZI+Z3+..+Z ~y}

The mathematical constructs for the chi-square distribution are as follows:

f(x) — 0'571{/2 k/2-1 —x/2
I'(k/2)
Mean =k

Standard Deviation = \/2k

Skewness = 2\/Z
k

Excess Kurtosis =

forallx>0

12

I'is the gamma function. Degrees of freedom, £, is the only distributional parameter.

The chi-square distribution can also be modeled using a gamma distribution by setting the

k
shape parameter equal to 2 and the scaleequal to 25> where S is the scale.

Input requirements:

Degrees of freedom > 1 and must be an integer < 300.

Cosine Distribution

The cosine distribution looks like a logistic distribution where the median value between the minimum
and maximum have the highest peak or mode, carrying the maximum probability of occurrence, while the
extreme tails close to the minimum and maximum values have lower probabilities. Minimum and

maximum are the distributional parameters.

The mathematical constructs for the Cosine distribution are shown below:

f(x) = ?bco{ b

0 otherwise

a .
} for min < x <max

min+ max max— min
wherea =—— and b= ———
2 b4
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l{1+sin(x;aﬂ for min < x < max

F(x)=42
1 for x > max
Mean = Min J;Max

(Max — Min)*(n* —8)
Ar’

Standard Deviation = \/

Skewness is always equal to 0
4

Excess Kurtosis = M

5(r”—6)

Minimum and maximum are the distributional parameters.

Input requirements:

Maximum > minimum (either input parameter can be positive, negative, or zero).

Double Log Distribution

The double log distribution looks like the Cauchy distribution where the central tendency is peaked and
carries the maximum value probability density but declines faster the further it gets away from the center,
creating a symmetrical distribution with an extreme peak in between the minimum and maximum values.

Minimum and maximum are the distributional parameters.

The mathematical constructs for the Double Log distribution are shown below:
_—1111 M for min < x < max

f(x)=<2b b

0 otherwise

min+ max max—min
wherea=—and b=———

5o
|

|xb;a|j formin<x<a

F(x)= - Z
l.,. M I-In M Jor a < x <max
2 2b b
Mean = Min+ Max
— ] 2
Standard Deviation = w

Skewness is always equal to 0
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Excess Kurtosis is a complex function and not easily represented
Minimum and maximum are the distributional parameters.

Input requirements:
Maximum > minimum (either input parameter can be positive, negative, or zero).

Erlang Distribution

The Erlang distribution is the same as the Gamma distribution with the requirement that the Alpha or
shape parameter must be a positive integer. An example application of the Erlang distribution is the
calibration of the rate of transition of elements through a system of compartments. Such systems are
widely used in biology and ecology (e.g., in epidemiology, an individual may progress at an exponential
rate from being healthy to becoming a disease carrier, and continue exponentially from being a carrier to
being infectious). Alpha (also known as shape) and Beta (also known as scale) are the distributional

parameters.

The mathematical constructs for the Erlang distribution are shown below:

-
f(x)= ﬂ—foerO
Bla—-1)

0 otherwise

i

__—xIB S /By
Flx) = l-e ;—! for x>0

0 otherwise

Mean =af

Standard Deviation = \|a3°

Skew = i

N

.6
Excess Kurtosis =——73
a

Alpha and Beta are the distributional parameters.
Input requirements:

Alpha (Shape) > 0 and is an Integer
Beta (Scale) > 0
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Exponential Distribution

The exponential distribution is widely used to describe events recurring at random points in time, such as
the time between failures of electronic equipment or the time between arrivals at a service booth. It is
related to the Poisson distribution, which describes the number of occurrences of an event in a given
interval of time. An important characteristic of the exponential distribution is the “memoryless” property,
which means that the future lifetime of a given object has the same distribution regardless of the time it
existed. In other words, time has no effect on future outcomes.

Conditions

The condition underlying the exponential distribution is:
* The exponential distribution describes the amount of time between occurrences.

The mathematical constructs for the exponential distribution are as follows:

f(x)=2e™ forx=0;1>0
Mean = —
A

Standard Deviation = Z

Skewness = 2 (this value applies to all success rate 4 inputs)

Excess Kurtosis = 6 (this value applies to all success rate A inputs)
Success rate (1) is the only distributional parameter. The number of successful trials is denoted x.

Input requirements:
Rate > 0.

Exponential 2 Distribution

The Exponential 2 distribution uses the same constructs as the original Exponential distribution but adds a
Location or Shift parameter. The Exponential distribution starts from a minimum value of 0, whereas this
Exponential 2 or Shifted Exponential, distribution shifts the starting location to any other value.

Rate, or Lambda, and Location, or Shift, are the distributional parameters.
Input requirements:

Rate (Lambda) > 0.

Location can be any positive or negative value including zero.
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Extreme Value Distribution, or Gumbel Distribution

The extreme value distribution (Type 1) is commonly used to describe the largest value of a response over
a period of time, for example, in flood flows, rainfall, and earthquakes. Other applications include the
breaking strengths of materials, construction design, and aircraft loads and tolerances. The extreme value
distribution is also known as the Gumbel distribution.

The mathematical constructs for the extreme value distribution are as follows:

X—o

B

f(x)= lzefz wherez =e for > 0; and any value of x and «

Mean = a +0.577215p

[
Standard Deviation = s B’

124/6(1.2020569)

3
T

Skewness = =1.13955 (this applies for all values of mode and scale)

Excess Kurtosis = 5.4 (this applies for all values of mode and scale)
Mode () and scale () are the distributional parameters.

Calculating Parameters

There are two standard parameters for the extreme value distribution: mode and scale. The mode
parameter is the most likely value for the variable (the highest point on the probability distribution). After
you select the mode parameter, you can estimate the scale parameter. The scale parameter is a number

greater than 0. The larger the scale parameter, the greater the variance.

Input requirements:
Mode Alpha can be any value.
Scale Beta > 0.

F Distribution, or Fisher-Snedecor Distribution

The F distribution, also known as the Fisher-Snedecor distribution, is another continuous distribution used
most frequently for hypothesis testing. Specifically, it is used to test the statistical difference between two
variances in analysis of variance tests and likelihood ratio tests. The F distribution with the numerator
degree of freedom n and denominator degree of freedom m is related to the chi-square distribution in that:

x2/nd

x;/m

n,m
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Mean=i
m-—2

2m*(m+n-2)
n(m—2)"(m—4)

2(m+2n-2) 2(m—4)
Skewness =
m—=6 n(m+n-2)

12(=16 4+ 20m —8m> +m’ + 44n —32mn + 5m*>n—22n> + Smn’
n(m—06)(m—-8)(n+m-—2)

for allm >4

Standard Deviation =

Excess Kurtosis =

The numerator degree of freedom » and denominator degree of freedom m are the only distributional

parameters.

Input requirements:

Degrees of freedom numerator and degrees of freedom denominator must both be integers > 0

Gamma Distribution (Erlang Distribution)

The gamma distribution applies to a wide range of physical quantities and is related to other distributions:
lognormal, exponential, Pascal, Erlang, Poisson, and chi-square. It is used in meteorological processes to
represent pollutant concentrations and precipitation quantities. The gamma distribution is also used to
measure the time between the occurrence of events when the event process is not completely random.
Other applications of the gamma distribution include inventory control, economic theory, and insurance

risk theory.

Conditions
The gamma distribution is most often used as the distribution of the amount of time until the rth
occurrence of an event in a Poisson process. When used in this fashion, the three conditions underlying

the gamma distribution are:

* The number of possible occurrences in any unit of measurement is not limited to a fixed number.
* The occurrences are independent. The number of occurrences in one unit of measurement does not
affect the number of occurrences in other units.

* The average number of occurrences must remain the same from unit to unit.

The mathematical constructs for the gamma distribution are as follows:
a-1 X

X X
) <
Jx) ="

I'(a)p

Mean = af

with any value of @ > 0and 8 >0
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Standard Deviation = a3’

2
Skewness = —
Ja
) 6
Excess Kurtosis = —
a

Shape parameter alpha (o) and scale parameter beta (f) are the distributional parameters, and I is the
Gamma function.

When the alpha parameter is a positive integer, the gamma distribution is called the Erlang distribution,
used to predict waiting times in queuing systems, where the Erlang distribution is the sum of independent
and identically distributed random variables each having a memoryless exponential distribution. Setting n
as the number of these random variables, the mathematical construct of the Erlang distribution is:

n-1_-—x
f(x)= x—' for all x > 0 and all positive integers of n

(n=1)

Input requirements:

Scale beta > 0 and can be any positive value.
Shape alpha > 0.05 and any positive value.
Location can be any value.

Laplace Distribution

The Laplace distribution is also sometimes called the double exponential distribution because it can be
constructed with two exponential distributions (with an additional location parameter) spliced together
back-to-back, creating an unusual peak in the middle. The probability density function of the Laplace
distribution is reminiscent of the normal distribution. However, whereas the normal distribution is
expressed in terms of the squared difference from the mean, the Laplace density is expressed in terms of
the absolute difference from the mean, making the Laplace distribution’s tails fatter than those of the
normal distribution. When the location parameter is set to zero, the Laplace distribution’s random variable
is exponentially distributed with an inverse of the scale parameter. Alpha (also known as location) and
Beta (also known as scale) are the distributional parameters.

The mathematical constructs for the Laplace distribution are shown below:
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£(x)= %exp[—mj

Mean=a
Standard Deviation = 1.4142p
Skewness is always equal to 0 as it is a symmetrical distribution

Excess Kurtosis is always equal to 3

Input requirements:
Alpha (Location) can take on any positive or negative value including zero.
Beta (Scale) > 0.

Logistic Distribution

The logistic distribution is commonly used to describe growth, that is, the size of a population expressed
as a function of a time variable. It also can be used to describe chemical reactions and the course of

growth for a population or individual.

The mathematical constructs for the logistic distribution are as follows:
oa—x
e B
f(x)=——— forany value of ¢ and p

a—x

Bll+e?

Mean =«

Standard Deviation =, /%ﬂ'z B’

Skewness = 0 (this applies to all mean and scale inputs)
Excess Kurtosis = 1.2 (this applies to all mean and scale inputs)

Mean () and scale (f) are the distributional parameters.

Calculating Parameters

There are two standard parameters for the logistic distribution: mean and scale. The mean parameter is the
average value, which for this distribution is the same as the mode because this is a symmetrical
distribution. After you select the mean parameter, you can estimate the scale parameter. The scale
parameter is a number greater than 0. The larger the scale parameter, the greater the variance.
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Input requirements:
Scale Beta > 0 and can be any positive value.
Mean Alpha can be any value.

Lognormal Distribution

The lognormal distribution is widely used in situations where values are positively skewed, for example,
in financial analysis for security valuation or in real estate for property valuation, and where values

cannot fall below zero.

Stock prices are usually positively skewed rather than normally (symmetrically) distributed. Stock prices
exhibit this trend because they cannot fall below the lower limit of zero but might increase to any price
without limit. Similarly, real estate prices illustrate positive skewness as property values cannot become

negative.

Conditions
The three conditions underlying the lognormal distribution are:

* The uncertain variable can increase without limits but cannot fall below zero.
* The uncertain variable is positively skewed, with most of the values near the lower limit.
* The natural logarithm of the uncertain variable yields a normal distribution.

Generally, if the coefficient of variability is greater than 30%, use a lognormal distribution. Otherwise,

use the normal distribution.

The mathematical constructs for the lognormal distribution are as follows:
_ln(x)~In(p)P

1 >
f(X)=————¢ MT forx>0;u>0andoc >0
xv27 In(o)

2
Mean = exp[y +%j

Standard Deviation = \/eXp(G2 + 2ulexp(62 )— IJ

Skewness = L/ eXpiG2 i— lJ(2 +exp(c?))

Excess Kurtosis = exp(40'2 )+ 2 exp(30'2 )+ 3 exp(20'2 )— 6

Mean () and standard deviation (o) are the distributional parameters.

Input requirements:
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Mean and standard deviation both > 0 and can be any positive value.

Lognormal Parameter Sets
By default, the lognormal distribution uses the arithmetic mean and standard deviation. For applications
for which historical data are available, it is more appropriate to use either the logarithmic mean and

standard deviation, or the geometric mean and standard deviation.

Lognormal 3 Distribution

The Lognormal 3 distribution uses the same constructs as the original Lognormal distribution but adds a
Location, or Shift, parameter. The Lognormal distribution starts from a minimum value of 0, whereas this

Lognormal 3, or Shifted Lognormal distribution shifts the starting location to any other value.
Mean, Standard Deviation, and Location (Shift) are the distributional parameters.

Input requirements:
Mean > 0.
Standard Deviation > 0.

Location can be any positive or negative value including zero.

Normal Distribution

The normal distribution is the most important distribution in probability theory because it describes many
natural phenomena, such as people’s 1Qs or heights. Decision makers can use the normal distribution to
describe uncertain variables such as the inflation rate or the future price of gasoline.

Conditions
The three conditions underlying the normal distribution are:

* Some value of the uncertain variable is the most likely (the mean of the distribution).

* The uncertain variable could as likely be above the mean as it could be below the mean (symmetrical
about the mean).

* The uncertain variable is more likely to be in the vicinity of the mean than further away.

The mathematical constructs for the normal distribution are as follows:

1 7(Ht2)2
f(x)= e 29 forall values of x and y; while >0
\N2no

Mean =y

Standard Deviation =o
Skewness = 0 (this applies to all inputs of mean and standard deviation)
Excess Kurtosis = 0 (this applies to all inputs of mean and standard deviation)
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Mean () and standard deviation (o) are the distributional parameters.

Input requirements:
Standard deviation > 0 and can be any positive value.

Mean can take on any value.

Parabolic Distribution

The parabolic distribution is a special case of the beta distribution when Shape = Scale = 2. Values close
to the minimum and maximum have low probabilities of occurrence, whereas values between these two
extremes have higher probabilities or occurrence. Minimum and maximum are the distributional
parameters.

The mathematical constructs for the Parabolic distribution are shown below:
(a-1) (B-1)
1—
)
L(a)I'(B)
I'a+p)

Where the functional form above is for a Beta distribution, and for a Parabolic function, we set Alpha =

fora>0;8>0,x>0

Beta =2 and a shift of location in Minimum, with a multiplicative factor of (Maximum — Minimum).

Mean = Min+ Max
2
. 2
Standard Deviation = W

Skewness = 0
Excess Kurtosis =—0.8571

Minimum and Maximum are the distributional parameters.

Input requirements:

Maximum > minimum (either input parameter can be positive, negative, or zero).

Pareto Distribution

The Pareto distribution is widely used for the investigation of distributions associated with such empirical
phenomena as city population sizes, the occurrence of natural resources, the size of companies, personal

incomes, stock price fluctuations, and error clustering in communication circuits.

The mathematical constructs for the Pareto are as follows:
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14
J(x)=—45 forx>L
x

mean = ﬂ

p-1
standard deviation = \/ B Z)Lz

B-D(B-2)
skewness = p-2 {2(:3 + 1)}
B B-3
excess kurtosis = 6(’33 + 'Bz —64-2)
BB -3)(B-4)

Shape () and Location (/) are the distributional parameters.

Calculating Parameters

There are two standard parameters for the Pareto distribution: location and shape. The location parameter
is the lower bound for the variable. After you select the location parameter, you can estimate the shape
parameter. The shape parameter is a number greater than 0, usually greater than 1. The larger the shape
parameter, the smaller the variance and the thicker the right tail of the distribution.

Input requirements:
Location > 0 and can be any positive value
Shape > 0.05.

Pearson V Distribution

The Pearson V distribution is related to the Inverse Gamma distribution, where it is the reciprocal of the
variable distributed according to the Gamma distribution. Pearson V distribution is also used to model
time delays where there is almost certainty of some minimum delay and the maximum delay is
unbounded, for example, delay in arrival of emergency services and time to repair a machine. Alpha (also
known as shape) and Beta (also known as scale) are the distributional parameters.

The mathematical constructs for the Pearson V distribution are shown below:

x—(aﬂ)e—ﬁ/x
Y
Fx) = ['(a, B/ x)
['(a)
Mean = L
a-1
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ﬂZ

Standard Deviation = | ——————
(a-D(ax-2)
Skew = u
a —
Excess Kurtosis = M —
(a=3)a—-4)

Input requirements:
Alpha (Shape) > 0.
Beta (Scale) > 0.

Pearson VI Distribution

The Pearson VI distribution is related to the Gamma distribution, where it is the rational function of two
variables distributed according to two Gamma distributions. Alpha 1 (also known as shape 1), Alpha 2
(also known as shape 2), and Beta (also known as scale) are the distributional parameters.

The mathematical constructs for the Pearson VI distribution are shown below:

(x/ ﬁ)al—l
B Blay,o,)[1+(x/ p)I"
X
Fm_FB(HﬁJ
pa,

a, -1

f(x)=

Mean =

ﬁ2a1(a1 +a,—-1)
(062 _1)2 (0!2 - 2)

Skew =2 o, =2 20, +a, -1
a, (o, +a,—-1) o, -3

Standard Deviation = \/

2
Excess Kurtosis = o) { 2(a, -1)

+(a, + 5)} -3
(052 —3)(062 -4) o (al +a, -1

Input requirements:

Alpha 1 (Shape 1) > 0.

Alpha 2 (Shape 2) > 0.

Beta (Scale) > 0.
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PERT Distribution

The PERT distribution is widely used in project and program management to define the worst-case,
nominal-case, and best-case scenarios of project completion time. It is related to the Beta and Triangular
distributions. PERT distribution can be used to identify risks in project and cost models based on the
likelihood of meeting targets and goals across any number of project components using minimum, most
likely, and maximum values, but it is designed to generate a distribution that more closely resembles
realistic probability distributions. The PERT distribution can provide a close fit to the normal or
lognormal distributions. Like the triangular distribution, the PERT distribution emphasizes the "most
likely" value over the minimum and maximum estimates. However, unlike the triangular distribution, the
PERT distribution constructs a smooth curve that places progressively more emphasis on values around
(near) the most likely value, in favor of values around the edges. In practice, this means that we "trust" the
estimate for the most likely value, and we believe that even if it is not exactly accurate (as estimates
seldom are), we have an expectation that the resulting value will be close to that estimate. Assuming that
many real-world phenomena are normally distributed, the appeal of the PERT distribution is that it
produces a curve similar to the normal curve in shape, without knowing the precise parameters of the

related normal curve. Minimum, Most Likely, and Maximum are the distributional parameters.

The mathematical constructs for the PERT distribution are shown below:

(x—min)*"" (max— x)"**"'
fx)= - Al A2
B(Al, A2)(max—min)
min+4(likely) + max min max_ i+ 4(likely) + max
where Al=6 6 and A2=6 6
max— min max— min

and B is the Beta function

Min +4Mode + Max
Mean =
6
Standard Deviation = \/ (u— Mzn)7(Max —1)
Skew = 7 (Mm+Max—2,u)
(1 —Min)(Max — ) 4

Input requirements:

Minimum < Most Likely < Maximum and can be positive, negative, or zero.

Power Distribution

The Power distribution is related to the exponential distribution in that the probability of small outcomes

User Manual (Risk Simulator Software) 71 © 2005-2011 Real Options Valuation, Inc.



is large but exponentially decreases as the outcome value increases. Alpha (also known as shape) is the
only distributional parameter.

The mathematical constructs for the Power distribution are shown below:

f(x)=ax""

F(x)=x"

Mean = @
l+a

Standard Deviation = +
(l+a)y (2+a)
+2(2(a-1
Skew = f are [Mj
a a+3
Excess Kurtosis is a complex function and cannot be readily computed

Input requirements:
Alpha > 0.

Power 3 Distribution

The Power 3 distribution uses the same constructs as the original Power distribution but adds a Location,
or Shift, parameter, and a multiplicative Factor parameter. The Power distribution starts from a minimum
value of 0, whereas this Power 3, or Shifted Multiplicative Power, distribution shifts the starting location
to any other value.

Alpha, Location or Shift, and Factor are the distributional parameters.

Input requirements:

Alpha > 0.05.

Location, or Shift, can be any positive or negative value including zero.
Factor > 0.

Student’s t Distribution

The Student’s t distribution is the most widely used distribution in hypothesis test. This distribution is
used to estimate the mean of a normally distributed population when the sample size is small to test the
statistical significance of the difference between two sample means or confidence intervals for small
sample sizes.

The mathematical constructs for the t distribution are as follows:
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T [(r+1)/2]
Jrr T[r/2]

Mean = 0 (this applies to all degrees of freedom r except if the distribution is shifted to another nonzero

(1 +t2 /r)f(rJrl)/Z

f(=

central location)

r
r—2
Skewness = 0 (this applies to all degrees of freedom r)

Standard Deviation =

Excess Kurtosis = forallr > 4

r—4

X . .
and I"is the gamma function.

X
where t =

Degrees of freedom r is the only distributional parameter.

The t distribution is related to the F distribution as follows: the square of a value of ¢ with » degrees of
freedom is distributed as F with 1 and » degrees of freedom. The overall shape of the probability density
function of the t distribution also resembles the bell shape of a normally distributed variable with mean 0
and variance 1, except that it is a bit lower and wider or is leptokurtic (fat tails at the ends and peaked
center). As the number of degrees of freedom grows (say, above 30), the t distribution approaches the

normal distribution with mean 0 and variance 1.

Input requirements:

Degrees of freedom > 1 and must be an integer.

Triangular Distribution

The triangular distribution describes a situation where you know the minimum, maximum, and most
likely values to occur. For example, you could describe the number of cars sold per week when past sales

show the minimum, maximum, and usual number of cars sold.

Conditions
The three conditions underlying the triangular distribution are:

* The minimum number of items is fixed.

* The maximum number of items is fixed.

* The most likely number of items falls between the minimum and maximum values, forming a
triangular-shaped distribution, which shows that values near the minimum and maximum are less

likely to occur than those near the most-likely value.

The mathematical constructs for the triangular distribution are as follows:
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2(x — Min)

(Max — Min)(Likely — min)
2(Max — x)

(Max — Min)(Max — Likely)

for Min < x < Likely
JS(x) =

for Likely < x < Max

Mean = %(Min + Likely + Max)

Standard Deviation = \/ é (Min® + Likely® + Max® — Min Max — Min Likely — Max Likely)

V2(Min + Max — 2 Likely)(2Min — Max — Likely)(Min — 2Max + Likely)
5(Min* + Max* + Likely* — MinMax — MinLikely — MaxLikely)*"*
Excess Kurtosis =—0.6 (this applies to all inputs of Min, Max, and Likely)

Skewness =

Minimum value (Min), most-likely value (Likely), and maximum value (Max) are the distributional
parameters.

Input requirements:
Min < Most Likely < Max and can take any value.
However, Min < Max and can take any value.

Uniform Distribution

With the uniform distribution, all values fall between the minimum and maximum and occur with equal
likelihood.

Conditions

The three conditions underlying the uniform distribution are:
* The minimum value is fixed.
* The maximum value is fixed.

* All values between the minimum and maximum occur with equal likelihood.

The mathematical constructs for the uniform distribution are as follows:

1
f(x) =——— for all values such that Min < Max
Max — Min
Mean = Min+ Max
2
— 7 2
Standard Deviation = w

Skewness = 0 (this applies to all inputs of Min and Max)
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Excess Kurtosis =—1.2 (this applies to all inputs of Min and Max)
Maximum value (Max) and minimum value (Min) are the distributional parameters.

Input requirements:
Min < Max and can take any value.

Weibull Distribution (Rayleigh Distribution)

The Weibull distribution describes data resulting from life and fatigue tests. It is commonly used to
describe failure time in reliability studies as well as the breaking strengths of materials in reliability and
quality control tests. Weibull distributions are also used to represent various physical quantities, such as
wind speed.

The Weibull distribution is a family of distributions that can assume the properties of several other
distributions. For example, depending on the shape parameter you define, the Weibull distribution can be
used to model the exponential and Rayleigh distributions, among others. The Weibull distribution is very
flexible. When the Weibull shape parameter is equal to 1.0, the Weibull distribution is identical to the
exponential distribution. The Weibull location parameter lets you set up an exponential distribution to
start at a location other than 0.0. When the shape parameter is less than 1.0, the Weibull distribution
becomes a steeply declining curve. A manufacturer might find this effect useful in describing part failures
during a burn-in period.

The mathematical constructs for the Weibull distribution are as follows:

ro-gl5]

Mean =T (1+a™")
Standard Deviation = f3° [F(l +2a H)-T*(+a” )]

(14 B =301+ BYC(1+ 287 )+ T(1+387)
[fa+2p8"-r2a+pH["

Skewness =

Excess Kurtosis =
—6F4(1+ﬂ’1)+12F2(1+ﬂ’l)F(1+2[3’1)—31“2(1+2[3’1)—4F(1+[3’1)F(1+3[3’1)+F(1+4[3’1)
[ra+2p-r20+Hf

Shape () and central location scale (f3) are the distributional parameters, and /" is the Gamma function.

Input requirements:
Shape Alpha > 0.05.
Scale Beta > 0 and can be any positive value.
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Weibull 3 Distribution

The Weibull 3 distribution uses the same constructs as the original Weibull distribution but adds a
Location, or Shift, parameter. The Weibull distribution starts from a minimum value of 0, whereas this
Weibull 3, or Shifted Weibull, distribution shifts the starting location to any other value.

Alpha, Beta, and Location or Shift are the distributional parameters.
Input requirements:
Alpha (Shape) > 0.05.

Beta (Central Location Scale) > 0 and can be any positive value.

Location can be any positive or negative value including zero.
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3. FORECASTING

Forecasting is the act of predicting the future. It can be based on historical data or speculation about the
future when no history exists. When historical data exist, a quantitative or statistical approach is best, but
if no historical data exist, then potentially a qualitative or judgmental approach is usually the only
recourse. Figure 3.1 lists the most common methodologies for forecasting.

FORECASTING

QUANTITATIVE QUALITATIVE

Expert Opinions
Management Assumptions
Market Research
Polling Data

Forecast Tool for ARIMA,
Classical Decomposition,
Multivariate Regressions,
Nonlinear Regressions, Simulations

Use Risk Simulator
to run Monte Carlo
Simulations (use
distributional fitting
or nonparametric
custom distributions)

Monte Carlo Simulation
Multiple Regression

Classical Decomposition
(8 Time-Series Models)

Multivariate Regression

Nonlinear Extrapolation

Figure 3.1 — Forecasting Methods

Different Types of Forecasting Techniques

Generally, forecasting can be divided into quantitative and qualitative approaches. Qualitative forecasting
is used when little to no reliable historical, contemporaneous, or comparable data are available. Several
qualitative methods exist such as the Delphi, or expert opinion, approach (a consensus-building forecast
by field experts, marketing experts, or internal staff members), management assumptions (target growth
rates set by senior management), and market research or external data or polling and surveys (data
obtained from third-party sources, industry and sector indexes, or active market research). These
estimates can be either single-point estimates (an average consensus) or a set of forecast values (a
distribution of forecasts). The latter can be entered into Risk Simulator as a custom distribution and the
resulting forecasts can be simulated, that is, a nonparametric simulation using the estimated data points
themselves as the distribution.
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On the quantitative side of forecasting, the available data or data that need to be forecasted can be divided
into time-series (values that have a time element to them, such as revenues at different years, inflation
rates, interest rates, market share, failure rates), cross-sectional (values that are time-independent, such as
the grade point average of sophomore students across the nation in a particular year, given each student’s
levels of SAT scores, IQ, and number of alcoholic beverages consumed per week), or mixed panel
(mixture between time-series and panel data, e.g., predicting sales over the next 10 years given budgeted
marketing expenses and market share projections, which means that the sales data is time series but
exogenous variables, such as marketing expenses and market share, exist to help to model the forecast
predictions).

The Risk Simulator software provides the user several forecasting methodologies:

ARIMA (Autoregressive Integrated Moving Average)
Auto ARIMA
Auto Econometrics
Basic Econometrics
Combinatorial Fuzzy Logic
Cubic Spline Curves
Custom Distributions
GARCH (Generalized Autoregressive Conditional Heteroskedasticity)
J Curve
. Markov Chain
. Maximum Likelihood (Logit, Probit, Tobit)
. Multivariate Regression

PSR WLDN =

—
W N =

. Neural Network Forecasts

=
=~

. Nonlinear Extrapolation

=
9]

. S Curve

=
(=)

. Stochastic Processes

=
~J

. Time-Series Analysis and Decomposition

=
=]

. Trendlines

The analytical details of each forecasting method fall outside the purview of this user manual. For more
details, please review Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis,
Stochastic Forecasting, and Portfolio Optimization, by Dr. Johnathan Mun (Wiley Finance, 2006), who is
also the creator of the Risk Simulator software. Nonetheless, the following illustrates some of the more
common approaches and several quick getting started examples in using the software. More detailed
descriptions and example models of each of these techniques are found throughout this chapter and the
next. All other forecasting approaches are fairly easy to apply within Risk Simulator.
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@ ARIMA
Autoregressive integrated moving average (ARIMA, also known as Box-Jenkins ARIMA) is an advanced
econometric modeling technique. ARIMA looks at historical time-series data and performs backfitting
optimization routines to account for historical autocorrelation (the relationship of one value versus
another in time) and the stability of the data to correct for the nonstationary characteristics of the data, and
this predictive model learns over time by correcting its forecasting errors. Advanced knowledge in
econometrics is typically required to build good predictive models using this approach.

@ Auto ARIMA
The Auto ARIMA module automates some of the traditional ARIMA modeling by automatically testing
multiple permutations of model specifications and returns the best-fitting model. Running the Auto
ARIMA is similar to regular ARIMA forecasts. The difference being that the P, D, Q inputs are no longer

required and different combinations of these inputs are automatically run and compared.

@ Basic Econometrics
Econometrics refers to a branch of business analytics, modeling, and forecasting techniques for modeling
the behavior of or forecasting certain business, economic, finance, physics, manufacturing, operations,
and any other variables. Running the Basic Econometrics models are similar to regular regression analysis
except that the dependent and independent variables are allowed to be modified before a regression is run.

@ Auto Econometrics
Similar to basic econometrics, but Auto Econometrics allows thousands of linear, nonlinear, interacting,
lagged, and mixed variables to be automatically run on your data to determine the best-fitting econometric
model that describes the behavior of the dependent variable. It is useful for modeling the effects of the
variables and for forecasting future outcomes, while not requiring the analyst to be an expert

econometrician.

@ Combinatorial Fuzzy Logic
In contrast, the term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is
approximate rather than accurate—as opposed to crisp logic, where binary sets have binary logic, fuzzy
logic variables may have a truth value that ranges between 0 and 1 and is not constrained to the two truth
values of classic propositional logic. This fuzzy weighting schema is used together with a combinatorial
method to yield time-series forecast results.

@ Cubic Spline Curves
Sometimes there are missing values in a time-series data set. For instance, interest rates for years 1 to 3
may exist, followed by years 5 to 8, and then year 10. Spline curves can be used to interpolate the missing
years’ interest rate values based on the data that exist. Spline curves can also be used to forecast or
extrapolate values of future time periods beyond the time period of available data. The data can be linear

or nonlinear.
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@ Custom Distributions
Using Risk Simulator, expert opinions can be collected and a customized distribution can be generated.
This forecasting technique comes in handy when the data set is small or the goodness of fit is bad when
applied to a distributional fitting routine.

@ GARCH

The generalized autoregressive conditional heteroskedasticity (GARCH) model is used to model
historical and forecast future volatility levels of a marketable security (e.g., stock prices, commodity
prices, and oil prices). The data set has to be a time series of raw price levels. GARCH will first convert
the prices into relative returns and then run an internal optimization to fit the historical data to a mean-
reverting volatility term structure, while assuming that the volatility is heteroskedastic in nature (changes
over time according to some econometric characteristics). Several variations of this methodology are
available in Risk Simulator, including EGARCH, EGARCH-T, GARCH-M, GJR-GARCH, GJR-
GARCH-T, IGARCH, and T-GARCH.

@ JCurve
The J curve, or exponential growth curve, is where the growth of the next period depends on the current
period’s level and the increase is exponential. This means that over time, the values will increase
significantly from one period to another. This model is typically used in forecasting biological growth and
chemical reactions over time.

@ Markov Chain
A Markov chain exists when the probability of a future state depends on a previous state and when linked
together form a chain that reverts to a long-run steady state level. This approach is typically used to
forecast the market share of two competitors. The required inputs are the starting probability of a
customer in the first store (the first state) will return to the same store in the next period versus the
probability of switching to a competitor’s store in the next state.

@ Maximum Likelihood on Logit, Probit, and Tobit

Maximum likelihood estimation (MLE) is used to forecast the probability of something occurring given
some independent variables. For instance, MLE is used to predict if a credit line or debt will default given
the obligor’s characteristics (30 years old, single, salary of $100,000 per year, and having a total credit
card debt of $10,000); or the probability a patient will have lung cancer if the person is a male between
the ages of 50 and 60, smokes 5 packs of cigarettes per month, and so forth. In these circumstances, the
dependent variable is limited (i.e., limited to being binary 1 and 0 for default/die and no default/live, or
limited to integer values like 1, 2, 3,etc.), and the desired outcome of the model is to predict the
probability of an event occurring. Traditional regression analysis will not work in these situations (the
predicted probability is usually less than zero or greater than one, and many of the required regression
assumptions are violated, such as independence and normality of the errors, and the errors will be fairly
large).
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@ Multivariate Regression
Multivariate regression is used to model the relationship structure and characteristics of a certain
dependent variable as it depends on other independent exogenous variables. Using the modeled
relationship, we can forecast the future values of the dependent variable. The accuracy and goodness of fit
for this model can also be determined. Linear and nonlinear models can be fitted in the multiple
regression analysis.

@ Neural Network Forecast
The term Neural Network is often used to refer to a network or circuit of biological neurons, while
modern usage of the term often refers to artificial neural networks comprising artificial neurons, or nodes,
recreated in a software environment. Such networks attempt to mimic the neurons in the human brain in
ways of thinking and identifying patterns and, in our situation, identifying patterns for the purposes of

forecasting time-series data.

@ Nonlinear Extrapolation
The underlying structure of the data to be forecasted is assumed to be nonlinear over time. For instance, a
data set such as 1, 4, 9, 16, 25 is considered to be nonlinear (these data points are from a squared
function).

@ S Curve
The S curve or logistic growth curve starts off like a J curve, with exponential growth rates. Over time,
the environment becomes saturated (e.g., market saturation, competition, overcrowding), the growth
slows, and the forecast value eventually ends up at a saturation or maximum level. This model is typically
used in forecasting market share or sales growth of a new product from market introduction until maturity

and decline, population dynamics, and other naturally occurring phenomenon.

@ Stochastic Processes
Sometimes variables cannot be readily predicted using traditional means, and these variables are said to
be stochastic. Nonetheless, most financial, economic, and naturally occurring phenomena (e.g., motion of
molecules through the air) follow a known mathematical law or relationship. Although the resulting
values are uncertain, the underlying mathematical structure is known and can be simulated using Monte
Carlo risk simulation. The processes supported in Risk Simulator include Brownian motion random walk,
mean-reversion, jump-diffusion, and mixed processes, useful for forecasting nonstationary time-series

variables.

@ Time-Series Analysis and Decomposition
In well-behaved time-series data (typical examples include sales revenues and cost structures of large
corporations), the values tend to have up to three elements: a base value, trend, and seasonality. Time-
series analysis uses these historical data and decomposes them into these three elements, and recomposes
them into future forecasts. In other words, this forecasting method, like some of the others described, first
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performs a back-fitting (backcast) of historical data before it provides estimates of future values

(forecasts).
@ Trendlines

Trendlines can be used to determine if a set of time-series data follows any appreciable trend. Trends can
be linear or nonlinear (such as exponential, logarithmic, moving average, power, polynomial, or power).

Running the Forecasting Tool in Risk Simulator

In general, to create forecasts, several quick steps are required:
¥ Start Excel and enter in or open your existing historical data.
¥ Select the data, and click on Simulation and select Forecasting.
¥ Select the relevant sections (ARIMA, Multivariate Regression, Nonlinear Extrapolation,
Stochastic Forecasting, Time-Series Analysis) and enter the relevant inputs.

Figure 3.2 illustrates the Forecasting tool and the various methodologies and the following provides a
quick review of the selected methodology and several quick getting started examples in using the
software. The example file can be found either on the start menu at Start | Real Options Valuation |
Risk Simulator | Examples or accessed directly through Risk Simulator | Example Models.

Forecasting

*

ARIMA

e | Auto ARIMA
Auto Econometrics |.
EBasic Econometrics -
Combinatorial Fuzzy Logic
T Cubic Spline

£ | GARCH

B | J-5 Curves

£ | Markov Chain

fo | MLE LUMDEP

Meural Network
Monlinear Extrapolation
Regression Analysis

i Stochastic Processes

Time Series Analysis

Trendline

Figure 3.2 — Risk Simulator’s Forecasting Methods
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Time-Series Analysis

Theory

Figure 3.3 lists the eight most common time-series models, segregated by seasonality and trend. For
instance, if the data variable has no trend or seasonality, then a single moving-average model or a single
exponential-smoothing model would suffice. However, if seasonality exists but no discernable trend is
present, either a seasonal additive or seasonal multiplicative model would be better, and so forth.

No Seasonality With Seasonality
° Seasonal
= : o A
o Single Moving Average Additive
[
o
4 Single Exponential Seasonal
Smoothing Multiplicative
Double Moving Holt-Winter's
= Average Additive
o
-
£  Double Exponential Holt-Winter's
= Smoothing Multiplicative

Figure 3.3 — The Eight Most Common Time-Series Methods

Procedure
¥ Start Excel and open your historical data if required (the example below uses the Time-Series
Forecasting file in the examples folder).
¥ Select the historical data (data should be listed in a single column).
¥ Select Risk Simulator | Forecasting | Time-Series Analysis.
¥ Choose the model to apply, enter the relevant assumptions, and click OK

Results Interpretation

Figure 3.5 illustrates the sample results generated by using the Forecasting tool and a Holt-Winter’s
multiplicative model. The model-fitting and forecast chart indicates that the trend and seasonality are
picked up nicely by the Holt-Winter’s multiplicative model. The time-series analysis report provides the
relevant optimized alpha, beta, and gamma parameters; the error measurements; fitted data; forecast
values; and fitted-forecast graph. The parameters are simply for reference. Alpha captures the memory
effect of the base level changes over time, and beta is the trend parameter that measures the strength of
the trend, while gamma measures the seasonality strength of the historical data. The analysis decomposes
the historical data into these three elements and then recomposes them to forecast the future. The fitted
data illustrates the historical data, and it uses the recomposed model and shows how close the forecasts
are in the past (a technique called backcasting). The forecast values are either single-point estimates or
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assumptions (if the option to automatically generate assumptions is chosen and if a simulation profile
exists). The graph illustrates these historical, fitted, and forecast values. The chart is a powerful
communication and visual tool to see how good the forecast model is.

r
Historical Sales Revenues e
Time-Series Analysis is used to forecast time-series
variables by decomposing the historical datainto
Voo Guale Pered Sos e e e L T | A A
2006 1 1 568420 assumes that the trend and seasonality will persist.
2006 2 2 858410
2006 3 3 £765.40
20086 4 4 8892 30
2007 1 5 £6885.40
2007 2 6 E677.00
2007 3 7 £1.006.60 Single Moving Average Single Exponentiz
2007 4 8 £1,122.10 o) = T 3
2008 1 9 £1,162.40
2008 2 10 £993.20 Model Etameters
2008 3 T4 £1,312.50 Optimize
2008 4 12 $1,545.30 Alpha ]7:5 [V Seasonality (Periods/Cycle) mt]
2009 1 13 §1,596.20 Beta 5 BN
2009 2 14 §1.260.40 a 0.5 I« umber of Forecast Periods
2009 3 13 §1,735.20 Gamma 05 ©
gg?i f ;? ;gfg?';g Periodicity 4 Maximum Runtime (sec) 300
2010 2 18 £1,650.30 > ] ] :
2010 3 19 $2 304 40 W Automatically Generate Assumption
2010 4 20 &2 £39.40 [~ Allow Polar Parameters
ECRIEE A |
0OK | Cancel

Figure 3.4 — Time-Series Analysis

Notes

This time-series analysis module contains the eight time-series models seen in Figure 3.3. You can choose
the specific model to run based on the trend and seasonality criteria or choose the Auto Model Selection,
which will automatically iterate through all eight methods, optimize the parameters, and find the best-
fitting model for your data. Alternatively, if you choose one of the eight models, you can also unselect the
optimize checkboxes and enter your own alpha, beta, and gamma parameters. Refer to Dr. Johnathan
Mun’s Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis, Forecasting, and
Optimization (Wiley Finance, 2006) for more details on the technical specifications of these parameters.
In addition, you would need to enter the relevant seasonality periods if you choose the automatic model
selection or any of the seasonal models. The seasonality input has to be a positive integer (e.g., if the data
is quarterly, enter 4 as the number of seasons or cycles a year, or enter 12 if monthly data). Next, enter the
number of periods to forecast. This value also has to be a positive integer. The maximum runtime is set at
300 seconds. Typically, no changes are required. However, when forecasting with a significant amount of
historical data, the analysis might take slightly longer, and if the processing time exceeds this runtime, the
process will be terminated. You can also elect to have the forecast automatically generate assumptions.
That is, instead of single-point estimates, the forecasts will be assumptions. Finally, the polar parameters
option allows you to optimize the alpha, beta, and gamma parameters to include zero and one. Certain
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forecasting software allows these polar parameters while others do not. Risk Simulator allows you to
choose which to use. Typically, there is no need to use polar parameters.

Holt-Winter's Multiplicative

Summary Statistics

Alpha, Beta, Gamma RMSE Alpha, Beta, Gamma RMSE
0.00, 0.00, 0.00 914.824 0.00, 0.00, 0.00 914.824
0.10, 0.10, 0.10 415.322 0.10, 0.10, 0.10 415.322
0.20, 0.20, 0.20 187.202 0.20, 0.20, 0.20 187.202
0.30, 0.30, 0.30 118.795 0.30, 0.30, 0.30 118.795
0.40, 0.40, 0.40 101.794 0.40, 0.40, 0.40 101.794

0.50, 0.50, 0.50 102.143

The analysis was run with alpha = 0.2429, beta = 1.0000, gamma = 0.7797, and seasonality = 4

Time-Series Analysis Summary

When both seasonality and trend exist, more advanced models are required to decompose the data into their base elements: a base-case level (L) weighted by the alpha parameter; a
trend component (b) weighted by the beta parameter; and a seasonality component (S) weighted by the gamma parameter. Several methods exist but the two most common are the
Holt-Winters' additive seasonality and Holt-Winters' multiplicative seasonality methods. In the Holt-Winter's additive model, the base case level, seasonality, and trend are added
together to obtain the forecast fit.

The best-fitting test for the moving average forecast uses the root mean squared errors (RMSE). The RMSE calculates the square root of the average squared deviations of the fitted
values versus the actual data points.

Mean Squared Error (MSE) is an absolute error measure that squares the errors (the difference between the actual historical data and the forecast-fitted data predicted by the model) to
keep the positive and negative errors from canceling each other out. This measure also tends to exaggerate large errors by weighting the large errors more heavily than smaller errors
by squaring them, which can help when comparing different time-series models. Root Mean Square Error (RMSE) is the square root of MSE and is the most popular error measure,
also known as the quadratic loss function. RMSE can be defined as the average of the absolute values of the forecast errors and is highly appropriate when the cost of the forecast
errors is proportional to the absolute size of the forecast error. The RMSE is used as the selection criteria for the best-fitting time-series model.

Mean Absolute Percentage Error (MAPE) is a relative error statistic measured as an average percent error of the historical data points and is most appropriate when the cost of the
forecast error is more closely related to the percentage error than the numerical size of the error. Finally, an associated measure is the Theil's U statistic, which measures the naivety of
the model's forecast. That is, if the Theil's U statistic is less than 1.0, then the forecast method used provides an estimate that is statistically better than guessing.

Period Actual Forecast Fit Error Measurements
1 684.20 RMSE 71.8132
2 584.10 MSE 5157.1348
3 765.40 MAD 53.4071
4 892.30 MAPE 4.50%
5 885.40 684.20 Theil's U 0.3054
6 677.00 667.55
7 1006.60 935.45
8 1122.10 1198.09
9 116340 1112.48 Actual vs. Forecast
10 993.20 887.95 3500.6r-
11 1312.50 1348.38 -
12 154530 1546.53 i
13 159620 157244 siatlar
14 1260.40 1299.20 _—
15 173520 1704.77 2500 6 ./
16 2029.70 1976.23

17 2107.80 2026.01
18 1650.30 1637.28
19 2304.40 2245.93

20 2639.40 2643.09 120081 YARNS /
-
\/

2000 684~

V

Forecast 21 2713.69
Forecast 22 2114.79 1000.6- d N
Forecast 23 2900.42 -\//-—\/' Y
Forecast 24 3293.81 i
500.0 + + + + 1
0 5 10 15 20 25

Figure 3.5 — Example Holt-Winter’s Forecast Report
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Multivariate Regression

Theory
It is assumed that the user is sufficiently knowledgeable about the fundamentals of regression analysis.

The general bivariate linear regression equation takes the form of ¥ = B, + B, X + &, where f, is the

intercept, [ is the slope, and ¢ is the error term. It is bivariate as there are only two variables: a Y, or
dependent, variable and an X, or independent, variable, where X is also known as the regressor
(sometimes a bivariate regression is also known as a univariate regression as there is only a single
independent variable X). The dependent variable is so named because it depends on the independent
variable; for example, sales revenue depends on the amount of marketing costs expended on a product’s
advertising and promotion, making the dependent variable sales and the independent variable marketing
costs. An example of a bivariate regression is seen as simply inserting the best-fitting line through a set of
data points in a two-dimensional plane as seen on the left panel in Figure 3.6. In other cases, a
multivariate regression can be performed, where there are multiple, or » number of, independent X
variables, where the general regression equation will now take the form of

Y=p0,+BX, +B,X,+B,X;...+ B, X, +¢.Inthis case, the best-fitting line will be within an n + 1

dimensional plane.

Figure 3.6 — Bivariate Regression

However, fitting a line through a set of data points in a scatter plot as in Figure 3.6 may result in
numerous possible lines. The best-fitting line is defined as the single unique line that minimizes the total
vertical errors, that is, the sum of the absolute distances between the actual data points (Y;) and the

estimated line (YA ) as shown on the right panel of Figure 3.6. To find the best-fitting line that minimizes
the errors, a more sophisticated approach is required, that is, regression analysis. Regression analysis,
therefore, finds the unique best-fitting line by requiring that the total errors be minimized, or by
calculating
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where only one unique line minimizes this sum of squared errors. The errors (vertical distance between
the actual data and the predicted line) are squared to avoid the negative errors canceling out the positive
errors. Solving this minimization problem with respect to the slope and intercept requires calculating a
first derivative and setting them equal to zero:

d 3 5N\ 2 d 3 5 \2
¥ -7) =0 and > (¥, )’ =0
dﬂo; dﬂl,-zzll

which yields the bivariate regression’s least squares equations:

3
3

>3
=il

( i _)?)( i _)7) :X_lli
ﬁl _ =l _ =l n
n _ n 2
(X - X [ ¥ J
= C 2\l
i=1 l n
ﬂo _Y_ﬂlX

For multivariate regression, the analogy is expanded to account for multiple independent variables, where

Y, =, + B,X,; + B;X;, + & and the estimated slopes can be calculated by:

5 - DYX, DXL =D VX Y X, X,
ZXzz,iZst,i - (ZXz,z‘Xs,i )2

b - DYX DX -V, DX, X,
DIRED VIR

In running multivariate regressions, great care has to be taken to set up and interpret the results. For
instance, a good understanding of econometric modeling is required (e.g., identifying regression pitfalls
such as structural breaks, multicollinearity, heteroskedasticity, autocorrelation, specification tests,
nonlinearities, etc.) before a proper model can be constructed. See Modeling Risk: Applying Monte Carlo
Simulation, Real Options Analysis, Forecasting, and Optimization (Wiley Finance, 2006) by Dr.
Johnathan Mun for more detailed analysis and discussion of multivariate regression as well as how to
identify these regression pitfalls.
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Procedure:
¥ Start Excel and open your historical data if required (the illustration below uses the file Multiple
Regression in the examples folder).
¥ Check to make sure that the data is arranged in columns, select the entire data area including the
variable name, and select Risk Simulator | Forecasting | Multiple Regression.
¥ Select the dependent variable and check the relevant options (lags, stepwise regression, nonlinear
regression, etc.), and click OK.

Results Interpretation

Figure 3.8 illustrates a sample multivariate regression result report. The report comes complete with all
the regression results, analysis of variance results, fitted chart, and hypothesis test results. The technical
details of interpreting these results are beyond the scope of this user manual. See Modeling Risk: Applying
Monte Carlo Simulation, Real Options Analysis, Forecasting, and Optimization (Wiley Finance, 2006) by
Dr. Johnathan Mun for more detailed analysis and discussion of multivariate regression as well as the
interpretation of regression reports.

Multivariate Regression P HEH] UDtiURS
Valuation
Y X1 X2 X'a X‘i XS m.rauombonskulon.:om-“-
521 18308 185 4.041 796 72
367 1148 600 0.55 1 8.5 1. Select the data area including the headers (B5:G55)
443 18068 372 3.665 323 57 2. Click on Risk Simulator | Forecasting | Multiple Regression
365 7729 142 2:351 451 T3 3. Select the Dependent Wariable (in this example, the variable Y) and select any specific
614 100484 432 29.76 190.8 15 maodifications as required (Lag Regressors, Monlinear Regression, Stepwise Regression)
385 16728 290 3.294 31.8 5 and click QK. Review the generated regression report for analytical results
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Figure 3.7 — Running a Multivariate Regression
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Regression Analysis Report

Regression Statistics

R-Squared (Coefficient of Determination) 0.3272
Adjusted R-Squared 0.2508
Multiple R (Multiple Correlation Coefficient) 0.5720
Standard Error of the Estimates (SEy) 149.6720
Number of Observations 50

The R-Squared or Coefficient of Determination indicates that 0.33 of the variation in the dependent variable can be explained and accounted for by the
independent variables in this regression analysis. However, in a multiple regression, the Adjusted R-Squared takes into account the existence of additional
independent variables or regressors and adjusts this R-Squared value to a more accurate view of the regression's explanatory power. Hence, only 0.25 of the
variation in the dependent variable can be explained by the regressors.

The Multiple Correlation Coefficient (Multiple R) measures the correlation between the actual dependent variable (Y) and the estimated or fitted (Y) based on the
regression equation. This is also the square root of the Coefficient of Determination (R-Squared).

The Standard Error of the Estimates (SEy) describes the dispersion of data points above and below the regression line or plane. This value is used as part of the
calculation to obtain the confidence interval of the estimates later.

Regression Results

Intercept X1 X2 X3 X4 X5
Coefficients 57.9555 -0.0035 0.4644 25.2377 -0.0086 16.5579
Standard Error 108.7901 0.0035 0.2535 141172 0.1016 14.7996
t-Statistic 0.5327 -1.0066 1.8316 1.7877 -0.0843 1.1188
p-Value 0.5969 0.3197 0.0738 0.0807 0.9332 0.2693
Lower 5% -161.2966 -0.0106 -0.0466 -3.2137 -0.2132 -13.2687
Upper 95% 277.2076 0.0036 0.9753 53.6891 0.1961 46.3845
Degrees of Freedom Hypothesis Test
Degrees of Freedom for Regression 5 Critical t-Statistic (99% confidence with df of 44) 26923
Degrees of Freedom for Residual 44 Critical t-Statistic (95% confidence with df of 44) 20154
Total Degrees of Freedom 49 Critical t-Statistic (90% confidence with df of 44) 1.6802

The Coefficients provide the estimated regression intercept and slopes. For instance, the coefficients are estimates of the true; population b values in the
following regression equation Y= b0 + b1X1 + b2X2 + ... + bnXn. The Standard Error measures how accurate the predicted Coefficients are, and the t-Statistics
are the ratios of each predicted Coefficient to its Standard Error.

The t-Statistic is used in hypothesis testing, where we set the null hypothesis (Ho) such that the real mean of the Coefficient = 0, and the alternate hypothesis
(Ha) such that the real mean of the Coefficient is not equal to 0. At-test is is performed and the calculated t-Statistic is compared to the critical values at the
relevant Degrees of Freedom for Residual. The t-test is very important as it calculates if each of the coefficients is statistically significantin the presence of the
other regressors. This means that the t-test statistically verifies whether a regressor or independent variable should remain in the regression or it should be
dropped.

The Coefficient is statistically significant if its calculated t-Statistic exceeds the Critical t-Statistic at the relevant degrees of freedom (df). The three main
confidence lewels used to test for significance are 90%, 95% and 99%. If a Coefficient's t-Statistic exceeds the Critical level, it is considered statistically
significant. Alternatively, the p-Value calculates each t-Statistic's probability of occurrence, which means that the smaller the p-Value, the more significant the
Coefficient. The usual significant levels for the p-Value are 0.01, 0.05, and 0.10, corres ponding to the 99%, 95%, and 90% confidence levels.

The Coefficients with their p-Values highlighted in blue indicate that they are statistically significant at the 90% confidence or 0.10 alpha level, while those
highlighted in red indicate that they are not statistically significant atany other alpha levels.

Analysis of Variance

Sums of Mean of .

Squares Squares F-Statistic p-value Hypothesis Test
Regression 47938849 95877.70 428 0.0029 Critical F-statistic (99% confidence with df of 5 and 44) 3.4651
Residual 985675.19  22401.71 Critical F-statistic (95% confidence with df of 5 and 44) 24270
Total 1465063.68 Critical F-statistic (90% confidence with df of 5 and 44) 1.9828

The Analysis of Variance (ANOVA) table provides an F-testofthe regression model's overall statistical significance. Instead of looking at individual regressors as
in the t-test, the F-test looks at all the estimated Coefficients’ statistical properties. The F-Statistic is calculated as the ratio of the Regression's Mean of Squares
to the Residual's Mean of Squares. The numerator measures how much of the regression is explained, while the denominator measures how much is
unexplained. Hence, the larger the F-Statistic, the more significantthe model. The corresponding p-Value is calculated to test the null hypothesis (Ho) where all
the Coefficients are simultaneously equal to zero, versus the alternate hypothesis (Ha) that they are all simultaneously different from zero, indicating a significant
owerall regression model. If the p-Value is smaller than the 0.01, 0.05, or 0.10 alpha significance, then the regression is significant. The same approach can be
applied to the F-Statistic by comparing the calculated F-Statistic with the critical F values at various significance levels.

Forecasting

Period Actual (Y) Forecast (F) Error (E) RMSE: 140.4048
1 521.0000 2095124  221.4876
2 367.0000  487.1243  (120.1243) -
3 4430000 3532789 89.7211 Actual vs. Forecast
4 3650000 2763296 88.6704 800.0 T =
5 6140000 776.1336  (162.1336)
6 385.0000  298.9993 86.0007 70001
7 286.0000 3548718  (68.8718)
8 397.0000 3126155 84.3845 B00.0 |
9 7640000  520.7550  234.2450 M
10 427.0000 347.7034  79.2966 6000 \ |
11 1530000 2662526  (113.2526) i ' | |
12 231.0000 2646375  (33.6375) 40001 | \ w I\
13 5240000 4068009  117.1991 s " " {
14 3280000 2722226 55.7774 Ll s
15 240.0000  231.7882 82118 2000 V .llrJ’
16 286.0000  257.8862 28.1138
17 2850000  314.9521 (29.9521) 10004 i
18 569.0000 3353140  233.6860
19 960000 2820356  (186.0356) 0.0 + : ; ; ; ; + + ; |
20 498.0000 3702062  127.7938 0 5 10 15 20 25 30 £S5 0 45 50
21 481.0000 3408742  140.1258 L d
22 468.0000  427.5118 40.4882
23 177.0000 2745298  (97.5298)
24 198.0000 2047795  (96.7795)
25 4580000 2052180  162.7820

Figure 3.8 — Multivariate Regression Results
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Stochastic Forecasting

Theory

A stochastic process is nothing but a mathematically defined equation that can create a series of outcomes
over time, outcomes that are not deterministic in nature, that is, an equation or process that does not
follow any simple discernible rule such as price will increase X percent every year or revenues will
increase by this factor of X plus Y percent. A stochastic process is by definition nondeterministic, and one
can plug numbers into a stochastic process equation and obtain different results every time. For instance,
the path of a stock price is stochastic in nature, and one cannot reliably predict the stock price path with
any certainty. However, the price evolution over time is enveloped in a process that generates these
prices. The process is fixed and predetermined, but the outcomes are not. Hence, by stochastic simulation,
we create multiple pathways of prices, obtain a statistical sampling of these simulations, and make
inferences on the potential pathways that the actual price may undertake given the nature and parameters
of the stochastic process used to generate the time series. Three basic stochastic processes are included in
Risk Simulator’s Forecasting tool, including geometric Brownian motion or random walk, which is the
most common and prevalently used process due to its simplicity and wide-ranging applications. The other
two stochastic processes are the mean-reversion process and the jump-diffusion process.

The interesting thing about stochastic process simulation is that historical data are not necessarily
required. That is, the model does not have to fit any sets of historical data. Simply compute the expected
returns and the volatility of the historical data or estimate them using comparable external data or make
assumptions about these values. See Modeling Risk: Applying Monte Carlo Simulation, Real Options
Analysis, Forecasting, and Optimization, 2nd Edition (Wiley Finance, 2006) by Dr. Johnathan Mun for
more details on how each of the inputs are computed (e.g., mean-reversion rate, jump probabilities,
volatility, etc.).

Procedure
8 Start the module by selecting Risk Simulator | Forecasting | Stochastic Processes.
¥ Select the desired process, enter the required inputs, click on Update Chart a few times to make
sure the process is behaving the way you expect it to, and click OK (Figure 3.9).

Results Interpretation

Figure 3.10 shows the results of a sample stochastic process. The chart shows a sample set of the
iterations while the report explains the basics of stochastic processes. In addition, the forecast values
(mean and standard deviation) for each time period are provided. Using these values, you can decide
which time period is relevant to your analysis and set assumptions based on these mean and standard
deviation values using the normal distribution. These assumptions can then be simulated in your own

custom model.
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i
@ Stochastic Process Forecasting
Stochastic Processes are sequences of events or paths generated by probabilistic
laws where random events can occur over time but are governed by specific
statistical and probabilistic rules. They are useful for forecasting random events
(e.g., stock prices, interest rates, price of electricity).
ook StartingValte 100
@ Brownian Motion (Random Walk) with Drift 5
©) Exponential Brownian Motion (Random Walk) with Dt Orovih or Drift Rate (%) .
) Mean-Reversion Process with Drift Annualized Volatility (%) 3
) Jump-Diffusion Process with Drift Forecast Horizon (Years) 10
™ Jump-Diffusion Process with Drift and Mean-Reversion Reversion Rate (%) 5
‘g =) Long-Term Value 120
r_tsoo Stochastic Process N =
8 Jump Rate (%) 10
o0 Jump Size 2
20 Number of Steps 100
i lterations 10
50.0
[] Random Seed 1
00.0
[] Show All lterations
50.0-
0 s 4 & i 10
\ J [UpgaieChart| [ 0K ][ GCancel
\
. . .
Figure 3.9 — Stochastic Process Forecasting
Stochastic Process Forecasting
Statistical Summary
A stochastic process is a sequence of events or paths generated by probabilistic laws. That is, random events can occur over time Time Mean Stdev
but are governed by specific statistical and probabilistic rules. The main stochastic processes include Random Walk or Brownian 0.0000 100.00 0.00
Motion, Mean-Reversion, and Jump-Diffusion. These processes can be used to forecast a i of variables that ingly 0.1000 106.32 4.05
follow random trends but yet are restricted by probabilistic laws. 0.2000 105.92 4.70
. . . . . L 0.3000 105.23 8.23
The Random Walk Brownian Motion process can be used to forecast stock prices, prices of commodities, and other stochastic time- 0.4000 109.84 11.18
series data given a drift or growth rate and a volatility around the drift path. The Mean-Reversion process can be used to reduce 0.5000 107.57 14.67
the fluctuations of the Random Walk process by allowing the path to target a long-term value, making it useful for forecasting time- 0.6000 108.63 19.79
series variables that have a long-term rate such as interest rates and inflation rates (these are long-term target rates by regulatory 0‘ 7000 107'85 24'18
authorities or the market). The Jump-Diffusion process is useful for forecasting time-series data when the variable can occasionally 0‘ 8000 1 09' 61 > 4' 46
exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks can make prices jump up or . . N
down). Finally, these three stochastic processes can be mixed and matched as required. (;gg% :”‘;gg: é;g?
The results on the right indicate the mean and standard deviation of all the iterations generated at each time step. If the Show All 1.1000 111.53 35.05
Iterations option is selected, each iteration pathway will be shown in a separate worksheet. The graph generated below shows a 1.2000 111.07 34.10
sample set of the iteration pathways. 1.3000 107.52 32.85
1.4000 108.26 37.38
ic Process: Motion ( Walk) with Drift 1.5000 106.36 32.19
Start Value 100 Steps 50.00 Jump Rate NA 1.6000 112.42 32.16
Drift Rate 5.00% Iterations 10.00 Jump Size N/A 1.7000 110.08 31.24
Volatility 25.00% Reversion Rate N/A Random Seed 1720050445 1.8000 109.64 31.87
Horizon 5 Long-Term Value N/A 1.9000 110.18 36.43
2.0000 112.23 37.63
2.1000 114.32 33.10
Stochastic Process 2.2000 111.14 38.42
2.3000 111.03 37.69
250.0- 2.4000 112.04 37.23
2.5000 112.98 40.84
2.6000 115.74 43.69
2.7000 115.11 43.64
2.8000 114.87 43.70
200 29000  113.28 42.25
3.0000 115.72 43.43
3.1000 120.05 50.48
3.2000 116.69 42.61
15004 3.3000 118.31 4557
3.4000 116.35 40.82
3.5000 115.71 40.33
3.6000 118.69 41.45
3.7000 121.66 45.34
L0040 38000  121.40 45.03
3.9000 125.19 48.19
4.0000 129.65 55.44
4.1000 129.61 53.82
50.0 4.2000 125.86 49.68
4.3000 125.70 53.79
4.4000 126.72 49.70
4.5000 129.52 50.28
00 . " ; : . 46000  132.28 49.70
. 0 1' 2' :; ; 5‘ 4.7000 138.47 56.77
4.8000 139.69 66.32
4.9000 140.85 65.95
5.0000 143.61 68.65

Figure 3.10 — Stochastic Forecast Result
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Nonlinear Extrapolation

Theory

Extrapolation involves making statistical projections by using historical trends that are projected for a
specified period of time into the future. It is only used for time-series forecasts. For cross-sectional or
mixed panel data (time-series with cross-sectional data), multivariate regression is more appropriate.
Extrapolation is useful when major changes are not expected, that is, causal factors are expected to remain
constant or when the causal factors of a situation are not clearly understood. It also helps discourage
introduction of personal biases into the process. Extrapolation is fairly reliable, relatively simple, and
inexpensive. However, extrapolation, which assumes that recent and historical trends will continue,
produces large forecast errors if discontinuities occur within the projected time period. That is, pure
extrapolation of time series assumes that all we need to know is contained in the historical values of the
series that is being forecasted. If we assume that past behavior is a good predictor of future behavior,
extrapolation is appealing. This makes it a useful approach when all that is needed are many short-term
forecasts.

This methodology estimates the f{x) function for any arbitrary x value by interpolating a smooth nonlinear
curve through all the x values and, using this smooth curve, extrapolates future x values beyond the
historical data set. The methodology employs either the polynomial functional form or the rational
functional form (a ratio of two polynomials). Typically, a polynomial functional form is sufficient for
well-behaved data, however, rational functional forms are sometimes more accurate (especially with polar
functions, i.e., functions with denominators approaching zero).

Procedure
¥ Start Excel and open your historical data if required (the illustration shown next uses the file
Nonlinear Extrapolation from the examples folder).
¥ Select the time-series data and select Risk Simulator | Forecasting | Nonlinear Extrapolation.
¥ Select the extrapolation type (automatic selection, polynomial function, or rational function) and
enter the number of forecast period desired (Figure 3.11), and click OK.

Results Interpretation

The results report shown in Figure 3.12 shows the extrapolated forecast values, the error measurements,
and the graphical representation of the extrapolation results. The error measurements should be used to
check the validity of the forecast and are especially important when used to compare the forecast quality
and accuracy of extrapolation versus time-series analysis.

Notes
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When the historical data is smooth and follows some nonlinear patterns and curves, extrapolation is better
than time-series analysis. However, when the data patterns follow seasonal cycles and a trend, time-series
analysis will provide better results.

Note that Monlinear Extrapolation involves making statistical projections by using historical trends that are projected for a specified period
of time into the future_ It is only used for time-series forecasts. Extrapolation is fairly reliable, relatively simple. and inexpensive. However,
extrapolation, which assumes that recent and historical trends will continue, produces large forecast errors if discontinuities occur within the
projected time period.

1. Enter the historical data and select the data area (E13:E24)

Historical Sales Revenues 2. Click on Risk Simulator | Forecasting | Nonlinear Extrapolation
Polynomial Growth Rates 3. Select the function type and extrapolation periods are required and click OK
Year Morth Pernod Sales @ T
2010 1 1 §1.00 s
2010 2 2 §6.73 Nonlinear Extrapolation is used to make statistical
2010 3 3 £20.52 Emes_eriles fo{rjecals_t proj;ctlion'f byhapﬁ!‘;ing_ I
istorical trends. It is useful when the historica
2010 4 4 545.25 trends are nonlinear and well behaved. The
2010 5 5 §83.59 extrapolation is best used for short-term forecasts.
2010 6 6 |s136.01 ST
2010 7 F §210.87
2010 8 8 5304 44 (% Automatic Selection ¢ Polynomial Function (' Rational Function
2010 9 9 §420.89
2010 10 10 $562.34 Number of Extrapolation Periods 3=
2010 11 11 §730.85
2000 12 12 |s926.43 ok | Conc
Real Options ’
Valuation

Figure 3.11 — Running a Nonlinear Extrapolation

Nonlinear Extrapolation

Statistical Summary

Extrapolation involves making statistical projections by using historical trends that are projected for a specified period of time into the future. It is only used for time-series
forecasts. For cross-sectional or mixed panel data (time-series with cross-sectional data), multivariate regression is more appropriate. This methodology is useful when major
changes are not expected, that is, causal factors are expected to remain constant or when the causal factors of a situation are not clearly understood. It also helps discourage
introduction of personal biases into the process. Extrapolation is fairly reliable, relatively simple, and inexpensive. However, extrapolation, which assumes that recent and
historical trends will continue, produces large forecast errors if discontinuities occur within the projected time period. That is, pure extrapolation of time series assumes that all we
need to know is contained in the historical values of the series that is being forecasted. If we assume that past behavior is a good predictor of future behavior, extrapolation is
appealing. This makes it a useful approach when all that is needed are many short-term forecasts.

This methodology estimates the f(x) function for any arbitrary x value, by interpolating a smooth nonlinear curve through all the x values, and using this smooth curve,
extrapolates future x values beyond the historical data set. The methodology employs either the polynomial functional form or the rational functional form (a ratio of two
polynomials). Typically, a polynomial functional form is sufficient for well-behaved data, however, rational functional forms are sometimes more accurate (especially with polar
functions, i.e., functions with denominators approaching zero).

Period  Actual ForecastFit  Estimate Error Error Measurements
1 1.00 RMSE 19.6799
2 6.73 1.00 MSE  387.2974
3 20.52 -1.42 -8.15 MAD 10.2095
4 45.25 99.82 119.36 MAPE 31.56%
5 83.59 55.92 -46.67 Theil's U 1.1210
6 138.01 136.71 14.39
7 210.87 211.96 1.69 Function Type: Rational
8 304.44 304.43 -0.41
9 420.89 420.89 0.01
10 562.34 562.34 0.00 Actual vs. Forecast
11 730.85 730.85 0.00 3000 681
12 928.43 928.43 0.00 V=
Forecast 13 1157.03 0.00 2500 6 _u'/
Forecast 14 1418.57 0.00 r
Forecast 15 1714.95 0.00 20006 % o
Forecast 16 2048.00 0.00
Forecast 17 2419.55 0.00 15008+ o
Forecast 18 2831.39 0.00 e
1000 8} ~
S00.0+
00+ e—a—a—8—
-500 + + - + - + + + {
i} 2 4 6 8 10 12 14 16 18

Figure 3.12 — Nonlinear Extrapolation Results
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Box-Jenkins ARIMA Advanced Time-Series

Theory

One very powerful advanced times-series forecasting tool is the ARIMA, or Auto Regressive Integrated
Moving Average, approach. ARIMA forecasting assembles three separate tools into a comprehensive
model. The first tool segment is the autoregressive (AR) term, which corresponds to the number of lagged
value of the residual in the unconditional forecast model. In essence, the model captures the historical
variation of actual data to a forecasting model and uses this variation or residual to create a better
predicting model. The second tool segment is the integration order (I) term. This integration term
corresponds to the number of differencing the time series to be forecasted goes through. This element
accounts for any nonlinear growth rates existing in the data. The third tool segment is the moving average
(MA) term, which is essentially the moving average of lagged forecast errors. By incorporating this
lagged forecast errors term, the model in essence learns from its forecast errors or mistakes and corrects
for them through a moving-average calculation. The ARIMA model follows the Box-Jenkins
methodology with each term representing steps taken in the model construction until only random noise
remains. Also, ARIMA modeling uses correlation techniques in generating forecasts. ARIMA can be used
to model patterns that may not be visible in plotted data. In addition, ARIMA models can be mixed with
exogenous variables, but make sure that the exogenous variables have enough data points to cover the
additional number of periods to forecast. Finally, be aware that due to the complexity of the models, this
module may take longer to run.

There are many reasons why an ARIMA model is superior to common time-series analysis and
multivariate regressions. The common finding in time-series analysis and multivariate regression is that
the error residuals are correlated with their own lagged values. This serial correlation violates the standard
assumption of regression theory that disturbances are not correlated with other disturbances. The primary

problems associated with serial correlation are:

e Regression analysis and basic time-series analysis are no longer efficient among the different
linear estimators. However, as the error residuals can help to predict current error residuals, we
can take advantage of this information to form a better prediction of the dependent variable using
ARIMA.

e Standard errors computed using the regression and time-series formula are not correct, and are
generally understated, and if there are lagged dependent variables set as the regressors, regression
estimates are biased and inconsistent but can be fixed using ARIMA.

ARIMA(p,d,q) models are the extension of the AR model that uses three components for modeling the
serial correlation in the time series data. The first component is the autoregressive (AR) term. The AR(p)
model uses the p lags of the time series in the equation. An AR(p) model has the form: y, = a;y,.; + ... +
a,yp T e. The second component is the integration (d) order term. Each integration order corresponds to
differencing the time series. I(1) means differencing the data once; I(d) means differencing the data d
times. The third component is the moving average (MA) term. The MA(q) model uses the q lags of the
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forecast errors to improve the forecast. An MA(q) model has the form: y,= e, + bse.; + ... + be., Finally,
an ARIMA(p,q) model has the combined form: y,=a;y.;+ ... Ta,y, + e+ bie.; +... + bye.,

Procedure
¥ Start Excel and enter your data or open an existing worksheet with historical data to forecast (the
illustration shown next uses the file example file Time-Series ARIMA).
¥ Select the time-series data and select Risk Simulator | Forecasting | ARIMA.
& Enter the relevant P, D, and Q parameters (positive integers only), enter the number of forecast
period desired, and click OK.

ARIMA and AUTO ARIMA Note

For ARIMA and Auto ARIMA, you can model and forecast future periods by either using only the
dependent variable (), that is, the Time Series Variable by itself, or you can add in exogenous variables
(X1, X5, ..., X,) just like in a regression analysis where you have multiple independent variables. You can
run as many forecast periods as you wish if you use only the time-series variable (Y). However, if you add
exogenous variables (X), note that your forecast period is limited to the number of exogenous variables’
data periods minus the time-series variable’s data periods. For example, you can only forecast up to 5
periods if you have time-series historical data of 100 periods and only if you have exogenous variables of
105 periods (100 historical periods to match the time-series variable and 5 additional future periods of
independent exogenous variables to forecast the time-series dependent variable).

Results Interpretation

In interpreting the results of an ARIMA model, most of the specifications are identical to the multivariate
regression analysis (see Modeling Risk: Applying Monte Carlo Simulation, Real Options Analysis,
Stochastic Forecasting, and Portfolio Optimization, 2nd Edition, by Dr. Johnathan Mun for more
technical details about interpreting the multivariate regression analysis and ARIMA models). There are
however, several additional sets of results specific to the ARIMA analysis as seen in Figure 3.14. The first
is the addition of Akaike information criterion (AIC) and Schwarz criterion (SC), which are often used in
ARIMA model selection and identification. That is, AIC and SC are used to determine if a particular
model with a specific set of p, d, and q parameters is a good statistical fit. SC imposes a greater penalty
for additional coefficients than the AIC but, generally, the model with the lowest the AIC and SC values
should be chosen. Finally, an additional set of results called the autocorrelation (AC) and partial
autocorrelation (PAC) statistics are provided in the ARIMA report.

For instance, if autocorrelation AC(1) is nonzero, it means that the series is first-order serially correlated.
If AC dies off more or less geometrically with increasing lags, it implies that the series follows a low-
order autoregressive process. If AC drops to zero after a small number of lags, it implies that the series
follows a low-order moving-average process. In contrast, PAC measures the correlation of values that are
k periods apart after removing the correlation from the intervening lags. If the pattern of autocorrelation
can be captured by an autoregression of order less than £, then the partial autocorrelation at lag & will be
close to zero. The Ljung-Box Q-statistics and their p-values at lag k are also provided, where the null
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hypothesis being tested is such that there is no autocorrelation up to order £. The dotted lines in the plots

of the autocorrelations are the approximate two standard error bounds. If the autocorrelation is within

these bounds, it is not significantly different from zero at approximately the 5% significance level.
Finding the right ARIMA model takes practice and experience. These AC, PAC, SC, and AIC diagnostic
tools are highly useful in helping to identify the correct model specification.

Autoregressive Integrated Moving Average

Time Series Variable
Exogenous Vanable
LAutoregressive Order AR(p)
Differencing Order [(d)

Maximum lterations
Forecast Periods

Backcast

ARIMA is an advanced modeling technigue
used to model and forecast time-series
data (data that have a time component to

it, e.g., interest rates, inflation, sales
revenues, gross domestic product).

|B5:B440

Maoving Average Order MA[Ig)

[l | |0 | | B | |l

[4fe

Figure 3.13 — Box-Jenkins ARIMA Forecast Tool
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ARIMA (Autoregressive Integrated Moving Average)

Regression Statistics

FR-Squared (Coefficient of Determination) 0.99549 Akaifee Information Criterion (A1C) 46213
Adjusted R-Squared 0.99949 Schwarz Criterion (SC) 46632
Muitipie R (Muitiple Correlation Coeffician) 1.0000 Log Likelihood -1005.1 340
Standard Error of the Estimales (SEy) 2075246 Durbin-Walson (DW) Statistic 1.8558
Nurnber of Obsenations 435 Nurmber of erations i

Autoregressive Integrated Moving Average or ARIMA(,d ) models are the extension of the AR model that use three components for modeling the seral correlation in the time-
series data. The first component Is the autoregressive (AR) term. The AR model uses the p lags of the time series In the equation. An AR modal has the form: wi=ari) vt
1)+ afo i+ er). The second component is the Integration (o) order terrn. Each integration order carresponds to differencing the time serles. Ii1) means aiferencing the
data once. Jid) means differencing the data ditimes. The third component is the moving average (MA) term. The MAGQ model uses the o lags of the forecast errors to improve
the fovecast An A model has the farm. wid=erd+br {711+ _+ by "arta) Finaily, an ARMA @) model has the combined form: wi=ar ) i1+ +a(nmital+ e+ b st
T+ _+bief™e(tq)

The R-Squared, or Cosfficient of Determination, Indicates the percent variation in the dependent variabie that can be explained and sccounted for by the independent variabios
in this regression analysis. However, In a multipie regression, the Adiusted R-Squared takes Into account the existence of additional independant variables or regressors and
aefjusts this R-Squared value to & move accurate view the regression's explanatons power. Howsver, under some ARIMA modeling circumstances (8.4, With nonconvergence
madals), the R-Squared tends to be unreliable

The Multinie Corralation Coefficiant (Muitiole R) meastres the corralation betwsen the actual dependent variablie (¥) and the estimated o fited (¥) based on the regression
equation. This corralation s also the square root of the Coefliciant of Determination (R-Squared).

The Standard Error of the Eslimates (SEY) describes the dispersion of dala points above and below the regression line o piane. This value s used as part ofthe calculation fo
obtain the confidience interval of the estimates fater.

The AIC and 8C are offen wsed in model selection. ST imposes a greater penally for additional coefficients. Generally, the vser showld select 3 model with the lowest value of
the ANC and SC.

The Durbin-Watson stalistic measures the serial corralation in the residuals. Generally, DW iess than 2 implies positive setial corralation.

Regression Results

Intercept AR mMart)
Coefficients -0.0626 1.0055 0.4936
Stanciard Error 03108 00006 00420
tStatistic -0.2003 6911373 17633
i alue 0.5406 0.0000 00000
Lower 9% 0.4495 1.0063 09626
Uipper 93% -0.9749 1.0046 0.4244
Degrees of Freedorm Hypothesis Test
Degrees of Freedom for Regrassion 2 Critical EStatistic (99% confidence with of of 432) 255873
Degrees of Freedom for Residual 432 Critical EStatistic (95% confidence with of of 432) 1.9655
Total Degress of Freedom 434 Critical EStatistic (90% confidence with of of 422) 16454

The Coefficients provide the estimated regression Intercept and slopes. For instance, the coefficients are estimates of the true; popuiation b vaives inthe following regression
equation ¥ = 8p + 8, X, + 82X+ L+ 8. X, The Standard Error rneasures how accurate the predicted Coefficients are, and the t5talistics are the ratios of each predicted
Coefficient o its Standard Erfor.

The EStatistic is wsed in hypothesis lesting, where we set the nuil hypothesis (Ho) such that the real mean of the Coefficient = 0, and the alternate hypothesis (Ha) such that the
real mean of the Cosfficient is not equal to 0. A Hest is is performed and the calculated EStabistic Is compared to the critical values at the relevant Degrees of Freedom for
Residual. The Hest is very Impottant as it calcliates i each of the coefficients s stalistically significant In the presence of the other regressors. This means that the Hest
statistically verifies whether a regressor or independant variable should rarnain In the regression or it showid be dropped.

The Coefficient is statistically significant if its calcuiated EStatistic exceeds the Critical EStatistic at the relevant degrees of freedom {df). The three main confidence levels used o
test for significance are 90%, 95% and 99%. If & Coefficient's £5iatistic excesds the Critical level 1t Js considered statistically significant. Alternatively, the p-lalue calculates
each LStatistic's probabiiity of occurrence, which means that the smalier the p-I/aiue, the mare sighificant the Coefiicient The nsual significant levels for the p-lalue are 0.01,
Q.05 and 090, carrespanding fo the 99%, 95%, and 99% confidence levels.

The Coefficients with thelr p-\alues highlighted In biue Indicate that they are statistically significant at the 20% confidence or 0.10 aipha Jevel while those highlighted in red
Indicale that they are nol statistically significant at any other aloha levels.

Analysis of Variance

Sums of Mean of .

Squares Squares F-Statistic p-Value Hypothesis Test
Regression D845447 5277 192077227636 3715011024 00000 Critical F-statistic 199% confidence with of of 2 and 432) 46546
Residual ZE16.0549 6.0557 Critical F-statistic 195% confidence with of of 2 and 432) 20766
Total 3841806355826 192077208195 Critical F-statistic 190% confidence with of of 2 and 432) 23149

The Analysis of Variance (ANCIA) tabie provides an F-test of the regression modsl’s overall statistical significance. Instead of fooking at Incividual regressors as in the Hest,
the F-test looks at aif the estimated Coefiicients' statistical properties. The F-Statistic s calculated as the ratio of the Regression's Mean of Squares to the Reslduals Wean of
Scpares. The numerstor measures how much of the regression Is explained, while the denominator Ineasures how much is Unexplained. Hence, the larger the F-Statistic, the
mare sighificant the model. The corresponding p-lValue s calcuiated fo fest the nuil hypathesis (Ha)l where all the Coefficients are simulianeously equal fo zero, versus the
aiternate hypothesis (Ha) that they are all simuitaneowsly different frorm zero, indicating a significant overall regression modal. If the p-\Value is smalier than the 0.04, 0.05, or
Q.10 aipha significance, then the regression s sighificant. The same approach can be applisd fo the F-Statistic by comparing the calculated F-Statistic with the critical F values
at various sighificance levels
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Autocorrelation

Time Lag AC PAC Loweer Bound Upper Bound G-Stat Prob
1 0.9921 0.9921 (0.0958) 0.0958 4311216 - — —
2 0.9541 (0.0105) (0.0958) 0.0958 8563037 - AC PAC
3 0.9780 (0.0109) (0.0958) 0.0958 1,275.4818 - 1 .I 1.,
4 09678 (0.0142y (0.0958) 0.0958 1,688.5499 - = 1]
B 0.9594 (0.0093) (0.0958) 0.0958 2,095 4625 = 1 e 1
-1 0.9509 0.0113) (0.0958) 0.0958 24961572 - 1 i 1l
7 09423 (0.0124) (0.0958) 0.0958 2,590.5594 - N- i
&) 0.9336 (0.0147) (0.0938) 0.0958 3,278.5669 = 1. h
q 05247 0.0m21 (0.0938) 0.0958 36601152 - = 1]
10 051356 (0.0139) (0.0938) 0.0958 40351192 - = 1]
1 0.9066 (0.0049) (0.0938) 0.0958 4,403 6117 - 1 i 1l
12 0.8973 £0.0068) (0.0938) 0.0958 4,763 6032 - 1. 1l
13 055383 £0.0087) (0.0938) 0.0958 5,121.0897 - | e h
14 08791 (0.0087) (0.0958) 0.0958 5,470.0032 - 1= 1]
15 0.8695 (0.0064) (0.0958) 0.0958 5,812.4256 - = h
16 0.8605 (0.0058) (0.0958) 0.0958 B,148.3694 - I'm h
17 08512 (0.0062) (0.0958) 0.0958 64778620 - 1= h
18 08449 (0.0038) (0.0958) 0.0958 E,800.9622 - 1. h
19 0.5326 (0.0003) (0.0958) 0.0958 TA47.7709 = 1 N
20 05235 0.0002 (0.0958) 0.0958 74283952 - J y

If autocorrsiation AC(T) Is nonzero, it means that the serles is first arder serially correlated IFACTK) dies off more or Jess geometricaily with increasing lag, it impiies that the
sefies folfows & low-order autoregressive process. IT AC(K) drops to Zero after a small number of I20s, It implies that the series follows & fow-order moving-average process.
Partial correlation PACHK) measures the correlation of values that are k periods apart after removing the correlation frarm the Intervening lags. If the pattern of autocarrelation
can be captured by an autaregrassion of order [ess than &, then the partial awtocosrelation at lag k will be close to zero. Ljung-Box Q-statistics and thelr p-vaiues at lag & has the
null bypothesis that there s no awlocarrelation up o arder k. The dolted iines in the piats of the autocorrelations are the appraximate bwo standard error bounds. If the
autacarreiation is within these bownds, it is not significantly different from zero at (approximately) the 5% significance fevel

Forecasting

Period  Actual () Farecast (F) Error (E) —
2 139399934 1396056 {0.2056) Attiialive Forscast
3 139.699997 1400069 {0.3069) 42005
4 139599997 1402586 (0.5586)
5 140699997 1401343 05857
6 141199997 141 5948 (0.43948) Wy
7 141699997 141 6741 0.0253
8 141599994 1424339 (0.5339) 300,04
3 14 1423567 {1.3567)
10 1405 141 0466 (0.5466) oo
11 140399994 1409447 (0.5447)
12 140 1405451 [0.5451)
13 140 1402946 (0.2948) 400.04
14 139539994 140 5663 {0.66E3)
15 139500003 1402823 (0.4823) 200,
16 139600006 1402726 (06726) |
17 139600006 139.9775 (0.3775) o - : : 3 : : ; : :
830,00l 140 1202 (0.5231) 0 50 100 150 200 250 300 350 400 480
19 140199997 1400513 01487
20 141 300003 140 9862 03138 J
21 141 199997 1421738 (0.9738) —
22 140539994 141 4377 (0.5377) Prediction Error
23 140599994 141 3513 (0.4513) 150
24 140639997 141 3939 (0,6939)
25 141100006 144 0731 0.0270
26 141 BO000E 144 8311 [0.2311)
27 141599994 1422085 (0.3065)
28 142100006 142.4709 {0.3708)
29 142690997 142 6402 0.0598
30 142.590994 143 4561 {0.5561)
31 142.590994 1433532 (0.4532)
a2 1435 143 4040 0.0360
33 143.800003 144 2784 (0.4754)
34 144100006 144 2966 {0.1966)
35 144.500003 1447374 0.0626
36 145199997 145 5692 (0.3692)
37 145199997 145 7582 {0.5582)
35 145639997 145 6643 00351
33 146 146 4605 (0.4605)
40 146399994 146 5176 (0.1176) J
41 146800003 147 0891 {0.2891)
42 146 600006 147 4066 (0.5066)

Figure 3.14 — Box-Jenkins ARIMA Forecast Report
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AUTO ARIMA (Box-Jenkins ARIMA Advanced Time-Series)

Theory

While the analyses are identical, AUTO ARIMA differs from ARIMA in automating some of the
traditional ARIMA modeling. It automatically tests multiple permutations of model specifications and
returns the best-fitting model. Running the Auto ARIMA is similar to regular ARIMA forecasting, with
the difference being that the P, D, Q inputs are no longer required and different combinations of these

inputs are automatically run and compared.

Procedure

¥ Start Excel and enter your data or open an existing worksheet with historical data to forecast (the
illustration shown in Figure 3.15 uses the example file Advanced Forecasting Models in the
Examples menu of Risk Simulator).

¥ In the Auto ARIMA worksheet, select Risk Simulator | Forecasting | AUTO-ARIMA. You can
also access this method through the forecasting icons ribbon, or right-clicking anywhere in the
model and selecting the forecasting shortcut menu.

¥ Click on the link icon and link to the existing time-series data, enter the number of forecast
periods desired, and click OK.

ARIMA and AUTO ARIMA Note

For ARIMA and Auto ARIMA, you can model and forecast future periods by either using only the
dependent variable (Y), that is, the Time Series Variable by itself or you can add in exogenous variables
(X1, X5, ..., X,) just like in a regression analysis where you have multiple independent variables. You can
run as many forecast periods as you wish if you use only the time-series variable (Y). However, if you add
exogenous variables (X), note that your forecast period is limited to the number of exogenous variables’
data periods minus the time-series variable’s data periods. For example, you can only forecast up to 5
periods if you have time-series historical data of 100 periods and only if you have exogenous variables of
105 periods (100 historical periods to match the time-series variable and 5 additional future periods of
independent exogenous variables to forecast the time-series dependent variable).
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Sample Historical Time-

M1
138.90
139.40
139.70
139.70
140.70
141.20
141.70
141.90
141.00
140.50
140.40
140.00
140.00
138.90
139.80
139.60
139.60
138,60
140.20
141.30
141.20
140.90
140.90
140.70
141.10
14160
141.90
142.10
142.70
142 90
142.90
143.50
143.80
144 10
144 80
14520
145.20
14570

Series Data
M2
286.70
287.80
289.10
290.10
292,30
293.90
295.30
296.40
296.50
296.60
297.20
297.80
298.30
298.50
299.20
300.10
301.00
30220
304.20
306.80
308.20
309.60
311.00
32.30
314.20
316.60
318.10
319.90
322,30
32410
325.70
327.60
329.30
33120
33350
33580
337.60
34020

M3
289.00
290.10
291.30
292.30
284 50
29610
297.40
298.50
298.50
298.60
299.20
299.80
300.30
300.50
301.30
302.20
303.00
304.30
306.40
309.20
310.70
312.20
313.80
315.30
317.30
320.00
321.70
323.80
326.50
328.70
330,60
332.60
334.50
336.60
338.00
341.00
343.20
346.20

Basic Econometrics

Box-Jenkins ARIMA Forecasts

Autoregressive Integrated Moving Average (ARIMA)
forecasts apply advanced econometric modeling tecniques
to forecast time-series data by first back-fitting to historical
data and then forecasting the future. Advanced knowledge of
econometrics is required to properly model ARIMA. Please

see the ARIMA example Excel model for more details. However,

to get started quickly, following the instructions below:

- Risk Simulator | Forecasting | ARIMA
_ Click on the Time-Series Variable link
icon and select the area B5:B440
. Try different P, D, Q values and
select a Forecast Period of choice
(e.g., 1,0.0 for PDQ and & for Forecast)
- Click OK to run ARIMA and review the
ARIMA report for details of the results

r

w

~

Auto ARIMA =5

Auto ARIMA runs the most common low
order PDQ combinations and finds the
best it using Adjusted R-Squared, Akaike
and Schwarz Criterion and ranks them
from best to worst

Time Series Variable B5 8440 E
Exogenous Variable =]

Maximum lterations 100
Forecast Periods 5l
Backcast ]

L M N o P Q R s

Autoregressive Integrated Moving Average =)

ARIMA is an advanced modeling technique
used to medel and forecast time-series
data (data that have a time component to

it e.g.. interest rates, inflation, sales
revenues, gross domestic product).

Time Series Variable B5:B440 E
Exogenous Variable E

Autoregressive Order AR(p)

T ARIMA

Differencing Order I(d}

i
0k
Moving Average Order MA(g) 0
Maximum lterations 1005

5%

Forecast Periods

Backeast

]

AUTO-ARIMA Models

Proper ARIMA modeling requires testing of the autoregressive and moving

average of the errors on the time-series data, in order to calibrate the correct

PDQ inputs. Nonetheless, you can use the AUTO ARIMA forecasts to automatically
test all possible combinations of the most frequently occurring PDQ values to find the
best-fitting ARIMA model. To do so, following these steps:

1. Risk Simulator | Forecasting | AUTO ARIMA
2. Click on the Time-Series Variable link

icon and select the area B5:B440
3. Click OK to run ARIMA and review the

ARIMA report for details of the results

P Real Options
Valuatien

www reslopticnavalustion com

Figure 3.15 — AUTO ARIMA Module

Theory

Econometrics refers to a branch of business analytics, modeling, and forecasting techniques for modeling

the behavior or forecasting certain business or economic variables. Running the Basic Econometrics

models is similar to regular regression analysis except that the dependent and independent variables are

allowed to be modified before a regression is run. The report generated and its interpretation is the same

as shown in the Multivariate Regression section presented earlier.

Procedure

¥ Start Excel and enter your data or open an existing worksheet with historical data to forecast (the

illustration shown in Figure 3.16 uses the file example file Advanced Forecasting Models in the

Examples menu of Risk Simulator).

¥ Select the data in the Basic Econometrics worksheet and select Risk Simulator | Forecasting |

Basic Econometrics.

¥ Enter the desired dependent and independent variables (see Figure 3.16 for examples) and click

OK to run the model and report, or click on Show Results to view the results before generating the

report in case you need to make any changes to the model
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[ Basic Econametrics l=[@] % ]
Basic Econometrics Data Set
This tool is used to run basic ic medels by first ing the input variables before
running the multivariate regression analysis. You can enter in multiple economeric model
¥ 3] X2 ] %4 X5 specicatons i st Each model ison @ nciine an wilin cach ine he frsivariabe s e
jependent variable folloy y at least ane or more independent variables separated by semi-colans.

o 008 18 el a8 12 In the follawing example, LNVAR ) and VAR3 are dependent variables in two models and the
367 1148 600 0.55 1 8.5 remaining items are independent variables in the two econometric models:
443 18068 2 3665 | 323 57 LN(VAR1), LN(VARZ) VAR3+VAR4 TIME
365 7729 J42 2381 | 151 73 VAR3: LAG(VAR2.3); DIFF(ART); RESIDUAL[VAR3VARS)
g:;; 11050;224 ;gﬁ ?92;“51 1391“; 755 VAR1 VAR2 VAR3 VAR VARS VARG
286 | 14630 | 346 | 3267 | 6784 | 67 = e e s B
397 4008 328 D666 | 3408 52 - :
764 | 38927 | 354 | 12938 | 2396 | 73 L E0GE e e T2 B o
477 22372 266 6 ;J-TE 1M '9 5 365 7729 142 2.351 45.1 73
163 3711 320 17108 172'5 28 614 100484 432 29.76 190.8 75
231 | 336 | 197 | 1007 | 122 | 61 oo s
524 | 50508 | 266 | 11431 | 2056 71 2 e e
328 | 28886 | 173 5544 | 1546 59 @ Singie Model
240 16996 | 190 2777 | 497 46
286 13035 239 2478 303 4.4 Dependent Variable Independent Variables:
285 12973 190 3685 928 74 LN(VAR1) LN(VAR2); VAR3*VAR4, LAG(VARS, 1); DIFF(VARS),
569 | 16309 | 241 422 969 71 ST TIME
96 5227 189 1228 39.8 7.5 Functions =g LOGIVARZAVARE); VAR VARA, LGS VAR, DUAL [@]
498 19235 358 4781 | 4892 59 +-"JNIOGLAG  PARIVARS:TIIS FORECASTOARIARS:D ATEGR)
481 44487 | 315 6016 | 7676 9 53 Econometrics Results [ & [t
468 | 44213 | 303 9295 | 1636 92 A INEE B
oz | | aws | s et e

3 7 : Adjusted R-Squared: 0.4663
458 | 24917 | 189 5117 | 743 66 it
e = b fon - i Multiple R (Multiple Correlation Coefficient) 07233

; i : 1| Standard Error of the Estimates (SEy) 0.4688
246 8945 183 1578 | 205 27 o SRl o
291 2373 M7 1.202 109 55 INTEGER1: Min Max 1 ;: tatistic: D-DDD‘;)
68 7128 | 233 | 1109 | 1237 | 72 INTEGERZ: Min Max ||| L nsters :
31 23624 349 1.73 1042 66 INTEGER3: Min Manx | Intercept LN(VAR2) VARIVAR4 | LAG(VAR51) | DIFF(VARS) TIME
606 5242 284 1515 125 69 Coefficierts 3.1049 02726 0.0000 0.0011 00213 00125
512 | 92629 | 499 1799 381 72 Standard Emor  0.8947 00974 0.0000 0.0003 0032 0.0049
426 | 28795 231 6629 | 1361 5.8 t-Statistic 34703 23001 0.7885 38576 067% 25234
47 4487 e 0.639 93 11 pValue 0.0012 0.0077 04348 0.0004 05005 00155
265 | 48799 | 249 | 10847 | 2649 6.4
370 14067 | 195 3146 | 458 87

Dependent Variable: _—

312 | 12693 288 2842 | 296 6 LN(VARY) Copy Close
222 | 62184 | 229 | 11882 | 2651 69
280 9153 287 1003 | 9603 85

Figure 3.16 — Basic Econometrics Module

Notes

e To run an econometric model, simply select the data (B5:G55) including headers and click on
Risk Simulator | Forecasting | Basic Econometrics. You can then type in the variables and their
modifications for the dependent and independent variables (Figure 3.16). Note that only one
variable is allowed as the Dependent Variable (Y), whereas multiple variables are allowed in the
Independent Variables (X) section, separated by a semicolon (;), and that basic mathematical
functions can be used (e.g., LN, LOG, LAG, +, -, /, *, TIME, RESIDUAL, DIFF). Click on Show
Results to preview the computed model and click OK to generate the econometric model report.

e You can also automatically generate Multiple Models by entering a sample model and using the
predefined INTEGER(N) variable as well as Shifting Data up or down specific rows repeatedly.
For instance, if you use the variable LAG(VARI, INTEGERI) and you set INTEGERI to be
between MIN = 1 and MAX = 3, then the following three models will be run: LAG(VARI, 1), then
LAG(VARI,2), and, finally, LAG(VARI,3). Also, sometimes you might want to test if the time-
series data has structural shifts or if the behavior of the model is consistent over time by shifting
the data and then running the same model. For example, if you have 100 months of data listed
chronologically, you can shift it down 3 months at a time for 10 times (i.e., the model will be run
on months 1-100, 4-100, 7-100, etc.). Using this Multiple Models section in Basic Econometrics,
you can run hundreds of models by simply entering a single model equation if you use these
predefined integer variables and shifting methods.
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J-S Curve Forecasts

Theory

The J curve, or exponential growth curve, is one where the growth of the next period depends on the
current period’s level and the increase is exponential. This means that over time, the values will increase
significantly, from one period to another. This model is typically used in forecasting biological growth
and chemical reactions over time.

Procedure
¥ Start Excel and select Risk Simulator | Forecasting | JS Curves.
¥ Select the J or S curve type, enter the required input assumptions (see Figures 3.17 and 3.18 for
examples), and click OK to run the model and report.

The S curve, or logistic growth curve, starts off like a J curve, with exponential growth rates. Over time,
the environment becomes saturated (e.g., market saturation, competition, overcrowding), the growth
slows, and the forecast value eventually ends up at a saturation or maximum level. This model is typically
used in forecasting market share or sales growth of a new product from market introduction until maturity
and decline, population dynamics, growth of bacterial cultures, and other naturally occurring variables.
Figure 3.18 illustrates a sample S curve.

J-Curve Exponential Growth Curves

In mathematics, a quantity that grows exponentially is one whose growth rate is always proportional to its current size. Such growth is said to follow an
exponential law. This implies that for any exponentially growing quantity, the larger the quantity gets, the faster it grows. But it also implies that the
relationship between the size of the dependent variable and its rate of growth is governed by a strict law, of the simplest kind: direct proportion. The general
principle behind exponential growth is that the larger a number gets, the faster it grows. Any exponentially growing number will eventually grow larger than
any other number which grows at only a constant rate for the same amount of time. This forecast method is also called a J curve due to its shape
resembling the letter J. There is no maximum level of this growth curve. Other growth curves include S-curves and Markaov Chains.

To generate a J curve forecast, follow the instructions below:

1. Click on Risk Simulator | Forecasting | J5 Curves [‘_jv Real UDUORS
2. Select Exponential J Curve and enter in the desired inputs V d l ud tl_?_n
(e.g., Starting Value of 100, Growth Rate of 5 percent, End Period of 100) R SR

3. Click OK to run the forecast and spend some time reviewing the forecast report

[R] IsCurves &] ]

The J-5 curves stand for J-curve (exponential growth) and S-curve
(logistic growth curve). These curves are used in forecasting high
growth rates {J-curve) or for situations with events with initially high
growth but slows down and growth matures over time as the
envirenment becomes saturated at capacity (S-curve).

@ Exponential J Curve @) Logistic S Curve
Starting Value: 100
Growth Rate (3£): 5

Saturation Level:

Generate forecast curve based on the following periods:

End Period: |100

Cancel

Figure 3.17 — J-Curve Forecast
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Logistic S Curve

A logistic function or logistic curve models the S-curve of growth of some variable X. The initial stage of growth is approximately exponential:
then, as competition arises, the growth slows, and at maturity, growth stops. These functions find applications in a range of fields, from biology
to economics. For example, in the development of an embryo, a fertilized ovum splits, and the cell count grows: 1, 2, 4, 8, 16, 32, 64, etc. This

is exponential growth. But the fetus can grow only as large as the uterus can hold; thus other factors start slowing down the increase in the cell
count, and the rate of growth slows (but the baby is still growing, of course). After a suitable time, the child is born and keeps growing. Ultimately,
the cell count is stable: the person’'s height is constant; the growth has stopped, at maturity. The same principles can be applied to population
growth of animals or humans, and the market penetration and revenues of a product, with an initial growth spurt in market penetration, but over
time, the growth slows due to competition and eventually the market declines and matures.

1. Click on Risk Simulator | Forecasting | JS Curves

RBEI] UD[IBHS 2 Enter in the required inputs (see below for an example)
V V d l gatwen 3. Click OK and review the forecast report
ww realoptionsvaluation com
7,000 - ’ .
J5Curves &]
¢ The J-5 curves stand for J-curve (exponential growth) and S-curve
5000 4 Maturity and (logistic growth curve). These curves are used in forecasting high
' Saturation Phase growth rates (J-curve) or for situations with events with initially high
growth but slows down and growth matures over time as the
o 4,000 4 environment becomes saturated at capacity (S-curve).
= 3,000 4 " Exponential J Curve @ Logistic S Curve
20004 |nitial Starting Value: 200
Phase Growth Rate (%): 10
1,000 4 coturation Level
turati 2
400 4 uration Level 6000
0 t r T T | Generate forecast curve based on the following periods:
1] 20 30 40 &0 80 100
" End Period: | 100
Period
Cancel
\

Figure 3.18 — S-Curve Forecast

GARCH Volatility Forecasts

Theory

The generalized autoregressive conditional heteroskedasticity (GARCH) model is used to model
historical and forecast future volatility levels of a marketable security (e.g., stock prices, commodity
prices, oil prices, etc.). The data set has to be a time series of raw price levels. GARCH will first convert
the prices into relative returns and then run an internal optimization to fit the historical data to a mean-
reverting volatility term structure, while assuming that the volatility is heteroskedastic in nature (changes
over time according to some econometric characteristics). The theoretical specifics of a GARCH model
are outside the purview of this user manual. For more details on GARCH models, please refer to
Advanced Analytical Models, by Dr. Johnathan Mun (Wiley Finance, 2008).

Procedure
¥ Start Excel and open the example file Advanced Forecasting Model, go to the GARCH worksheet
and select Risk Simulator | Forecasting | GARCH.
¥ Click on the link icon, select the Data Location, enter the required input assumptions (see Figure
3.19), and click OK to run the model and report.

Note: The typical volatility forecast situation requires P = 1, Q = 1, Periodicity = number of periods per
year (12 for monthly data, 52 for weekly data, 252 or 365 for daily data), Base = minimum of 1 and up to
the periodicity value, and Forecast Periods = number of annualized volatility forecasts you wish to obtain.
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There are several GARCH models available in Risk Simulator, including EGARCH, EGARCH-T,
GARCH-M, GJR-GARCH, GJR-GARCH-T, IGARCH, and T-GARCH. See the chapter in Modeling
Risk, 2nd Edition, by Dr. Johnathan Mun (Wiley Finance, 2010), on GARCH modeling for more details
on what each specification is for.

I/% \H’,eaallu[]é]tlloglg Generalized Autoregressive Conditional Heteroskedasticity (GARCH)

www.realoptionsvaluation.com

Historical Data

Days Inputs To run a GARCH model, enter in the relevant time-series data, then click on Risk Simulator |
1 459.11 Forecasting | GARCH and click on on the data location link icon, select the historical data
2 460.71 area (e.g.. C8:C2428). Enter in the required inputs (e.g.. P 1, @ 1. Daily Trading Periodicity 252,
3 460.34 Predictive Base 1. Forecast Periods 10) and click OK. Review the generated forecast report.
4 460.68
5 460.83 For practice, run each of the GARCH variations and compare the results. Refer to the user
6 461.68 manual for the functional form and specifications for each model variation:

7 461.66 GARCH, GARCH-M, TGARCH, TGARCH-M, EGARCH, EGARCH-T
8 461.64 GJR. GARCH, GJR TGARCH
9 465.97
10 469.38 - b
s Pt [ GARCH =5
12 469.72 GARCH or generalized autoregressive conditional heteroskedasticity models are used in
13 466.95 forecasting the volatility of financial instruments, using the prices themselves. The GARCH (P.Q)
14 A64.78 model allows for different positive P and Q integer lag parameters for the mean (news) and
2 variance equations. Mate than only positive data values can be used in 3 GARCH volatility
15 465.81 forecast. Periodicity is the number of periods per year (e.g.. 12 for monthly data, 252 for daily
16 A465.86 trading data. 365 for daily data) to annualize the volatility or keep as 1 for periedic volatility. Base
17 A67.44 is the predictive base periods (this means how many periods back you would liketouseas &
£ forecast base to predict future volatility, e.g., enter in 12 if using the past 12 periods). Vanance
18 468.32 Targeting means if you wish the volatility forecast to revert to an imputed long-run mean over time.
19 470.39 Ma'l.lte 5|.I|re|to arrange your raw price data in chronological order (past to present in a single column
: with multi ;
20 46851 with multiple rows)
il A70.42 Data Location: iCE:C2423 Ei
22 470.4 Generate a GARCH (P.Q) model for:
23 472.78
24 478.64 P Q: |1 Periodicity: | 252 Base: |1 Forecast Periods:| 10
25 481.14
26 480.81 [ Apply Variance Targeting
27 481.19
28 480.19 @ GARCH ) GARCH-M ) TGARCH
29 481.46 © TGARCH-M © EGARCH ) EGARCH-T
30 481.65 ) ) )
k% 482.55 ) GJRGARCH ™) GJR TGARCH ) Run All Models
32 484,54
5 | sz
34 481.97
35 482.74 .
36 485.07

Figure 3.19 —- GARCH Volatility Forecast
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GARCH MODELS

The accompanying table lists some of the GARCH specifications used in Risk Simulator with two
underlying distributional assumptions: one for normal distribution and the other for the t distribution.

z, ~ Normal Distribution z, ~ T-Distribution
GARCH-M y, =c+Ac] +¢, y, =c+Ac] +¢,
Variance in
Mean Equation & =04 & =0z
ol =w+aeg’ +po’, ol =w+aeg’ +po’,
GARCH-M y,=c+Aoc, +¢, y,=c+Ao, +¢,
Standard Deviation _ _
. . 8t =0,z 8t =0,z
in Mean Equation
ol =w+aeg’ +po’, ol =w+ag’ +po’,
GARCH-M y,=c+Aln(c))+e, y,=c+Aln(c))+¢g,
Log Variance
in Mean Equation & =04 & =0z
ol =w+aeg’ +po’, ol =w+aeg’ +po’,
GARCH V=X +E, V=€,
ol =w+oe’, + po’, g =0,z
ol =w+ag’ +po’,
EGARCH v =¢ v =¢
8[ = O-lZl 8[ = O-tzt
ln(of)za)Jrﬂ-ln(Gf_l)Jr ln(af)=w+ﬁoln(af_l)+
&g & & &
o [Z=H-E(e,|) |[+r=- ol [Z=H-E(le ) |+ ==
O-t—l O-t—l O-t—l O-t—l
qu |)_ 2 E(|8 |)_2\/v—2f((v+1)/2)
VN f NI
GIR-GARCH | , —¢ y, =¢
g =0,z £ =0,z
ol =w+ag’ + ol =w+ag’ +
2 2 2 2
re d, +po, re d, +po,
J 1 ifeg, <0 J 1 ifg, <0
o otherwise o otherwise
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For the GARCH-M models, the conditional variance equations are the same in the six variations but the
mean questions are different and assumption on z, can be either normal distribution or t distribution. The
estimated parameters for GARCH-M with normal distribution are those five parameters in the mean and
conditional variance equations. The estimated parameters for GARCH-M with the t distribution are those

five parameters in the mean and conditional variance equations plus another parameter, the degrees of
freedom for the t distribution. In contrast, for the GJR models, the mean equations are the same in the six
variations and the differences are that the conditional variance equations and the assumption on z, can be
either a normal distribution or t distribution. The estimated parameters for EGARCH and GJR-GARCH
with normal distribution are those four parameters in the conditional variance equation. The estimated
parameters for GARCH, EARCH, and GJR-GARCH with t distribution are those parameters in the
conditional variance equation plus the degrees of freedom for the t distribution. More technical details of
GARCH methodologies fall outside of the scope of this book.

Markov Chains

Theory

A Markov chain exists when the probability of a future state depends on a previous state and when linked
together form a chain that reverts to a long-run steady state level. This approach is typically used to
forecast the market share of two competitors. The required inputs are the starting probability of a
customer in the first store (the first state) will return to the same store in the next period versus the
probability of switching to a competitor’s store in the next state.

Procedure
¥ Start Excel and select Risk Simulator | Forecasting | Markov Chain.
& Enter in the required input assumptions (see Figure 3.20 for an example) and click OK to run the
model and report.

Note:

Set both probabilities to 10% and rerun the Markov chain and you will see the effects of switching
behaviors very clearly in the resulting chart.
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Markov Chain Forecast

The Markov Process is useful for studying the evolution of systems over multiple and repeated trials in successive time periods. The system's state
at a particular time is unknown, and we are interested in knowing the probability that a particular state exists. For instance, Markov Chains are used
to compute the probability that a particular machine or equipment will continue to function in the next time period or whether a consumer purchasing
Product A will continue to purchase Product A in the next period or switch to a competitive brand B.

To generate a Markov process, follow the instructions below:

[ [’ Makov Chain = |

1. Click on Risk Simulator | Forecasting | Markov Chain

2. Enter in the relevant state probabilities (e.g., 90 and 80 Markov chains are very powerful analytical tools used to model the
percents) and click OK switching behavior between one state of nature versus another and
3 eventually settling on a long-term steady state equilibrium (e.g., market
3. Review the forecast report generated share). For instance, Markov Chains are used to compute the probability
that a particular machine or eguipment will continue to function in the next
time period, or if a consumer purchasing Product A will continue to

; ' purchase Product A in the next period or switch to 3 competitive brand B.
Real Options
P v a l ua t ion Probability of Staying st State 1 if Starting at State 1 (%): |90
-
Tk ptoonialion s Probability of Staying at State 2 if Starting at State 2 (%): |80
T8k | Cancel |

Figure 3.20 — Markov Chains (Switching Regimes)

Limited Dependent Variables: Logit, Probit, Tobit Using Maximum Likelihood Estimation

Theory

The term Limited Dependent Variables describes the situation where the dependent variable contains data
that are limited in scope and range, such as binary responses (0 or ) or truncated, ordered, or censored
data. For instance, given a set of independent variables (e.g., age, income, education level of credit card or
mortgage loan holders), we can model the probability of default using maximum likelihood estimation
(MLE). The response, or dependent variable Y, is binary. That is, it can have only two possible outcomes
that we denote as / and 0 (e.g., ¥ may represent presence/absence of a certain condition, defaulted/not
defaulted on previous loans, success/failure of some device, answer yes/no on a survey, etc.). We also
have a vector of independent variable regressors X, which are assumed to influence the outcome Y. A
typical ordinary least squares regression approach is invalid because the regression errors are
heteroskedastic and non-normal, and the resulting estimated probability estimates will return nonsensical
values of above / or below (. MLE analysis handles these problems using an iterative optimization
routine to maximize a log likelihood function when the dependent variables are limited.

A Logit or Logistic regression, is used for predicting the probability of occurrence of an event by fitting
data to a logistic curve. It is a generalized linear model used for binomial regression, and, like many
forms of regression analysis, it makes use of several predictor variables that may be either numerical or
categorical. MLE applied in a binary multivariate logistic analysis is used to model dependent variables to
determine the expected probability of success of belonging to a certain group. The estimated coefficients
for the Logit model are the logarithmic odds ratios and cannot be interpreted directly as probabilities. A
quick computation is first required and the approach is simple.
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Specifically, the Logit model is specified as Estimated Y = LN[P/(1-P)] or, conversely, P, =
EXP(Estimated Y)/(1+EXP(Estimated Y)), and the coefficients f; are the log odds ratios. So, taking the
antilog, or EXP(f;), we obtain the odds ratio of P/(I—P;). This means that with an increase in a unit of /i,
the log odds ratio increases by this amount. Finally, the rate of change is the probability dP/dX = f:P;(1-
P)). The standard error measures how accurate the predicted coefficients are, and the t-statistics are the
ratios of each predicted coefficient to its standard error and are used in the typical regression hypothesis
test of the significance of each estimated parameter. To estimate the probability of success of belonging to
a certain group (e.g., predicting if a smoker will develop chest complications given the amount smoked
per year), simply compute the Estimated Y value using the MLE coefficients. For example, if the model is
Y =11+ 0.005 (Cigarettes), then someone smoking 100 packs per year has an Estimated Y of 1.1 +
0.005(100) = 1.6. Next, compute the inverse antilog of the odds ratio by EXP(Estimated Y)/[1 +
EXP(Estimated Y)] = EXP(1.6)/(1+ EXP(1.6)) = 0.8320. So, such a person has an 83.20% chance of
developing some chest complications in his or her lifetime.

A Probit model (sometimes also known as a Normit model) is a popular alternative specification for a
binary response model, which employs a probit function estimated using maximum likelihood estimation
and the approach is called probit regression. The Probit and Logistic regression models tend to produce
very similar predictions where the parameter estimates in a logistic regression tend to be 1.6 to 1.8 times
higher than they are in a corresponding Probit model. The choice of using a Probit or Logit is entirely up
to convenience, and the main distinction is that the logistic distribution has a higher kurtosis (fatter tails)
to account for extreme values. For example, suppose that house ownership is the decision to be modeled,
and this response variable is binary (home purchase or no home purchase) and depends on a series of
independent variables X; such as income, age, and so forth, such that I; = §, + .X; +...+ §,X,, where the
larger the value of 7;, the higher the probability of home ownership. For each family, a critical /* threshold
exists where, if exceeded, the house is purchased, otherwise, no home is purchased, and the outcome
probability (P) is assumed to be normally distributed such that P; = CDF(I) using a standard normal
cumulative distribution function (CDF). Therefore, using the estimated coefficients exactly like those of a
regression model and using the Estimated Y value, apply a standard normal distribution (you can use
Excel’s NORMSDIST function or Risk Simulator's Distributional Analysis tool by selecting Normal
distribution and setting the mean to be 0 and standard deviation to be /). Finally, to obtain a Probit or
probability unit measure, set /; + 5 (because whenever the probability P; < 0.5, the estimated /; is

negative, due to the fact that the normal distribution is symmetrical around a mean of zero).

The Tobit Model (Censored Tobit) is an econometric and biometric modeling method used to describe the
relationship between a non-negative dependent variable Y; and one or more independent variables X;. The
dependent variable in a Tobit econometric model is censored; it is censored because values below zero are
not observed. The Tobit model assumes that there is a latent unobservable variable Y*. This variable is
linearly dependent on the X; variables via a vector of §; coefficients that determine their interrelationships.
In addition, there is a normally distributed error term U; to capture random influences on this relationship.
The observable variable Y; is defined to be equal to the latent variables whenever the latent variables are
above zero and is assumed to be zero otherwise. That is, ¥; = Y*if Y* > 0 and ¥; = 0 if Y* = 0. If the
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relationship parameter f; is estimated by using ordinary least squares regression of the observed Y; on X,
the resulting regression estimators are inconsistent and yield downward-biased slope coefficients and an
upward-biased intercept. Only MLE would be consistent for a Tobit model. In the Tobit model, there is an
ancillary statistic called sigma, which is equivalent to the standard error of estimate in a standard ordinary
least squares regression, and the estimated coefficients are used the same way as a regression analysis.

Procedure
¥ Start Excel and open the example file Advanced Forecasting Model, go to the MLE worksheet,
select the data set including the headers, and click on Risk Simulator | Forecasting | Maximum
Likelihood.
¥ Select the dependent variable from the drop-down list (see Figure 3.21) and click OK to run the
model and report.

Binary Logistic Maximum Likelihood Forecast: Logit, Probit, Tobit
LOGIT & PROBIT SAMPLE DATA

Years with Years at  Household Debtto  Credit Card
Education Current Current Income Income Debt Other Debt
Defaulted  Age Level Employer Address (Thousands $) Ratio (%) (Thousands 3) (Thousands 5)
1 41 3 17 12 176 93 11.36 501
0 27 1 10 6 31 17.3 1.36 4
0 40 1 15 14 55 55 0.86 23T
0 4 1 15 14 120 29 2.66 0.2
1 24 2 2 0 28 1r.3 1.79 3.06
0 41 2 5 5 25 102 0.39 216
0 39 1 20 9 67 30.6 383 16.67
s = = %

3 g 1 Rl MLE LIMDEP - :. > - Lol o e
. = : Runs the Logit. Probit and Tobit models for limited dependent varniables (LIMDEF) where the
0 27 1 dependent variable's () data points are binary or limited to discrete values, and where the forecast of
0 25 q dependent values are probabilities of occurrences. In such situations, a regular regression analysis
0 52 1 will yield inoorr_ect and bia_s_e?d results, includingthe violation of normality reguirements and forecast

results of negative probabilities or values exceeding 100%. Only these LIMDEF models are
0 37 1 appropriate for use when dependent variables are limited.
0 48 1
1 36 2 Dependent Variable | Defaulted L]
1 36 2 Defaulted i Age Education Level -
0 43 1 i a1 3 B
0 39 1 0 27 1
0 41 3 0 an 1
0 39 1 0 a1 1
0 a7 1 7 24 3
0 28 1 0 41 2
0 29 1 0 30 1
1 21 2 0 a3 1
0 25 4 1 24 1 .
0 45 2 4 | m 3
0 43 1 ) _ )
0 13 2 @ LOgIt . Probit ) Tabit
0 26 3 [ ok | [ camcl |
0 45 1 =
0 30 1 m

Figure 3.21 — Maximum Likelihood Module
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Spline (Cubic Spline Interpolation and Extrapolation)

Theory

Sometimes there are missing values in a time-series data set. For instance, interest rates for years 1 to 3
may exist, followed by years 5 to 8, and then year 10. Spline curves can be used to interpolate the missing
years’ interest rate values based on the data that exist. Spline curves can also be used to forecast or
extrapolate values of future time periods beyond the time period of available data. The data can be linear
or nonlinear. Figure 3.22 illustrates how a cubic spline is run and Figure 3.23 shows the resulting forecast
report from this module. The Known X values represent the values on the x-axis of a chart (in our
example, this is Years of the known interest rates, and, usually, the x-axis values are those that are known
in advance such as time or years) and the Known Y values represent the values on the y-axis (in our case,

the known Interest Rates). The y-axis variable is typically the variable you wish to interpolate missing

values from or extrapolate the values into the future.

o o e R B B e e et b e e e e e e S T P B PN P e s
oo oee=amEonNI S o —wamEwnasro=omEeEwB=o
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Cubic Spline Interpolation and Extrapolation

The cubic spline polynomial interpolation and extrapolation model is used

to "fill in the gaps” of missing spot yields and term structure of interest rates
whereby the model can be used to both interpolate missing data points within
atime series of interest rates (as well as other macroeconomic variables such
as inflation rates and commodity prices or market returns) and also used to
extrapolate outside of the given or known range, useful for forecasting purposes.

Years Spot Yields

0.0833 4.55% These are the yields
0.2500 4.47% that are known and
0.5000 4.52% are used as inputs in
1.0000 4.39% the Cubic Spline
2.0000 4.13% Interpolation and
3.0000 4.16% Extrapolation model
5.0000 4.26%

7.0000 4.38%

10.0000 4.56%
20.0000 4.88%
30.0000 4.84%

To run the Cubic Spline forecast, click on Risk Simulator | Forecasting |
Cubic Spline and then click on the link icon and select C15:C25 as the Known
Xvalues (values on the x-axis of a time-series chart) and D15:D25 as the Known
Y values (make sure the length of Known X and Y values are the same). Enter
the desired forecast periods (e.g., Starting 1, Ending 50, Step Size 0.5). Click
OK and review the generated forecasts and chart.

[ Cubic Spline (= @ [ |

The cublic spline p aal i and model is used to “fill in the
gaps” of missing values and for forecasting ime-series data. whereby the model can
be used to both interpolate missing data points within a time series of data (eg.. yield
curve, interest rates, macrosconomic vanables like inflation rates and commadity
prices or market returns) and is also used to extrapolate culside of the given or known
range, making it useful for forecasting.

Known X Values: |C15C25 E
Knewn Y Values: 1015 D25 E

Generate 2 spline curve based on the following X values

Starting: 1 Ending |50 Step Size: |05
[ 1
Lok | | Cancel

Figure 3.22 — Cubic Spline Module



Procedure

¥ Start Excel and open the example file Advanced Forecasting Model, go to the Cubic Spline
worksheet, select the data set excluding the headers, and click on Risk Simulator | Forecasting |
Cubic Spline.

¥ The data location is automatically inserted into the user interface if you first select the data, or
you can also manually click on the link icon and link the Known X values and Known Y values
(see Figure 3.22 for an example), then enter in the required Starting and Ending values to
extrapolate and interpolate, as well as the required Step Size between these starting and ending

values. Click OK to run the model and report (see Figure 3.23).

Cubic Spline Forecasts

The cubic spline polynomial interpolation and extrapolation model is used to "fill in the gaps” of missing values and for forecasting time-series data. whereby the model
can be used to both interpolate missing data points within a time series of data (e.g., yield curve, interest rates, macroeconomic variables like inflation rates and
commadity prices or market returns) and also used to extrapolate outside of the given or known range. making it useful for forecasting.

Spline Interpolation and Extrapolation Result

X Fitted ¥ Motes

1.0 4.39% Interpolate
1.5 4.21% Interpolate
2.0 4.13% Interpolate
25 413% Interpolate
3.0 4.16% Interpolate
3.5 4.19% Interpolate
4.0 4.22% Interpolate
4.5 4.24% Interpolate
50 4.26% Interpolate
5.5 4.29% Interpolate
6.0 4.32% Interpolate
6.5 4.35% Interpolate
7.0 4.38% Interpolate
75 4.41% Interpolate
8.0 4.44% Interpolate
8.5 4.47% Interpolate
9.0 4.50% Interpolate
9.5 4.53% Interpolate
10.0 4.56% Interpolate
10.5 4.5%% Interpolate

=

These
inputs

model:
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Valuatien
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are the known value
in the Cublic Spline
Interpolation and Extrapolation

Observation  Known X

1
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0.0833
0.2500
0.5000
1.0000
2.0000
3.0000
5.0000
7.0000
10.0000
20.0000
30.0000

Known v
4.55%
4.47%
4.52%
4.39%
4.13%
4.16%
4.26%
4.38%
4.56%
4.88%
4.84%

520 %

500 %

430 %

480 %

4.40 %

4.20 %

4.00 %

d-L

Spline Forecast

¥ Known Valuss
= Fitied Values

]

Figure 3.23 — Spline Forecast Results
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4. OPTIMIZATION

This chapter looks at the optimization process and methodologies in more detail in connection with using
Risk Simulator. These methodologies include the use of continuous versus discrete integer optimization,

as well as static versus dynamic and stochastic optimizations.

Optimization Methodologies

Many algorithms exist to run optimization, and many different procedures exist when optimization is
coupled with Monte Carlo simulation. In Risk Simulator, there are three distinct optimization procedures
and optimization types as well as different decision variable types. For instance, Risk Simulator can
handle Continuous Decision Variables (1.2535, 0.2215, etc.) as well as Integers Decision Variables (1,
2, 3, 4, etc.), Binary Decision Variables (1 and 0 for go and no-go decisions), and Mixed Decision
Variables (both integers and continuous variables). On top of that, Risk Simulator can handle Linear
Optimization (i.e., when both the objective and constraints are all linear equations and functions) as well
as Nonlinear Optimizations (i.e., when the objective and constraints are a mixture of linear and nonlinear

functions and equations).

As far as the optimization process is concerned, Risk Simulator can be used to run a Discrete
Optimization, that is, an optimization that is run on a discrete or static model, where no simulations are
run. In other words, all the inputs in the model are static and unchanging. This optimization type is
applicable when the model is assumed to be known and no uncertainties exist. Also, a discrete
optimization can be first run to determine the optimal portfolio and its corresponding optimal allocation
of decision variables before more advanced optimization procedures are applied. For instance, before
running a stochastic optimization problem, a discrete optimization is first run to determine if there exist

solutions to the optimization problem before a more protracted analysis is performed.

Next, Dynamic Optimization is applied when Monte Carlo simulation is used together with optimization.
Another name for such a procedure is Simulation-Optimization. That is, a simulation is first run, then the
results of the simulation are then applied in the Excel model, and then an optimization is applied to the
simulated values. In other words, a simulation is run for N trials, and then an optimization process is run
for M iterations until the optimal results are obtained or an infeasible set is found. That is, using Risk
Simulator’s optimization module, you can choose which forecast and assumption statistics to use and
replace in the model after the simulation is run. Then, these forecast statistics can be applied in the
optimization process. This approach is useful when you have a large model with many interacting
assumptions and forecasts, and when some of the forecast statistics are required in the optimization. For
example, if the standard deviation of an assumption or forecast is required in the optimization model (e.g.,
computing the Sharpe ratio in asset allocation and optimization problems where we have mean divided by
standard deviation of the portfolio), then this approach should be used.
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The Stochastic Optimization process, in contrast, is similar to the dynamic optimization procedure with
the exception that the entire dynamic optimization process is repeated 7 times. That is, a simulation with
N trials is run, and then an optimization is run with M iterations to obtain the optimal results. Then the
process is replicated 7 times. The results will be a forecast chart of each decision variable with 7 values.
In other words, a simulation is run and the forecast or assumption statistics are used in the optimization
model to find the optimal allocation of decision variables. Then, another simulation is run, generating
different forecast statistics, and these new updated values are then optimized, and so forth. Hence, the
final decision variables will each have their own forecast chart, indicating the range of the optimal
decision variables. For instance, instead of obtaining single-point estimates in the dynamic optimization
procedure, you can now obtain a distribution of the decision variables and, hence, a range of optimal

values for each decision variable, also known as a stochastic optimization.

Finally, an Efficient Frontier optimization procedure applies the concepts of marginal increments and
shadow pricing in optimization. That is, what would happen to the results of the optimization if one of the
constraints were relaxed slightly? Say, for instance, the budget constraint is set at $1 million. What would
happen to the portfolio’s outcome and optimal decisions if the constraint were now $1.5 million, or $2
million, and so forth? This is the concept of the Markowitz efficient frontiers in investment finance,
whereby one can determine what additional returns the portfolio will generate if the portfolio standard
deviation is allowed to increase slightly. This process is similar to the dynamic optimization process with
the exception that one of the constraints is allowed to change, and with each change, the simulation and
optimization process is run. This process is best applied manually using Risk Simulator. That is, run a
dynamic or stochastic optimization, then rerun another optimization with a constraint, and repeat that
procedure several times. This manual process is important because by changing the constraint, the analyst
can determine if the results are similar or different, and, hence, whether it is worthy of any additional
analysis, or the analyst can determine how far a marginal increase in the constraint should be to obtain a

significant change in the objective and decision variables.

One item is worthy of consideration. There exist other software products that supposedly perform
stochastic optimization but, in fact, they do not. For instance, after a simulation is run, then one iteration
of the optimization process is generated, and then another simulation is run, then the second optimization
iteration is generated and so forth. This approach is simply a waste of time and resources. That is, in
optimization, the model is put through a rigorous set of algorithms, where multiple iterations (ranging
from several to thousands of iterations) are required to obtain the optimal results. Hence, generating one
iteration at a time is a waste of time and resources. The same portfolio can be solved using Risk
Simulator in under a minute as compared to multiple hours using such a backward approach. Also, such a
simulation-optimization approach will typically yield bad results, and it is not a stochastic optimization
approach. Be extremely careful of such methodologies when applying optimization to your models.

The next two sections provide examples of optimization problems. One uses continuous decision
variables while the other uses discrete integer decision variables. In either model, you can apply discrete
optimization, dynamic optimization, stochastic optimization, or even the efficient frontiers with shadow
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pricing. Any of these approaches can be used for these two examples. Therefore, for simplicity, only the
model setup is illustrated and it is up to the user to decide which optimization process to run. Also, the
continuous model uses the nonlinear optimization approach (because the portfolio risk computed is a
nonlinear function, and the objective is a nonlinear function of portfolio returns divided by portfolio risks)
and integer optimization is an example of a linear optimization model (its objective and all of its
constraints are linear). Therefore, these two examples encapsulate all of the procedures aforementioned.

Optimization with Continuous Decision Variables

Figure 4.1 illustrates the sample continuous optimization model. The example here uses the Continuous
Optimization file found either on the start menu at Start | Real Options Valuation | Risk Simulator |
Examples or accessed directly through Risk Simulator | Example Models. In this example, there are 10
distinct asset classes (e.g., different types of mutual funds, stocks, or assets) where the idea is to most
efficiently and effectively allocate the portfolio holdings such that the best bang for the buck is obtained;
that is, to generate the best portfolio returns possible given the risks inherent in each asset class. To truly
understand the concept of optimization, we will have to delve deeply into this sample model to see how
the optimization process can best be applied.

As mentioned, the model shows the 10 asset classes each with its own set of annualized returns and
annualized volatilities. These return and risk measures are annualized values such that they can be
consistently compared across different asset classes. Returns are computed using the geometric average of
the relative returns, while the risks are computed using the logarithmic relative stock returns approach.

Al B [ C | D I E I F | 5 I H [ J | K | L

1
12
|3 ASSET ALLOCATION OPTIMIZATION MODEL

4

. - . Required  Required § Returns Risk Return te  Allocation
gziflﬁ::ﬁ A';:{;‘I:'“Z:d Voé?;:ny A&lﬁ;}:g‘ Minimum  Maximum RRi:;(“II?I:ntic-; Ranking Ranking Risk Ranking Ranking

= Allocation Allocation {Hi-Lo} {Lo-Hi) {Hi-Lo} {Hi-Lo}
| 6 | Agset Class 1 10.54% 12.36% 10.00% 5.00% 35.00% 0.8524 9 2 7 1
| 7 | Asset Class 2 11.25% 16.23% 10.00% 5.00% 35.00% 0.6929 7 8 10 1
| 8 | Asset Class 3 11.84% 15.64% 10.00% 5.00% 35.00% 0.7570 B 7 9 1
| 9 Agget Class 4 10.64% 12.358% 10.00% 5.00% 35.00% 0.8615 8 1 ) 1
| 10| Asset Class & 13.25% 13.28% 10.00% 5.00% 35.00% 0.9977 5 4 2 1
|11 Asset Class B 14.21% 14.39% 10.00% 5.00% 35.00% 0.95875 3 B 3 1
|12 | Agget Clags 7 15.83% 14.28% 10.00% 5.00% 35.00% 1.0895 1 ) 1 1
| 13 | Asset Class 8 14.95% 16.44% 10.00% 5.00% 35.00% 0.9094 2 9 4 1
| 14 | Asset Class 9 14.16% 16.80% 10.00% 5.00% 35.00% 0.5564 4 10 B 1
| 15 | Agzet Class 10 10.06% 12.80% 10.00% 5.00% 35.00% 0.8045 10 3 g 1

16
[ 17|  Portfolio Total 12.6419% 4.58%
|18 | Return to Risk Ratio
19
20
| 21 Specifications of the optimization maodal:

22
| 23 | Ohjective: Maxirnize Return to Risk Ratio (CT5)
| 24 | Decision Variables: Aliocation Weights (EB.ET15)
| 25 | Restrictions on Decision Variables: Minirnurn and Maximurm Required [FE:GT5)
| 26 | Constraints: FPortfolio Total Allocation Weights T00% (E17 is set to T00%)

27
| 26 | Additional specifications:
29
| 30| 1. One can akways maximize portfolio total returms or minimize the portfolio total risk.
| 31 2. Incorporate Monte Carlo simulation in the model by simulating the returms and volatility of each asset class
| 32 | and apply Simulation-Optimization techniques.
133 3. The portfolio can be optimized as is without simulation using Static Optimization technigques.

Figure 4.1 — Continuous Optimization Model
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Referring to Figure 4.1, column E (Allocation Weights) holds the decision variables, which are the
variables that need to be tweaked and tested such that the total weight is constrained at 100% (cell E17).
Typically, to start the optimization, we set these cells to a uniform value, where in this case, cells E6 to
E15 are set at 10% each. In addition, each decision variable may have specific restrictions in its allowed
range. In this example, the lower and upper allocations allowed are 5% and 35%, as seen in columns F
and G. This means that each asset class may have its own allocation boundaries. Next, column H shows
the return to risk ratio, which is simply the return percentage divided by the risk percentage, where the
higher this value, the higher the bang for the buck. Columns I through L show the individual asset class
rankings by returns, risk, return to risk ratio, and allocation. In other words, these rankings show at a
glance which asset class has the lowest risk, or the highest return, and so forth.

The portfolio’s total returns in cell C17 is SUMPRODUCT(C6:C15, E6:E15), that is, the sum of the
allocation weights multiplied by the annualized returns for each asset class. In other words, we
haveR, =w,R, +w R, + 0 R, +®,R

p» Where Rp is the return on the portfolio, Rsscp are the

individual returns on the projects, and @,z cp are the respective weights, or capital allocation, across each
project.

In addition, the portfolio’s diversified risk in «cell D17 is computed by taking

i n m
Op = \/ z w’c’ + z z 20,0,p, ;0,0 ; . Here, p;; are the respective cross-correlations between the
i=1 =1 =l
asset classes—hence, if the cross-correlations are negative, there are risk diversification effects, and the
portfolio risk decreases. However, to simplify the computations here, we assume zero correlations among
the asset classes through this portfolio risk computation, but assume the correlations when applying
simulation on the returns as will be seen later. Therefore, instead of applying static correlations among
these different asset returns, we apply the correlations in the simulation assumptions themselves, creating
a more dynamic relationship among the simulated return values.

Finally, the return to risk ratio, or Sharpe ratio, is computed for the portfolio. This value is seen in cell
C18, and represents the objective to be maximized in this optimization exercise. To summarize, we have

the following specifications in this example model:

Objective: Maximize Return to Risk Ratio (C18)
Decision Variables: Allocation Weights (E6:E15)

Restrictions on Decision Variables:  Minimum and Maximum Required (F6:G15)
Constraints: Total Allocation Weights Sum to 100% (E17)
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Procedure

Open the example file and start a new profile by clicking on Risk Simulator | New Profile and
provide it a name.

The first step in optimization is to set the decision variables. Select cell E6, set the first decision
variable (Risk Simulator | Optimization | Set Decision), and click on the link icon to select the
name cell (B6), as well as the lower bound and upper bound values at cells F6 and G6. Then,
using Risk Simulator’s copy, copy this cell E6 decision variable and paste it to the remaining
cells in E7 to E15.

The second step in optimization is to set the constraint. There is only one constraint here, that is,
the total allocation in the portfolio must sum to 100%. So, click on Risk Simulator |
Optimization | Constraints... and select ADD to add a new constraint. Then, select the cell E17
and make it equal (=) to 100%. Click OK when done.

The final step in optimization is to set the objective function and start the optimization by
selecting the objective cell C18 and Risk Simulator | Optimization | Run Optimization and
then selecting the optimization of choice (Static Optimization, Dynamic Optimization, or
Stochastic Optimization). To get started, select Static Optimization. Check to make sure the
objective cell is set for C18 and select Maximize. You can now review the decision variables and
constraints if required, or click OK to run the static optimization.

Once the optimization is complete, you may select Revert to revert back to the original values of
the decision variables as well as the objective, or select Replace to apply the optimized decision
variables. Typically, Replace is chosen after the optimization is done.

Figure 4.2 shows the screen shots of these procedural steps. You can add simulation assumptions on the

model’s returns and risk (columns C and D) and apply the dynamic optimization and stochastic

optimization for additional practice.

Decision Variable Properties &J

Decision Name ]ﬁsset Class 1 E
Decision Type
@ Continuous (e.g., 1.15, 2.35, 10.55)

Lower Bound |0.05 E] Upper Bound |0.35 E]

71 Integer{eg., 1.2, 3)

Lower Bound ] E] Upper Bound ] E]

"1 Binary (Dor 1)

| ok || cancel |
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I+ Constraint @

Cell Constraint

[sEst7 E[ == =l[w00 |

r

Constraints

Current Constraints:
$E$17 == 100%

F

Cptimization Summary

Optimization is used to allocate resources where the
results provide the max returns or the min costrisks.
Uses include managing inventaries, financial
portfolio allocation, product mix, project selection,
elc.

Objective | Method |Constraints | Statistics | Decision Variables |

@ Static Oplimization
Fun on static model without simulations. Usually run to determine the
intigl optimal portfolio before more advanced optimizations are applisd.

(71 Dynamic Opimizaiion
A simulation is first run, the results of the simulation are applied in the
model, and then an optimization 15 applied to the simulated values.
Mumber of Simulation Trials 1000
i) Stochastic Optimizabon
Similar to dynamic optimization but the process is repeated several

times. The final decision variables will each have its own forecast
chart indicating its optimal range.

Mumber of Simulation Trials 1000-=

Mumber of Optimization Runs 20

Figure 4.2 Running Continuous Optimization in Risk Simulator
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Results Interpretation

The optimization’s final results are shown in Figure 4.3, where the optimal allocation of assets for the
portfolio is seen in cells E6:E15. That is, given the restrictions of each asset fluctuating between 5% and
35%, and where the sum of the allocation must equal 100%, the allocation that maximizes the return to

risk ratio can be identified from the data provided in Figure 4.3.

A few important things have to be noted when reviewing the results and optimization procedures

performed thus far:

e The correct way to run the optimization is to maximize the bang for the buck, or returns to risk
Sharpe ratio, as we have done.

e Ifinstead we maximized the total portfolio returns, the optimal allocation result is trivial and does
not require optimization to obtain. That is, simply allocate 5% (the minimum allowed) to the
lowest eight assets, 35% (the maximum allowed) to the highest returning asset, and the remaining
(25%) to the second-best returns asset. Optimization is not required. However, when allocating
the portfolio this way, the risk is a lot higher as compared to when maximizing the returns to risk
ratio, although the portfolio returns by themselves are higher.

¢ In contrast, one can minimize the total portfolio risk, but the returns will now be less.

Table 4.1 illustrates the results from the three different objectives being optimized and shows that the best
approach is to maximize the returns to risk ratio, that is, for the same amount of risk, this allocation
provides the highest amount of return. Conversely, for the same amount of return, this allocation provides
the lowest amount of risk possible. This approach of bang for the buck, or returns to risk ratio, is the
cornerstone of the Markowitz efficient frontier in modern portfolio theory. That is, if we constrained the
total portfolio risk level and successively increased it over time, we will obtain several efficient portfolio
allocations for different risk characteristics. Thus, different efficient portfolio allocations can be obtained

for different individuals with different risk preferences.

Portfolio  Portfolio ' Ortiolo

Returns Risk Returns to
Objective Risk Ratio
Maximize Returns to Risk Ratio 12.69% 4.52% 2.8091
Maximize Returns 13.97% 6.77% 2.0636
Minimize Risk 12.38% 4.46% 2.7754

Table 4.1 — Optimization Results
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ASSET ALLOCATION OPTIMIZATION MODEL
) s e . Required  Required ) Returns Risk Return to  Allocation
ﬁ:ssiflﬁl:‘osﬁ AIH:::::_:]Z:(I VOII{;;:IW A&l‘?;}:g] Minimum  Maximum I'\I’-{i:iulal;ttioo Ranking Ranking Risk Ranking Ranking
Allocation  Allocation {Hi-Lo} {Lo-Hi) {Hi-Lo} {Hi-Lo}
Asgset Class 1 10.54% 12.36% 11.09% £.00% 35.00% 0.8524 ] 2 7 4
Asgset Class 2 11.258% 16.23% 5.87% £.00% 35.00% 0.6929 7 8 10 10
Asgset Class 3 11.84% 15.64% 7.78% £.00% 35.00% 0.7570 B 7 9 ]
Asset Class 4 10.64% 12.35% 11.22% £.00% 35.00% 0.8615 8 1 3 3
Asgset Class & 13.258% 13.28% 12.08% £.00% 35.00% 0.9977 5 4 2 2
Asset Class B 14.21% 14.39% 11.04% £.00% 35.00% 0.9875 3 B 3 5
Asset Class 7 15.63% 14.25% 12.30% 5.00% 35.00% 1.0898 1 5 1 1
Agset Class 8 14.95% 16.44% 8.90% 5.00% 35.00% 0.9094 2 ] 4 7
Agset Class 9 14.16% 16.50% 8.37% 5.00% 35.00% 0.8584 4 10 5 8
Agset Clags 10 10.06% 12.50% 10.35% 5.00% 35.00% 0.8045 10 3 5 B
Portfolio Total 12.6920% 4.52%
Return to Risk Ratio

Figure 4.3 — Continuous Optimization Results

Optimization with Discrete Integer Variables

Sometimes, the decision variables are not continuous but are discrete integers (e.g., 0 and 1). We can use
optimization with discrete integer variables as on-off switches or go/no-go decisions. Figure 4.4 illustrates
a project selection model with 12 projects listed. The example here uses the Discrete Optimization file
found either on the start menu at Start | Real Options Valuation | Risk Simulator | Examples or
accessed directly through Risk Simulator | Example Models. Each project has its own returns (ENPV
and NPV, for expanded net present value and net present value—the ENPV is simply the NPV plus any
strategic real options values), costs of implementation, risks, and so forth. If required, this model can be
modified to include required full-time equivalences (FTE) and other resources of various functions, and
additional constraints can be set on these additional resources. The inputs into this model are typically
linked from other spreadsheet models. For instance, each project will have its own discounted cash flow
or returns on investment model. The application here is to maximize the portfolio’s Sharpe ratio subject to
some budget allocation. Many other versions of this model can be created, for instance, maximizing the
portfolio returns or minimizing the risks, or adding constraints where the total number of projects chosen
cannot exceed 6, and so forth and so on. All of these items can be run using this existing model.

Procedure

¥ Open the example file and start a new profile by clicking on Risk Simulator | New Profile and
provide it a name.

¥ The first step in optimization is to set up the decision variables. Set the first decision variable by
selecting cell J4, select Risk Simulator | Optimization | Set Decision, click on the link icon to
select the name cell (B4), and select the Binary variable. Then, using Risk Simulator’s copy,
copy this cell J4 decision variable and paste the decision variable to the remaining cells in J5 to
J15. This is the best method if you have only several decision variables and you can name each
decision variable with a unique name for identification later.

¥ The second step in optimization is to set the constraint. There are two constraints here: the total
budget allocation in the portfolio must be less than $5,000 and the total number of projects must
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not exceed 6. So, click on Risk Simulator | Optimization | Constraints... and select ADD to
add a new constraint. Then, select the cell D17 and make it less than or equal to (<=) 5000.
Repeat by setting cell J17 <= 6.

¥ The final step in optimization is to set the objective function and start the optimization by
selecting cell C19 and Risk Simulator | Optimization | Set Objective. Then run the
optimization using Risk Simulator | Optimization | Run Optimization and selecting the
optimization of choice (Static Optimization, Dynamic Optimization, or Stochastic Optimization).
To get started, select Static Optimization. Check to make sure that the objective cell is either the
Sharpe ratio or portfolio returns to risk ratio and select Maximize. You can now review the
decision variables and constraints if required, or click OK to run the static optimization.

Figure 4.5 shows the screen shots of these procedural steps. You can add simulation assumptions on the
model’s ENPV and risk (columns C and E), and apply the dynamic optimization and stochastic

optimization for additional practice.

A B & ] E F E; H Bl
1
2
; ENPV Cost Risk § Risk % ;ﬁ:";’;:; P”’:'::::m’" Selection
4 Project $455.00 51,732 44 $54.95 12.00% 833 1.26 1.0000
5 Profect 2 $1,854.00 $859.00 | $1,914.92 98.00% i.02 227 1.0000
B Frofect 3 $1,598.00 $1,84500 | §4,551.03 S7.00% .02 1.87 1.0000
7 Profect 4 $2.251.00 $1,64500 | $41,01285 43.00% 222 237 1.0000
& Profectd $549.00 $455.00 | $925.47 109.00% g2 285 1.0000
g Frofect6 $735.00 33200 | $360.92 74.00% 7.25 15.58 1.0000
10 Profect 7 $2.845.00 $758.00 | $5633.40 | 1895.00% 051 475 1.0000
11 Profect & $1,235.00 F1{5.00 | $926.25 79.00% 1.32 1174 1.0000
12 Profectd $1,845.00 F125.00 | $2,10060 | {08.00% 0932 16.56 1.0000
13 Frofect 10 $2.250.00 T4558.00 | $41,812.30 £3.00% .18 5391 1.0000
14 Project 11 $548.00 34500 | $26352 48.00% 208 13.20 1.0000
15 FProfect 12 $525.00 F{05.00 | $309.75 59.00% 1.69 6.00 1.0000
16
17 Total $i7,21300 $819744  $T007  40.70%
13 Goal: AN = =35000 ==5
19 Shawpe Ratio 24573
20
21 ENFPY is the expected NPV of each credit line or project, while Cost can be the total cost of
e adrministration as well as required capital holdings to cover the credit ine, and Risk is the
23 Coefficient of Variation of the credit ine's ENPY.

Figure 4.4 — Discrete Integer Optimization Model
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Decision Variable Properties

Caonstraints

D ecizion Mame

Decision Type
) Continuous [e.g..1.15, 2.35, 10.55)
Lower Bound I E] Upper Bound I E]

) Integer [e.g,1,2.3)

Lower Bound I E] Upper Bound

@ Binary (Dor 1)

olE e

Current Conztraints:

[#] 50517 <= 5000
[Msis17 <=6

Add

(o ) [ o | Cw

]

Cancel

r

Optimization Summary

Ciptimization is used to allocate resources where the
results provide the max returns or the min costinsks.
lses include managing inventeries, financial
portfolio allocation, product mix, project selection,
elc.

Objective |Method |Constraints | Statistics | Decision Variables

Objective Cell [sCs19 =)
Cptimization Objective
@ Maximize the valus in objective cell

(71 Minimize the value in objective cell
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Results Interpretation

Figure 4.6 shows a sample optimal selection of projects that maximizes the Sharpe ratio. In
contrast, one can always maximize total revenues, but, as before, this is a trivial process and
simply involves choosing the highest returning project and going down the list until you run out
of money or exceed the budget constraint. Doing so will yield theoretically undesirable projects
as the highest yielding projects typically hold higher risks. Now, if desired, you can replicate the
optimization using a stochastic or dynamic optimization by adding assumptions in the ENPV
and/or cost, and/or risk values.

ENPV Cost Rik$ g% eeitrie Srameomy Selection [Fl Optimization Complete ===

Project 1 §456.00 | s173244| s5496 [ 1200% | 633 1.26 7.0060
Project 2 $1,95400 | $659.00 | 5191492 | 9800% | 102 227 0.0000 Optimization Result
Project 3 $1599.00 | §1.84500 | 155103 | 9700% | 103 187 0.0000 a
Project 4 $2251.00 | $1,64500 | §1,01295 | 4500% | 222 237 1.0000 i
Project 5 5649.00 |  $456.00 | s92541 | 108.00% | 092 285 0.0000
Project 6 5756.00 55200 | $56092 | 7400% | 135 15.56 1.0000 3
Project 7 $2,84500 | 575800 | $563310 | 19800% | 051 475 0.0000
Project § $1,23500 | $11500 | $92625 | 7500% | 133 11.74 1.0000 [E
Project 9 $1,94500 | $12500 | §2.10060 | 108.00% | 093 16.56 0.0000 E 2
Project 10 | 5225000 | 545800 | §4,91250 | 8500% | 118 591 0.0000 S
Project 11 5549.00 54500 | $26352 | 4500% | 208 13.20 1.0000
Project 12 $525.00 | $10500 | $30975 | 5900% | 169 600 1.0000 1

Total S577600  $369444  $1539  2664% o

vl Mix et =4 I I i I A R T T R T N R P R

Sharpe Ratio 3.7343 Nomnber: of e rtone
J

ENPYV is the expected NPV of each credit line or projest, while Cost can be the tofal cost of
Problem Parameters:

administration as well as required capital holdings to cover the credit line, and Risk is the NiAberidE Nariahia e 1e £
4 ine’s Number of functions is_ 3 |2
Coedficient of Variation of the credit line's ENPV. DBjEcEIve FUnction willabe menized |

starting values
Functions:
Ful

ction Initial Lower Upper
No. Name Status Type value Bound sound
o 3 083 2.4573
z & =e=x  RNGE 3197.4371 -1.000000E+010  0.00000D0E+00D
3 6 ===x  RNGE 6.0000 -1.000000E+010  0.00D000E+000
variables:
variable Initial Lower upper
No. Name status value Bound sound

Optimal values have been found. Do ou wish to replace the existing decision variables with the optimized values or
revert o the original inpuls’

Feplace Revert

Figure 4.6 — Optimal Selection of Projects That Maximizes the Sharpe Ratio

For additional hands-on examples of optimization in action, see the case study in Chapter 11 on
Integrated Risk Management in the book, Real Options Analysis: Tools and Techniques, 2nd
Edition (Wiley Finance, 2005), by Dr. Johnathan Mun. That case study illustrates how an
efficient frontier can be generated and how forecasting, simulation, optimization, and real options

can be combined into a seamless analytical process.
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Efficient Frontier and Advanced Optimization Settings

The middle graphic in Figure 4.5 shows the constraints set for the example optimization. Within
this function, if you click on the Efficient Frontier button after you have set some constraints, you
can make the constraints changing. That is, each of the constraints can be created to step through
between some maximum and minimum value. As an example, the constraint in cell J17 <= 6 can
be set to run between 4 and 8 (Figure 4.7). Thus, five optimizations will be run, each with the
following constraints: J17 <=4, J17 <=5, J17 <=6, J17 <=7, and J17 <= 8. The optimal results
will then be plotted as an efficient frontier and the report will be generated (Figure 4.8).
Specifically, here are the steps required to create a changing constraint:

® In an optimization model (i.e., a model with Objective, Decision Variables, and
Constraints already set up), click on Risk Simulator | Optimization | Constraints and
click on Efficient Frontier.

& Select the constraint you want to change or step (e.g., J17), enter in the parameters for
Min, Max, and Step Size (Figure 4.7), click ADD, and then click OK and OK again. You
should deselect the D17 <= 5000 constraint before running.

& Run Optimization as usual (Risk Simulator | Optimization | Run Optimization). You
can choose static, dynamic, or stochastic.

¥ The results will be shown as a user interface (Figure 4.8). Click on Create Report to
generate a report worksheet with all the details of the optimization runs.

[ Efficient Frontier =

Current Constraints
50817 <= 5000 d

:

—Parameters

MIN |4 Max |8 STEP SIZE |1

Changing Constraints
W] 5J%17 <= MIN 4, M&X 8, STEP 1 Change

Delete

OK

Cancel

dafd

Figure 4.7 — Generating Changing Constraints in an Efficient Frontier

User Manual (Risk Simulator Software) 123 © 2005-2011 Real Options Valuation, Inc.



Efficient Frontier [ Optimization Complete [
Problem Parameters:
Humber of variables 12
Number of functions 2 Efficient Fronti
Objective function will be Maximized 18 jceatirontes
STEP1, D17 <= 5000, J17 <=4 375
Functions i
.é 385
Starting Values Final Resuits 5
i3y
356
Function Lower Upper Function
No. MName Status Type Initial Vaiue Bound Bound No. Name Initial Value Final Vaiue a5
1 G 0OBJ 2.45726 1 G 245726 3.46137
2 G ::: RNGE 3197.43710 -1E+10 0 2 G 3197.43710 -1472.56202 3.45 3 T 5% pe A3 T 75 n
3 G RNGE  8.00000  -1E+10 0 3 G 8.00000  0.00000 i
S
Variables Efficient Frontier Analysis A
s2+Step: 1*%¢ Constraints are:
Starting Values Final Results §2§§; E; imn
Problem Parameters:
Number of variables is 12
Number of functions is 3 o
Variable Initial FOWeE Upper Variable Objective function will be MAXimized
Mo Mame Status Value Bound Bound Mo. Mame Initial Value Final Value
Starting values
1 X uL 1.00000 0 1 1 X 1.00000 1.00000 Fhhctinis: 9
2 X uL 1.00000 0 1 2 X 1.00000 0.00000 Function Initial Lower upper
3 X uL 1.00000 0 1 3 X 1.00000 0.00000 NO. Name Status Type value Bound eound
4 X uL 1.00000 0 1 4 X 1.00000 1.00000 = G 0Bl 2.457
5 X UL 100000 0 1 5 X 1.00000 0.00000 z G #ss2 RNGE 3197.4371 ~1.000000E+D10  0.0000D0E+D00 _
6 X uL 1.00000 0 1 6 X 1.00000 0.00000
7 X UL 1.00000 0 1 7 X 1.00000 0.00000 Optimal values have been found. Do you wish to replacs the existing decision variables with the optimized values or
8 x UL 1.00000 0 1 g b 100000 0.00000 il rvertio heongnal inputs?
9 X uL 1.00000 0 1 9 X 1.00000 0.00000
10 X UL 1.00000 0 1 10 X 100000 0.00000 Cancel
" X Ut 1.00000 0 1 " X 1.00000 1.00000
12 X uL 1.00000 0 1 12 X 1.00000 1.00000 %
Objective Binding Super Infeas Norm of Hessfan  Step Degen
No. Function Constrs Basics Constr  Red. Grad Cond.No. Size Step
1 320543710 0 12 2 057590 1 0
2 355285 0 11 1 028146 1 1
3 238211 0 10 1 0.34697 1 0.081

Stochastic Optimization

Figure 4.8 — Efficient Frontier Results

This example illustrates the application of stochastic optimization using a sample model with four

asset classes each with different risk and return characteristics. The idea here is to find the best

portfolio allocation such that the portfolio’s bang for the buck, or returns to risk ratio, is

maximized. That is, the goal is to allocate 100% of an individual’s investment among several

different asset classes (e.g., different types of mutual funds or investment styles: growth, value,

aggressive growth, income, global, index, contrarian, momentum, etc.). This model is different

from others in that there exists several simulation assumptions (risk and return values for each

asset in columns C and D), as seen in Figure 4.9.

A simulation is run, then optimization is executed, and the entire process is repeated multiple

times to obtain distributions of each decision variable. The entire analysis can be automated using

Stochastic Optimization. To run an optimization, several key specifications on the model have to

be identified first:
Objective:
Decision Variables:

Restrictions on Decision Variables:

Constraints:

Simulation Assumptions:

User Manual (Risk Simulator Software)

Maximize Return to Risk Ratio (C12)
Allocation Weights (E6:E9)

Minimum and Maximum Required (F6:G9)
Portfolio Total Allocation Weights 100%
(E11 is set to 100%)

Return and Risk Values (C6:D9)
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The model shows the various asset classes. Each asset class has its own set of annualized returns
and annualized volatilities. These return and risk measures are annualized values such that they
can be consistently compared across different asset classes. Returns are computed using the
geometric average of the relative returns, while the risks are computed using the logarithmic
relative stock returns approach.

In Figure 4.9, column E (Allocation Weights) holds the decision variables, which are the
variables that need to be tweaked and tested such that the total weight is constrained at 100% (cell
E11). Typically, to start the optimization, we set these cells to a uniform value. In this case, cells
E6 to E9 are set at 25% each. In addition, each decision variable may have specific restrictions in
its allowed range. In this example, the lower and upper allocations allowed are 10% and 40%, as

seen in columns F and G. This setting means that each asset class may have its own allocation

boundaries.
A B c B E F G H
1
2
3 ASSET ALLOCATION OPTIMIZATION MODEL
4
Asset Class Annualized Volatility Allocation Rn.aq.mred Req}ured Return to
Description Returns Risk Weights Minimum  Maximum Risk Ratio
5 Allocation Allocation
G Asset 1 10.60% 12.41% 25.00% 10.00% 40.00% 0.8544
7 Agget 2 1.21% 16.16% 25.00% 10.00% 40.00% 0.B937
a Asset 3 1061% 165.93% 25.00% 10.00% 40.00% 0.6ERD
9 Asset 4 10.562% 12.40% 25.00% 10.00% 40.00% 0.84a0
10
11 Portfolio Total 10.7356% 7.17% 100.00%

12| Return to Risk Ratio
Figure 4.9 — Asset Allocation Model Ready for Stochastic Optimization

Next, column H shows the return to risk ratio, which is simply the return percentage divided by
the risk percentage for each asset, where the higher this value, the higher the bang for the buck.
The remaining parts of the model show the individual asset class rankings by returns, risk, return
to risk ratio, and allocation. In other words, these rankings show at a glance which asset class has
the lowest risk, or the highest return, and so forth.

Running an Optimization
To run this model, simply click on Risk Simulator | Optimization | Run Optimization.
Alternatively, and for practice, you can set up the model using the following steps illustrated in
Figure 4.10:
Start a new profile (Risk Simulator | New Profile).
1. For stochastic optimization, set distributional assumptions on the risk and returns for
each asset class. That is, select cell C6, set an assumption (Risk Simulator | Set
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Input Assumption), and designate your own assumption as required. Repeat for cells
C7 to D9.

2. Select cell E6, and define the decision variable (Risk Simulator | Optimization | Set
Decision or click on the Set Decision D icon) and make it a Continuous Variable.
Then link the decision variable’s name and minimum/maximum required to the
relevant cells (B6, F6, G6).

3. Then use Risk Simulator’s copy on cell E6, select cells E7 to E9, and use Risk
Simulator’s paste (Risk Simulator | Copy Parameter and Risk Simulator | Paste
Parameter or use the copy and paste icons). Remember not to use Excel’s regular
copy and paste functions.

4. Next, set up the optimization’s constraints by selecting Risk Simulator |
Optimization | Constraints, selecting ADD, and selecting the cell E11 and making it
equal /00% (total allocation, and do not forget the % sign).

5. Select cell C12, the objective to be maximized, and make it the objective: Risk
Simulator | Optimization | Set Objective or click on the O icon.

6. Run the optimization by going to Risk Simulator | Optimization | Run
Optimization. Review the different tabs to make sure that all the required inputs in
steps 2 and 3 are correct. Select Stochastic Optimization and let it run for 500 trials
repeated 20 times. Click OK when the simulation completes and a detailed stochastic
optimization report will be generated along with forecast charts of the decision

variables.
Decision Variable Properties &J
Decision Name ]P-sset 1 _@]
Decision Type

@ Continuous (eg., 1.15, 2.35 10.55)

Lower Bound ]ﬂ‘.'l @1 Upper Bound ]ﬂ'.'i @1

“i Integer (eg.1.2.3)

Lower Bound J @1 Upper Bound J @1

“ Binary (Deor 1)

| ok || cancel |
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-

Constraints

Current Constraints:
SES11 == 100%

-

Cptimization Summary

Cptimization is used to allocate resources where the
results provide the max returns or the min costrisks.
|Jzes include managing inventones, iinancial
portfolio allocation, product mix, project selection,
eic.

|Gt:giedive Method |Constminis IStatistics |Decisinr1 Varables

71 Static O plimization
Fun on static model without simulations. Usually run to determine the
intial optimal partfolio before more advanced optimizations are applied.

' Dynamic Opiimization
A simulation is first run, the results of the simulation are applied in the
model, and then an optimization is applied to the simulated values.

MNumber of Simulation Trials I 5933:

@ Stochastic Opimization

Similar to dynamic optimization but the process is repeated several
times. The final decision variables will each have its own forecast
chart indicating its optimal range.

Mumber of Simulation Trials 500
Mumber of Optimization Runs 2%

Figure 4.10 — Setting Up the Stochastic Optimization Problem
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Viewing and Interpreting Forecast Results

Stochastic optimization is performed when a simulation is run first and then the optimization is

run. Then the whole analysis is repeated multiple times. As shown in Figure 4.11 for the example

optimization, the result is a distribution of each decision variable rather than a single-point

estimate. This means that instead of saying you should invest 30.69% in Asset 1, the results show

that the optimal decision is to invest between 30.35% and 31.04% as long as the total portfolio

sums to 100%. This way, the results provide management or decision makers a range of

flexibility in the optimal decisions while accounting for the risks and uncertainties in the inputs.

Notes

Super Speed Simulation with Optimization. You can also run stochastic optimization
with super speed simulation. To do this, first reset the optimization by resetting all four
decision variables back to 25%. Next, Run Optimization, click on the Advanced button
(Figure 4.10), and select the checkbox for Run Super Speed Simulation. Then, in the run
optimization user interface, select Stochastic Optimization on the Method tab and set it to
run 500 trials and 20 optimization runs, and click OK. This approach will integrate the
super speed simulation with optimization. Notice how much faster the stochastic
optimization runs. You can now quickly rerun the optimization with a higher number of
simulation trials.

Simulation Statistics for Stochastic and Dynamic Optimization. Notice that if there
are input simulation assumptions in the optimization model (i.e., these input assumptions
are required in order to run the dynamic or stochastic optimization routines), the Statistics
tab is now populated in the Run Optimization user interface. You can select from the
drop-down list the statistics you want, such as average, standard deviation, coefficient of
variation, conditional mean, conditional variance, a specific percentile, and so forth. This
means that if you run a stochastic optimization, a simulation of thousands of trials will
first run, then the selected statistic will be computed and this value will be temporarily
placed in the simulation assumption cell, then an optimization will be run based on this
statistic, and then the entire process is repeated multiple times. This method is important
and useful for banking applications in computing conditional Value at Risk, or
conditional VaR.
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Asset 1 b= | O )
Histogram |5tahshcs Preferences IDﬂﬁUﬂS |Cmtmls | Global View
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-1.0
10 F092
-0.83
E 87 L0.7E
F053
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oy 0.45
ro3g
27 r0.2=
-0.1
| &5005 0.3055 0.3105 03155 |
\, F
Type [TwoTal _v| 030850 || 03104 | Certainty % | 50.00-3]

~

Asset 1 E@g
Histogram | Statistics | Preferences IDMms IContmIs | Global View
Statistics | Resutt |
iNumber of Trials 100 :
Mean 0.3069
Median 0.3068
Standard Deviation 0.0023
Warance 0.0000
Coefficient of Variation 0.0074
Madmum 03134
Minimum 0.3001
Fange 0.0133
Skewness 0.1455
Kurtosis 0.4008
25% Percentile 0.3053
75% Percertile 0.3083
Percentage Emor Precision at $5% Corfidence 0.1452%

Figure 4.11 — Simulated Results from the Stochastic Optimization Approach
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5. RISK SIMULATOR ANALYTICAL TOOLS

This chapter covers Risk Simulator’s analytical tools, providing detailed discussions of the
applicability of each tool and through example applications, complete with step-by-step
illustrations. These tools are very valuable to analysts working in the realm of risk analysis.

Tornado and Sensitivity Tools in Simulation

Theory

Tornado analysis is a powerful simulation tool that captures the static impacts of each variable on
the outcome of the model. That is, the tool automatically perturbs each variable in the model a
preset amount, captures the fluctuation on the model’s forecast or final result, and lists the
resulting perturbations ranked from the most significant to the least. Figures 5.1 through 5.6
illustrate the application of a tornado analysis. For instance, Figure 5.1 is a sample discounted
cash flow model where the input assumptions in the model are shown. The question is what are
the critical success drivers that affect the model’s output the most? That is, what really drives the
net present value of $96.63 or which input variable impacts this value the most?

The tornado chart tool can be accessed through Risk Simulator | Tools | Tornado Analysis. To
follow along the first example, open the Tornado and Sensitivity Charts (Linear) file in the
examples folder. Figure 5.2 shows this sample model where cell G6 containing the net present
value is chosen as the target result to be analyzed. The target cell’s precedents in the model are
used in creating the tornado chart. Precedents are all the input and intermediate variables that
affect the outcome of the model. For instance, if the model consists of 4 = B + C, and where C =
D + E, then B, D, and E are the precedents for A (C is not a precedent as it is only an intermediate
calculated value). Figure 5.2 also shows the testing range of each precedent variable used to
estimate the target result. If the precedent variables are simple inputs, then the testing range will
be a simple perturbation based on the range chosen (e.g., the default is £10%). Each precedent
variable can be perturbed at different percentages if required. A wider range is important as it is
better able to test extreme values rather than smaller perturbations around the expected values. In
certain circumstances, extreme values may have a larger, smaller, or unbalanced impact (e.g.,
nonlinearities may occur where increasing or decreasing economies of scale and scope creep in
for larger or smaller values of a variable) and only a wider range will capture this nonlinear

impact.
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Discounted Cash Flow Model

Base Year

Market Risk-Adusted Diacount Rate
Frivate-Fisk Discount Rate
Annualized Sales Growth Rate

FPrice Erosion Rate

Effective Tax Rate

Product A Avg PricesUnit
Product B Avg PriceiUnit
Product & Avg PricedUnit
Product A Sale Quantity {000s)
Product B Sale Quantity (000s)
Product & Sale Quantity ('000s)
Total Revenues
Direct Cost of Goods Sold
Gross Profit
Operating Expenses
Sales, General and Admin. Caosts
Operating Income (EBITDA)
Depreciation
Amartization
EBIT
Interest Pavments
EBT
Taxes
Net Income
Mancash: Depreciation Amortization
Moncash: Change in Met Warking Capital
Moncash: Capital Expenditures
Free Cash Flow

Investment Qutlay

Financial Analysis

Present Value of Free Cash Flow
Present Value of Investment Outlay
Net Cash Flows

Figure 5.1 — Sample Model
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2005 Sum PY Met Benefits $1.896.63
T5.00% Sum PY investments £1.800.00
5.00%; Net Present Value £96.63
2.00% Internal Rate of Retum 18.80%
5.00% Return on Investment 8 .37%
40.00%
2006 2006 2007 2008 2009
§10.00 $9.480 $9.03 Fa.a7 $8.14
F12.25 $11.64 511.06 $10.50 $9.98
F15.15 $14.349 51367 512949 $12.34
50.00 51.00 52.02 53.06 5412
35.00 3870 36.41 3714 37.89
20.00 20.40 20.81 2122 21 65
§1,231.75 | $1.193.57 | $1.156.57 | $1.120.71 $1,085.97
F184.76 $179.03 F173.48 F168.11 F162.80
§1,046.99 | $1.074.53 $983.08 $952.60 §923.07
§1a57.50 $160.65 $163.86 F167.14 $170.48
F15.75 F16.07 $16.39 F16.71 §17.05
S873.74 s$837.82 $802.83 $768.75 $735.54
F10.00 $10.00 F10.00 F10.00 F10.00
$3.00 F3.00 $3.00 $£3.00 3.00
$860.74 824,82 §789.83 $75575 §722.54
F2.00 $2.00 52.00 F2.00 52.00
$856.74 se22.82 $787.83 $753.75 §720.54
$343.50 $32913 $315.13 $301.50 F288.22
$515.24 5493.69 847270 5452.25 §432.33
$13.00 $13.00 $13.00 $13.00 $13.00
F0.00 F0.00 0.00 £0.00 F0.00
F0.00 F0.00 F0.00 E0.00 F0.00
$528.24 $506.69 S485.70 5465.25 544533

| s1.800.00 | |
$528.24 $440.60 $367.26 $305.91 $254.62
$1,800.00 s0.00 50.00 50.00 50.00
(51,271.76) $a06. 59 f485.70 F465.25 f445 33
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Procedure
¥ Select the single output cell (i.e., a cell with a function or equation) in an Excel model
(e.g., cell G6 is selected in our example).
& Select Risk Simulator | Tools | Tornado Analysis.
Review the precedents and rename them as needed (renaming the precedents to shorter

names allows a more visually pleasing tornado and spider chart), and click OK.

A B 5 D E I~ G H ) K L

2 Discounted Cash Flow Model
3
4 Base Year 2005 Sum PY Net Benefits $1,806.63
£ Market Risk-Adusted Diacount Rate 15.00% Sum PV lnvestments $1.800.00
5} Frivate-Risk Discount Rate 5.00% Net Present Value $96.63 1
% Annualized Sales Growth Rate 2.00% Internal Rate of Retumn 18.80%
g Frice Erosion Rate 5.00% Retun on fnvestment 5.537%
5 Effective Tax Rate 40.00%
10 @ Tornado Analysis
11 2005 2006
12 Prod & Avg Price $10.00 50.50 Tomado analysiz creates static perturbations (i.e., each precedent

: iz perturbed one at a time] to identify the impact to the esults. [t is
13 Prod B Aug Price $12.25 $11.64 uzed to identify critical success factors of a model before running
14 Prod C Avg Price $15.15 $14.39 simulations.
5 Prod & Quantity 50.00 51.00
16 Prod B Quantity 35.00 3570 Review the precedents below and make any necessary changes:
17 Frod C Quantity 2000 2040 Selection | Name | “Worksheet | Cell | Base Value | % Upside | % Downside | Test Points | ~
18 Total Revenues §7.231.75 | $1.763.57 | §1.4 ¥  Maket DCFMods C5 015 no0x wox 10
12 CostorGoods Sold #8476 $179.03) 6 ¥ lnestm DCFMods C35 1800 1000%  1000% 10
20 Gross Profit §1,046.99 | $1,07453 | $4 | [ il DCFMode £33 0 1000z 1000x 10
21| Operating Expenses $167.50 | §16085| 3§ [~ Changei DCFMode C32 0 1000z 1000x 10
22 508ACosts $15.75 81607 (|| ¥  Depeci DCFMade C24 10 1000 0o 10
23 Operal.lng Income {EBITDA) $873.74 $837.82 4 ¥  amotiza DOF Mode 025 3 1000E 1000 10
24 Depreciation §10.00 $10.00 ¥ Interest DCFMods C27 2 1n00x 100 10
25 Amatization 53.00 §3.00 ¥  Pod4 DCFMode CIS 50 1000%  1000% 10
% EBIT $860.74 | 382482 | 37| | [V  Puds  DCFMode C16 35 mox oz 10
27| InterestPayments $2.00 §2.00 ¥  ProdC  DCFMade CI7 20 1noox 10ox 10
2 EBT sgsa74 | se2282 | &7 ¥  ProdC  DCFMade C14 1515 1ho0x wWwox 10 Ad|
e Taxes §343.50 $328.13 5 ek
Ell Net Income $375.24 | $493.60 | 34| _
31 Depreciation $12.00 $13.00 @ Show Al \Variables 7] Use Cell Address

gk
32 Chahge in Met \_u'\u’orkmg Capital s0.0a $0.00 ) Show Top l—'I:l Yariables [ Ignore all possible integer values [:]
33 Capital Expenditures $0.00 $0.00 @
34 Free Cash Flow $528.24 $506.69 54 gnore zero o emply values ["] Highlight possible integer values S0ce
gg | g i | rPreTEn | | " | Use Global Setting
nvestmen ,800. T

37 @ Analyze This Workshest Only 1 Analyze All'wWorksheets
sl
35 Financiai Analysis \
40 Present Walue of Free Cash Flow $528.24  $440.60 $367.26  $305.91 $254.62
41 Present Yalue of Investment Qutlay $1,800.00 $0.00 Fo.00 F0.00 $0.00
42 Het Cash Flows ($1271.76)  $506.69 $485.70 $4B5.25 $445.33

Figure 5.2 — Running Tornado Analysis
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Results Interpretation

Figure 5.3 shows the resulting tornado analysis report, which indicates that capital investment has

the largest impact on net present value, followed by tax rate, average sale price, quantity

demanded of the product lines, and so forth. The report contains four distinct elements:

6]
6]

A statistical summary listing the procedure performed.

A sensitivity table (Figure 5.4) showing the starting NPV base value of 96.63 and how
each input is changed (e.g., Investment is changed from $1,800 to $1,980 on the upside
with a +10% swing, and from $1,800 to $1,620 on the downside with a —10% swing. The
resulting upside and downside values on NPV is —$83.37 and $276.63, with a total
change of $360, making investment the variable with the highest impact on NPV.) The
precedent variables are ranked from the highest impact to the lowest impact.

A spider chart (Figure 5.5) illustrating the effects graphically. The y-axis is the NPV
target value while the x-axis depicts the percentage change on each of the precedent
values (the central point is the base case value at 96.63 at 0% change from the base value
of each precedent). A positively sloped line indicates a positive relationship or effect,
while negatively sloped lines indicate a negative relationship (e.g., Investment is
negatively sloped, which means that the higher the investment level, the lower the NPV).
The absolute value of the slope indicates the magnitude of the effect (a steep line
indicates a higher impact on the NPV y-axis given a change in the precedent x-axis).

A tornado chart illustrating the effects in another graphical manner, where the highest
impacting precedent is listed first. The x-axis is the NPV value, with the center of the
chart being the base case condition. Green bars in the chart indicate a positive effect,
while red bars indicate a negative effect. Therefore, for investments, the red bar on the
right side indicates a negative effect of investment on higher NPV—in other words,
capital investment and NPV are negatively correlated. The opposite is true for price and
quantity of products A to C (their green bars are on the right side of the chart).
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Tornado and Spider Charts

Statistical Summary

One of the powerful simulation tools is the tornado chart#flit captures the static impacts of each variable on the outcome of the model. That is, the tool automatically perturbs each
precedent variable in the model a user-specified preset amount, captures the fluctuation on the model##forecast or final result, and lists the resulting perturbations ranked from the most

to the least. Pi are all the input and intermediate variables that affect the outcome of the model. For instance, if the model consists of A= B + C, where C =D + E,
then B, D, and E are the precedents for A (C is not a pi as it is only an i i value). The range and number of values perturbed is user-specified and can be set
to test extreme values rather than smaller perturbations around the expected values. In certain circumstances, extreme values may have a larger, smaller, or unbalanced impact (e.g.,
nonlinearities may occur where i ing or ing e ies of scale and scope creep occurs for larger or smaller values of a variable) and only a wider range will capture this
nonlinear impact.

A tormado chart lists all the inputs that drive the model, starting from the input variable that has the most effect on the results. The chart is obtained by perturbing each precedent input at
some consistent range (e.g., ? 0% from the base case) one at a time, and comparing their results to the base case. A spider chart looks like a spider with a central body and its many
legs protruding. The positively sloped lines indicate a positive relationship, while a negatively sloped line indic a negative relationship. Further, spider charts can be used to visualize
linear and nonlinear relationships. The tornado and spider charts help identify the critical success factors of an output cell in order to identify the inputs to simulate. The identified critical
variables that are uncertain are the ones that should be simulated. Do not waste time simulating variables that are neither uncertain nor have little impact on the results.

Result
Base Value: 96.6-261638553219 Input Changes
. [ Investment
Output Output  Effective Input Input Base Case Spider Chart i [r)we r:: -
Precedent Cell Downside Upside Range Downside Upside Value |s:.ou o
Investment $276.63  ($8337)  360.00] $1,620.00 $1,980.00  $1,800.00 A
Tax Rate $219.73  ($26.47) 246.20 36.00% 44.00% 40.00% - B Price
A Price $3.43 $189.83 186.40 $9.00 $11.00 $10.00 C Price
B Price $16.71  $176.55 159.84]  $11.03 $13.48 $12.25 = & Guardity
|A Quantity $23.18 $170.07 146.90 45.00 55.00 50.00 #-B Quantity
B Quantity $30.53  $162.72 132.19 31.50 38.50 35.00 C Quantity
C Price $40.15  $153.11 112.96]  $13.64 $16.67 $15.15 e ion
C Quantity $48.05 $145.20 97.16 18.00 22.00 20.00 o Amsrization
Discount Rate $138.24 $57.03 81.21 13.50% 16.50% 15.00%
Price Erosion §116.80  $76.64 40.16]  450%  550% 5.00% rheros:
Sales Growth $90.59  $102.69 12.10 1.80% 2.20% 2.00% & Ret-Coptal
Depreciation $95.08 $98.17 3.08 $9.00 $11.00 $10.00 ~Gapex
Interest $97.09 $96.16 0.93 $1.80 $2.20 $2.00 = SalesGrowth
lAmortization $96.16 $97.09 0.93 $2.70 $3.30 $3.00 ==Price-Erosion
Capex $96.63  $96.63 0.00 $0.00 $0.00 $0.00 TaxRae *
Net Caeita/ $96.63 $96.63 0.00 $0.00 $0.00 $0.00
Tornado Chart
Investment 1350 M EG——————————————————— 1520
Tax Rete (.44 R
& Price o E—— )
B Price 11,02 5.475
A Quartity s R -
B Quartity 315 (T s s
CPrice 13 63 ¢ 565
C Quantity 18 — 22
Discount Rate 0165 o 1 35
Price Erosion U.USS— 0045
Sales Growth oo1sMooz
Depreciation g | 1
Interest 22 | 18
Amortization 27 | 33
Capex 0
Net Capital 0

Figure 5.3 — Tornado Analysis Report

Notes

Remember that tornado analysis is a static sensitivity analysis applied on each input variable in
the model—that is, each variable is perturbed individually and the resulting effects are tabulated.
This approach makes tornado analysis a key component to execute before running a simulation.
One of the very first steps in risk analysis is capturing and identifying the most important impact
drivers in the model. The next step is to identify which of these important impact drivers are
uncertain. These uncertain impact drivers are the critical success drivers of a project, where the
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results of the model depend on these critical success drivers. These variables are the ones that
should be simulated. Do not waste time simulating variables that are neither uncertain nor have
little impact on the results. Tornado charts assist in identifying these critical success drivers
quickly and easily. Following this example, it might be that price and quantity should be
simulated, assuming that the required investment and effective tax rate are both known in

advance and unchanging.

Base lfalle; 96.6261638533219 Input Changes
ot Cutout  Effechive It Tt Basgo Casg
FPrecedant Call Downsice  Upsice Fange | Downsice  Lipsice I aive

Invastrment FEFEEZ  (FE3.37) I60.00|87.620.00 F1,980.00  $1,800.00
Tax Rate F2A73 (F26.47) 246,20 26.00% . 00% 40.00%
A Price F343  F{50.83 186 40 3900 Fi1.00 Fi0.00
B Prive FIEFT FIFEA5 159 84 1103 Fi348 Fizzo
A CQuantihy $2348 317007 146,90 £3.00 53.00 30.00
B Quahtiby F3033 316272 T32.19 31.80 3800 35.00
Z Price F4015  FI5341 11296 Fi264 Fi667 Fi5.45
C Quantihy 4500 Fid020 a7 16 500 22.00 2000
Discount Rate 13824 F57.03 81.29 1.2.50% 16.50% 15.00%
Price Erasion Fi16.80 F76.64 4016 4 50% 9.50% 300%
Sales Growth F90.59 310289 1240 1.80% 2.20% 2.00%
Depracistion F95.08 308197 208 3900 31400 31000
Intarast Fo7.09 o516 0oz I1.80 F2.20 F2.00
Armortization FO6.16 F97.09 092 1270 $2.30 F2.00
Capax FO66E3 o563 Qa0 000 F0.00 F0.00
Net Capital F96.63 FO6.63 Q.00 F0.00 $0.00 F0.00

Figure 5.4 — Sensitivity Table

- Investment
- Discount Rate
8- A Price
-2- B Price

Z Price
|- A& Quartity

=] Q'uard'rt':.f

C Cuantity
[ Depreciation
- Amortization

Spider Chart

Irterest
-B- Met Capital
0.0 - Gapesx
8- SalesGrowth
-1003 } } f == Price Erosion
-10.00 % -5.00 % 0.00 % 500 % 10.00 %%
Tax Rate

Figure 5.5 — Spider Chart
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Tornado Chart

Inwestment 1930 _ 1620
Tax Rate 0.4 [T
& Price 9 _ 11
B Price 11,02, .75
2 Quartty 5 [
B Guartty 315 [ : 5
C Price 13535
C Quantity 18 22
Discourt Rate 0.155 N 1 55
Price Erosion EI.IZISS- 0.045

Sales Growth 0018 ' no22
Depreciation 9 I 11
Interest 2.2 | 1.8
Amortization 27 | 3.3
Cape 1]
Met Capital ]

I T T T I T I T T T 1
150 -100 S50 1 50 100 150 200 250 300 350

J

Figure 5.6 — Tornado Chart

Although the tornado chart is easier to read, the spider chart is important for determining if there
are any nonlinearities in the model. For instance, Figure 5.7 shows another spider chart where
nonlinearities are fairly evident (the lines on the graph are not straight but curved). The model
used is Tornado and Sensitivity Charts (Nonlinear), which uses the Black-Scholes option pricing
model as an example. Such nonlinearities cannot be ascertained from a tornado chart and may be
important information in the model or provide decision makers with important insight into the
model’s dynamics.
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Figure 5.7 — Nonlinear Spider Chart

Additional Notes on Tornado
Figure 5.2 shows the Tornado analysis tool’s user interface. Notice that there are a few new
enhancements starting in Risk Simulator version 4 and beyond. Here are some tips on running

Tornado analysis and details on the new enhancements:

e Tornado analysis should never be run just once. It is meant as a model diagnostic tool,
which means that it should ideally be run several times on the same model. For instance,
in a large model, Tornado can be run the first time using all of the default settings and all
precedents should be shown (select Show All Variables). The result may be a large report
and long (and potentially unsightly) Tornado charts. Nonetheless, this analysis provides a
great starting point to determine how many of the precedents are considered critical
success factors. For example, the Tornado chart may show that the first 5 variables have
high impact on the output, while the remaining 200 variables have little to no impact, in
which case, a second Tornado analysis is run showing fewer variables. For example,
select the Show Top 10 Variables if the first 5 are critical, thereby creating a nice report
and Tornado chart that shows a contrast between the key factors and less critical factors.
(You should never show a Tornado chart with only the key variables. You need to show
some less critical variables as a contrast to their effects on the output). Finally, the default
testing points can be increased from the +10% of the parameter to some larger value to
test for nonlinearities (the Spider chart will show nonlinear lines and Tornado charts will
be skewed to one side if the precedent effects are nonlinear).

o Selecting Use Cell Address is always a good idea if your model is large, as it allows you
to identify the location (worksheet name and cell address) of a precedent cell. If this
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option is not selected, the software will apply its own fuzzy logic in an attempt to
determine the name of each precedent variable (in a large model, the names might
sometimes end up being confusing, with repeated variables or the names that are too
long, possibly making the Tornado chart unsightly).

o The Analyze This Worksheet and Analyze All Worksheets options allow you to control
whether the precedents should only be part of the current worksheet or include all
worksheets in the same workbook. This option comes in handy when you are only
attempting to analyze an output based on values in the current sheet versus performing a
global search of all linked precedents across multiple worksheets in the same workbook.

e Selecting Use Global Setting is useful when you have a large model and wish to test all
the precedents at, say, £50% instead of the default 10%. Instead of having to change each
precedent’s test values one at a time, you can select this option, change one setting and
click somewhere else in the user interface to change the entire list of the precedents.
Deselecting this option will allow you the control to change test points one precedent at a
time.

o Ignore Zero or Empty Values is an option turned on by default where precedent cells with
zero or empty values will not be run in the Tornado analysis. This is the typical setting.

e Highlight Possible Integer Values is an option that quickly identifies all possible
precedent cells that currently have integer inputs. This function is sometimes important if
your model uses switches (e.g., functions such as IF a cell is 1. then something happens,
and IF a cell has a 0 value, something else happens, or integers such as 1, 2, 3, etc., which
you do not wish to test). For instance, £10% of a flag switch value of 1 will return a test
value of 0.9 and 1.1, both of which are irrelevant and incorrect input values in the model,
and Excel may interpret the function as an error. This option, when selected, will quickly
highlight potential problem areas for Tornado analysis, and then you can determine
which precedents to turn on or off manually, or you can use the Ignore Possible Integer
Values function to turn all of them off simultaneously.

Sensitivity Analysis

Theory

While tornado analysis (tornado charts and spider charts) applies static perturbations before a
simulation run, sensitivity analysis applies dynamic perturbations created after the simulation run.
Tornado and spider charts are the results of static perturbations, meaning that each precedent or
assumption variable is perturbed a preset amount one at a time, and the fluctuations in the results
are tabulated. In contrast, sensitivity charts are the results of dynamic perturbations in the sense
that multiple assumptions are perturbed simultaneously and their interactions in the model and
correlations among variables are captured in the fluctuations of the results. Tornado charts,
therefore, identify which variables drive the results the most and, hence, are suitable for
simulation, whereas sensitivity charts identify the impact to the results when multiple interacting
variables are simulated together in the model. This effect is clearly illustrated in Figure 5.8.
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Notice that the ranking of critical success drivers similar to the tornado chart in the previous
examples. However, if correlations are added between the assumptions, a very different picture
results, as shown in Figure 5.9. Notice, for instance, that price erosion had little impact on NPV,
but when some of the input assumptions are correlated, the interaction that exists between these
correlated variables makes price erosion have more impact.

Monlinear Rank Correlation (Net Present Value)
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Figure 5.8 — Sensitivity Chart Without Correlations

Monlinear Rank Correlation (Net Present Value)
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Figure 5.9 — Sensitivity Chart With Correlations

Procedure
Open or create a model, define assumptions and forecasts, and run the simulation (the
example here uses the Tornado and Sensitivity Charts (Linear) file).
Select Risk Simulator | Tools | Sensitivity Analysis.
Select the forecast of choice to analyze and click OK (Figure 5.10)
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Discounted Cash Flow Model

Base Year 2005 Sum PV Net Benefits §1.896.62
Market Risk-Adjusted Discount Rafe 15.00% Sum PV Investments §1.800.00
Private-Risk Discount Rate 5.00% MNet Present Value $96.63
Annualized Sales Growth Rate 2.00% Internal Rate of Retum 18.60%
Price Erosion Rate 5.00% Retum on Investment 537%
Effective Tax Rate 40.00%
2005 2006 2007 2008 2009

Prod A Avg Price $10.00 $9.50 | $9.03 | 5857 | 5815 |
Prod B Avg Price $12.25 s11ha]  s1106]  sine0 ] 5002 |
Prod C Avg Price $15.15 8 [ Sensitivity Analysis -
Prod A Quantity 50.00
Prod B Quantity 2500 Sensitivity analysis creates dynamic perturbations (i.e..
bl Aoy o pebinison

Total ¢ critical success factors of the forecast.
Cost of C Met Present Value - Rizk Simulator Forecast

Gross —_— Select the forecast{s) on which to run dynamic sensitivity analysis:
Operatin: EIStOgIEIITI |Stati5tic5 | Preferences |Option5 If“""“"“"l5 | Forecast Name [ Worksheet [ cal [
SCRACA (R Net Present Value (1000 Trials)] | | I iimmtd C A o

Opera s

: 90 —

Deprecia
Amoaortizal

EBIT
Interest F

EBT
Taxes

Net In
Dieprecia D:
Change 409 B 591

- -
Cal:prl'ti E Type |Two-Tal - Infinity Infinity | Certal
“ M| [ selectall |[ Clearall | ChartLabel [Cel Address -
Investmcws 8 1 UvU.UY
[ ok ][ cancel |

Financial Analysis e ———
Present Value of Free Cash Flow §528.24  $440.60  $367.26  $305.91 $254.62
Present Value of Investment Outlay $1,800.00 50.00 §0.00 $0.00 50.00
Net Cash Flows ($1,271.76)  $506.69 5485.70 5465.25 544533

Figure 5.10 — Running Sensitivity Analysis

Results Interpretation

The results of the sensitivity analysis comprise a report and two key charts. The first is a
nonlinear rank correlation chart (Figure 5.11) that ranks from highest to lowest the assumption-
forecast correlation pairs. These correlations are nonlinear and nonparametric, making them free
of any distributional requirements (i.e., an assumption with a Weibull distribution can be
compared to another with a beta distribution). The results from this chart are fairly similar to that
of the tornado analysis seen previously (of course, without the capital investment value, which we
decided was a known value and, hence, was not simulated), with one special exception: Tax rate
was relegated to a much lower position in the sensitivity analysis chart (Figure 5.11) as compared
to the tornado chart (Figure 5.6). This is because by itself, tax rate will have a significant impact,
but once the other variables are interacting in the model, it appears that tax rate has less of a
dominant effect (because tax rate has a smaller distribution as historical tax rates tend not to
fluctuate too much, and also because tax rate is a straight percentage value of the income before
taxes, where other precedent variables have a larger effect on). This example proves that
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performing sensitivity analysis after a simulation run is important to ascertain if there are any
interactions in the model and if the effects of certain variables still hold. The second chart (Figure
5.12) illustrates the percent variation explained. That is, of the fluctuations in the forecast, how
much of the variation can be explained by each of the assumptions after accounting for all the
interactions among variables? Notice that the sum of all variations explained is usually close to
100% (there are sometimes other elements that impact the model but that cannot be captured here
directly), and if correlations exist, the sum may sometimes exceed 100% (due to the interaction
effects that are cumulative).

Nonlinear Rank Correlation (Met Present Value)
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Figure 5.11 — Rank Correlation Chart
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Figure 5.12 — Contribution to Variance Chart
Notes
Tornado analysis is performed before a simulation run, while sensitivity analysis is performed
after a simulation run. Spider charts in tornado analysis can consider nonlinearities, while rank
correlation charts in sensitivity analysis can account for nonlinear and distributional-free
conditions.
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Distributional Fitting: Single Variable and Multiple Variables

Theory

Another powerful simulation tool is distributional fitting, that is, determining which distribution
to use for a particular input variable in a model and what the relevant distributional parameters
are. If no historical data exist, then the analyst must make assumptions about the variables in
question. One approach is to use the Delphi method where a group of experts are tasked with
estimating the behavior of each variable. For instance, a group of mechanical engineers can be
tasked with evaluating the extreme possibilities of a spring coil’s diameter through rigorous
experimentation or guesstimates. These values can be used as the variable’s input parameters
(e.g., uniform distribution with extreme values between 0.5 and 1.2). When testing is not possible
(e.g., market share and revenue growth rate), management can still make estimates of potential
outcomes and provide the best-case, most-likely case, and worst-case scenarios.

However, if reliable historical data are available, distributional fitting can be accomplished.
Assuming that historical patterns hold and that history tends to repeat itself, then historical data
can be used to find the best-fitting distribution with their relevant parameters to better define the
variables to be simulated. Figures 5.13, 5.14, and 5.15 illustrate a distributional-fitting example.
This illustration uses the Data Fitting file in the examples folder.

Procedure

& Open a spreadsheet with existing data for fitting.

¥ Select the data you wish to fit (data should be in a single column with multiple rows).

¥ Select Risk Simulator | Tools | Distributional Fitting (Single-Variable).

¥ Select the specific distributions you wish to fit to or keep the default where all
distributions are selected and click OK (Figure 5.13).
Review the results of the fit, choose the relevant distribution you want, and click OK
(Figure 5.14).
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Figure 5.13 — Single Variable Distributional Fitting

Results Interpretation

The null hypothesis being tested is such that the fitted distribution is the same distribution as the
population from which the sample data to be fitted comes. Thus, if the computed p-value is lower
than a critical alpha level (typically 0.10 or 0.05), then the distribution is the wrong distribution.
Conversely, the higher the p-value, the better the distribution fits the data. Roughly, you can think
of p-value as a percentage explained; that is, if the p-value is 0.9727 (Figure 5.14), then setting a
normal distribution with a mean of 99.28 and a standard deviation of 10.17 explains about
97.27% of the variation in the data, indicating an especially good fit. Both the results (Figure
5.14) and the report (Figure 5.15) show the test statistic, p-value, theoretical statistics (based on
the selected distribution), empirical statistics (based on the raw data), the original data (to
maintain a record of the data used), and the assumption complete with the relevant distributional
parameters (i.e., if you selected the option to automatically generate assumption and if a
simulation profile already exists). The results also rank all the selected distributions and how well
they fit the data.
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.
Distribution Fitting Result o [ B e

Distribution | Test Statistics | P-Value | Rarke |
\Noopia 002 1999%6% |1 |
Erang 0.03 5854 % 2
Gamma 0.03 9883% 3
Lognomal 0.03 98.37 % 4
Lognomal 3 0.03 9833% 5
PERT 0.03 57T % &
Logistic 0.03 5719 % 7
Pearson W 0.04 93.12% 2
Laplace 0.05 .07 % 9
Gumbel Minimum 0.05 T30 % 10
Gumbel Maximum 0.05 LY. Vi 8 11
Cauchy 0.07 2658 %L 12
Triangular 0.08 15.90 % 13
Chi-Square 010 31 % 14
Exponential 2 012 067 % 15
Pareto 0.15 0.04 % 16
Uniform 0o 0.00 % 17
T 0.36 0.00 % 18
Exponertial 0.42 000 % 15
F 052 000 % 20
Beta 4 1.00 0.00 % g
Beta 3 1.00 0.00 % 22
Cosine 1.00 0.00 % 23
Double Log 1.00 0.00 % 24
Arcsine 1.00 000 % 25
Farabalic 1.00 0.00 % 26
Weibull 1.00 0.00 % 27
Beta 1.00 0.00 % 28
Power 3 1.00 0.00 % 29
Rayleigh 1.00 000 % 30
Pearson Y 1.00 0.00 % K}
Power 1.00 0.00 % 32
Weibull 3 Cannot Fit Cannot Fit 3
Statistical Summary
"'_r - — e — {" Mormal
z'gaepretlcal vs. Empirical Distribution | | pean = 10067
Standard Deviation = 10.40
2001
Kolmogaorow-Smirnowv Test Statistic
L | Test Statistic: 0.02
| P-Value: 55.96 %
1001
Actual  Theoretical
5071 Mean 100,61 100,67
{ | | | | Stdev 10.31 10.40
0.0 : f f | Skewness 0.01 0.00
\= o A sl 120 1"1‘1,4 Kurtosis -0.13 .00
Automatically Generate Assumption [ 0K i l Cancel

Figure 5.14 — Distributional Fitting Result
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Single Variable Distributional Fitting

Statistical Summary

—
Fltted Assumption 99.14 Theoretical vs. Empirical Distribution
120
Fitted Distribution Normal Dis tribution
My 99.28 1004
Sigrma 1047
Kolmogorow-Smimov Statistic 003
Pl alue for Test Statistic 08727
Actual Theorstical
Mean 9914 9928
Standiard Deviation f0.20 1047
Shiewness -0.42 .00
Excess Kurtosis 0.0 .00
y
Original Fitted Data
93.75 G99.66 &86.95 111.86 99.55 93.55 97.32 57.25 Q068 53.86 98,74 58.76 97.70
99.78 90.08 106.63 103.2¢ B 48 J04.35 12326 {0365 9289 G418 105.85 .04 102.26
105.36 97.64 109.45 10.98 f08.09 95.38 9321 53.56 fo0d7 4047 0372 f20.52 95.09
i15.18 53.64 90.23 92.44 92.37 92,70 f40.81 7267 0423 9647 2445 9492 7726

103,43 96.73 9397 107,97 J24.14 90.93 Joriz 9202 96.43 96,33 58.30 J05.45 4250
104.40 0472 102,43 14359 J24.43 J09.24 J03.54 J04.57 97.83 94.39 46,49 54 66 o147

108.13 10747 95.83 108.67 9242 7964 94,45 FO8.00 {4345 9263 94.51 9205 9649
100.65 83.24 11462 11842 G747 {0266 {0693 5245 {0274 86.52 {0668 fizel 04.56
1071.24 g91.32 102.02 52.57 104,46 5472 105.05 108,40 106.59 109.43 9249 9452 94.00
100.92 &58.13 9647 101.45 79.93 5965 {0297 11495 9258 94.05 f07.90 111.08 90.55
g7.09 105,44 a94.95 10255 774 {0853 90.54 fo00.47 {06.53 9963 79.72 549.32 {46.30

G8.27 104.73 G0.54 74.43 {0224 {0334 96.51 {1455 9204 {06,289 {0295 4273 95.09
108.20 105.60 106.48 102.68 10492 102.00 99.10 10852 1071.37 FE17 9062 96,52 T06.03
109.12 104.23 90,34 895.12 {0203 100.00 118147 99.06 51.69 f04.29 9265 1489 10249
119.27 108.20 88.26 g92.45 {0545 {0379 f00.54 9549 G540 97.25 5765 9758 {44

89.52 89.53 G7.66 G0.96 9744

Figure 5.15 — Distributional Fitting Report

For fitting multiple variables, the process is fairly similar to fitting individual variables. However,
the data should be arranged in columns (i.e., each variable is arranged as a column) and all the
variables are fitted one at a time.

Procedure
& Open a spreadsheet with existing data for fitting.
Select the data you wish to fit (data should be in a multiple columns with multiple rows).
Select Risk Simulator | Tools | Distributional Fitting (Multi-Variable).
Review the data, choose the relevant types of distribution you want and click OK.

Notes

Notice that the statistical ranking methods used in the distributional fitting routines are the chi-
square test and Kolmogorov-Smirnov test. The former is used to test discrete distributions and the
latter, continuous distributions. Briefly, a hypothesis test coupled with an internal optimization
routine is used to find the best-fitting parameters on each distribution tested, and the results are
ranked from the best fit to the worst fit.
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Bootstrap Simulation

Theory

Bootstrap simulation is a simple technique that estimates the reliability or accuracy of forecast

statistics or other sample raw data. Essentially, bootstrap simulation is used in hypothesis testing.

Classical methods used in the past relied on mathematical formulas to describe the accuracy of

sample statistics. These methods assume that the distribution of a sample statistic approaches a

normal distribution, making the calculation of the statistic’s standard error or confidence interval

relatively easy. However, when a statistic’s sampling distribution is not normally distributed or

easily found, these classical methods are difficult to use or are invalid. In contrast, bootstrapping

analyzes sample statistics empirically by repeatedly sampling the data and creating distributions

of the different statistics from each sampling.

Procedure
¥ Run a simulation.

& Select Risk Simulator | Tools | Nonparametric Bootstrap.

& Select only one forecast to bootstrap, select the statistic(s) to bootstrap, enter the number
of bootstrap trials, and click OK (Figure 5.16).

MODEL A MODEL B
Revenue  $ 200.00 Revenue  $ 200.00
i Y
Cost $ 100.00 Cost $ 100.00 [l Nonparametric Bootstrap ﬁ
Income $ 100.00 Income $ 100.00
Monparametric bootstrap simulation is a distribution - f
: i : : : -free technigue used to estimate the reliability or !
To replicate this model, start by creating a Simulation Prof| | accuracy of forecast statistics (i.e. to compute the T i
(Simulation | New Profile), then, set the random seed to bg | forecastintervals of each of the statistics). Bootstrap
revenue cells and provide them a Normal distribution with Select a forecast to run the nonparametric bootstrap:
deviation of 20 (select one of the revenue cell and click on| | | Forecast Name | Worksheet | cell |
select Normal and enter the relevant parameters). Then, d|| Income A Simulation Model D10
each of the cost cells. Finally,define forecast outputs for thfj| | [ Income B Simulation Mode! G10
the simulation.
E] Income A - Risk Simulator Forecast = 8 %
Hiwm]hdm [options | Controis | M"_:
| |
( 120 Income A (1000 Trials) 11 ]]
» A [ 10 |
100 B 5
| = [_ﬁ‘ Incoame B - Risk Simulator Forecast = Stafistics to Bootstrap
Histagram Sem |Frefae’m iﬂdm ]&dmis | [ Mean [T] Coef of Variation [/] Skewness
B &0 = | . : :
L 56 Income B (1000 Trials) [ Median [ Maximum [¥] Kurtosis
e [#] Standard Deviation [—] Minimum [T] 25% Percentile
B e [ Variance ] Range [] 75% Percentile
gk L - i
| __2_3 § &0 Mumber of Bootstrap Trials 100 k& [ oK ] [ Cancel
Type  |Two-THH E a0
L
— 20
%o 661 13661 T8
p.
Type [TwoTal ~| | kénky | oty | Certainty % [100.00%]

Figure 5.16 — Nonparametric Bootstrap Simulation
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Results Interpretation

In essence, nonparametric bootstrap simulation can be thought of as simulation based on a
simulation. Thus, after running a simulation, the resulting statistics are displayed, but the
accuracy of such statistics and their statistical significance are sometimes in question. For
instance, if a simulation run’s skewness statistic is —0.10, is this distribution truly negatively
skewed or is the slight negative value attributable to random chance? What about —0.15, —0.20,
and so forth? That is, how far is far enough such that this distribution is considered to be
negatively skewed? The same question can be applied to all the other statistics. Is one distribution
statistically identical to another distribution with regard to some computed statistics or are they
significantly different? Suppose for instance, the 90% confidence for the skewness statistic is
between —0.0189 and 0.0952, such that the value 0 falls within this confidence, indicating that on
a 90% confidence, the skewness of this forecast is not statistically significantly different from 0,
or that this distribution can be considered as symmetrical and not skewed. Conversely, if the
value 0 falls outside of this confidence, then the opposite is true, and the distribution is skewed
(positively skewed if the forecast statistic is positive, and negatively skewed if the forecast
statistic is negative). Figure 5.17 illustrates some sample bootstrap results.
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Figure 5.17 — Bootstrap Simulation Results
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Notes

The term bootstrap comes from the saying, “to pull oneself up by one’s own bootstraps,” and is
applicable because this method uses the distribution of statistics themselves to analyze the
statistics’ accuracy. Nonparametric simulation is simply randomly picking golf balls from a large
basket with replacement where each golf ball is based on a historical data point. Suppose there
are 365 golf balls in the basket (representing 365 historical data points). Imagine that the value of
each golf ball picked at random is written on a large whiteboard. The results of the 365 balls
picked with replacement are written in the first column of the board with 365 rows of numbers.
Relevant statistics (e.g., mean, median, standard deviation, etc.) are calculated on these 365 rows.
The process is then repeated, say, five thousand times. The whiteboard will now be filled with
365 rows and 5,000 columns. Hence, 5,000 sets of statistics (i.e., there will be 5,000 means, 5,000
medians, 5,000 standard deviations, etc.) are tabulated and their distributions shown. The relevant
statistics of the statistics are then tabulated, where from these results one can ascertain how
confident the simulated statistics are. In other words, in a simple 10,000-trial simulation, say the
resulting forecast average is found to be $5.00. How certain is the analyst of the results?
Bootstrapping allows the user to ascertain the confidence interval of the calculated mean statistic,
indicating the distribution of the statistics. Finally, bootstrap results are important because
according to the Law of Large Numbers and the Central Limit Theorem in statistics, the mean of
the sample means is an unbiased estimator and approaches the true population mean when the

sample size increases.

Hypothesis Testing

Theory

A hypothesis test is performed when testing the means and variances of two distributions to
determine if they are statistically identical or statistically different from one another; that is,
whether the differences are based on random chance or if they are, in fact, statistically significant.

Procedure
¥ Run a simulation.
¥ Select Risk Simulator | Tools | Hypothesis Testing.
¥ Select only rwo forecasts to test at a time, select the type of hypothesis test you wish to
run, and click OK (Figure 5.18).
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MODEL A MODEL B
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Figure 5.18 — Hypothesis Testing

Report Interpretation

A two-tailed hypothesis test is performed on the null hypothesis (Hy) such that the two variables'
population means are statistically identical to one another. The alternative hypothesis (H,) is such
that the population means are statistically different from one another. If the calculated p-values
are less than or equal to 0.01, 0.05, or 0.10, this means that the null hypothesis is rejected, which
implies that the forecast means are statistically significantly different at the 1%, 5%, and 10%
significance levels. If the null hypothesis is not rejected when the p-values are high, the means of
the two forecast distributions are statistically similar to one another. The same analysis is
performed on variances of two forecasts at a time using the pairwise F-test. If the p-values are
small, then the variances (and standard deviations) are statistically different from one another;
otherwise, for large p-values, the variances are statistically identical to one another.
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Hypothesis Test on the Means and Variances of Two Forecasts

Statistical Summary

A hypothesis test Is performed when testing the meahs and variances of two distributions to determine ifthey are statistically identical or statistically diferent from
ane another. That is, to see ifthe differences between b meahns and two variahees that occur are based oh randarm chance of they are in fact diffierent from one
another. The two-variahle Hest with unequal variances (the population variance of forecast 1 1s expected o be different from the population variance of forecast
2) is appropriate when the forecast distibutions are from different popuiations (e.g., data collected from two different geographical locations, wo differant
operating business wunits, and so forth). The bwo-variable Hest with equal variances (the popuiation variance of forecast 1 15 expected to be equal to the
popuistion variance of forecast 2) Ja appropriate when the forecast distibutions are from similay popuiations (e.q., data colfected from two different engine
designs with simiiar speclfications, and so forf). The palred dependeant o-variabie Hest Is approptiate when the forecast distributions are from similat
popuiations (e.q., data collected from the same group of customers but on different occasions, and so fortf).

A hwo-tailed hvpathesis test Js parformed an the nuil Aypothesis Ho such that the hwo variables' popuiation means are statistically identical o one anather. The
affernative hypothesls is that the popliation means are statistically different from one another, If the calcwlated p-vaives are less thah orequalto 0.04, 0.05, or
Q.10 this means that the hvpothesia s rejected, which implies that the forecast ymeans are statistically significantly different at the 1%, 5% and 10% sighificance
levals, If the nuil hvpothesis is not rejected when the pvalues are high, the means of the two forecast distributions are statistically similar to one another. The
sarme ahalvsls Is performed on variances of two forecasts at a time wsing the pairvise F-Test If the prvalues are small then the varlances (and standard
dieviations) are statisticaily different from one another, othenwise, for large p-vailes, the variances are statistically identical fo one another,

Result
Hypothesls Test Assumplion: Unequal I/ ariances:
Computed tatatistic: -0.32947
Pvalue for bstatistic: 074487
Compited F-statistic: 1026723
Pvalue for F-statistic: 0331242
Figure 5.19 — Hypothesis Testing Results
Notes

The two-variable t-test with unequal variances (the population variance of forecast 1 is expected
to be different from the population variance of forecast 2) is appropriate when the forecast
distributions are from different populations (e.g., data collected from two different geographical
locations or two different operating business units). The two-variable t-test with equal variances
(the population variance of forecast 1 is expected to be equal to the population variance of
forecast 2) is appropriate when the forecast distributions are from similar populations (e.g., data
collected from two different engine designs with similar specifications). The paired dependent
two-variable t-test is appropriate when the forecast distributions are from the exact same
population (e.g., data collected from the same group of customers but on different occasions).
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Data Extraction and Saving Simulation Results

A simulation’s raw data can be very easily extracted using Risk Simulator’s Data Extraction
routine. Both assumptions and forecasts can be extracted, but a simulation must first be run. The
extracted data can then be used for a variety of other analysis.

Procedure
¥ Open or create a model, define assumptions and forecasts, and run the simulation.

& Select Risk Simulator | Tools | Data Extraction.
¥ Select the assumptions and/or forecasts you wish to extract the data from and click OK.

The data can be extracted to various formats:

e Raw data in a new worksheet where the simulated values (both assumptions and
forecasts) can then be saved or further analyzed as required

e Flat text file where the data can be exported into other data analysis software

e  Risk Simulator file where the results (both assumptions and forecasts) can be retrieved
at a later time by selecting Risk Simulator | Tools | Data Open/Import

The third option is the most popular selection, that is, to save the simulated results as a * risksim
file where the results can be retrieved later and a simulation does not have to be rerun each time.
Figure 5.20 shows the dialog box for extracting or exporting and saving the simulation results.

E [fata Extraction
Data Extraction iz used to obtain the raw data T N L R
generated in a simulation. The data can be extracted EE g S %ig
fram both assurptions and forecasts. The raw data BHEHS R HE
zah then be manipulated and additional analvsiz can Hi ﬁ'" -,..':'.i.’: o
be performed az desired. Data Extraction

Select the parameter(z) to extract;

Extract | Mame "Wrkshest Cell
I=I Forecast - 3 item(z]
[v] iSample Second.. Sheet] E13
- [v] ‘Sample Thid.. Sheet] E14
= Azzumption - 3 itemlz]
[v] iSample First.. Sheet] Ed
[¥] iSample Second.. Sheetl ES
© [v] iSample Thid.. Sheet] E10
Estraction Format [ Mew Excel Warksheet :v?

MNew E scel Worksheet
Rizk Simulator D ata [ nzkaim]
Select 1 Cl4 Tt File [tat)

Figure 5.20 — Sample Simulation Report
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Create Report

After a simulation is run, you can generate a report of the assumptions and forecasts used in the

simulation run, as well as the results obtained during the simulation run.

Procedure

¥ Open or create a model, define assumptions and forecasts, and run the simulation.

¥ Select Risk Simulator | Create Report (Figure 5.21).

Simulation - Example Profile

General

Number of Trials 7000
Stop Simulation on Emror No
Random Seed 123456
Enable Carrelations ves

Assumptions

Name nple First Assumption
Enabled ¥es
Celf BEEE
Dynamic Simuiation No
Range

Minimum -infinity
Maximum +infinity
Distribution Narmal
Mean o0
Standiard Deviation 10

Name e Second Assumption
Enabled Yes
Celf $E39
Dvnamic Simulation No
Range

Minimum ~infinity
Maximum +infiniby
Distribution Triangular
Minimum -10
Most Likely o
Masipnwm 10

Name ple Third Assumption
Enabiect Yes
Celf FE1D
Dynamic Simulation No
Range

Minimum -Infiniy
Maxirmum +infiniy
Distribution Beta
Alpha 2
Beta 5

0.0
F2 A1 TTRA A2 5R 107 44 127 31 1374

cooocoooooon
===yt
SRttt

AR AED 1G7 147 AAz TN N8 N3 N53 N7
Forecasts
Name Sample First Forecast Number of Datapoints {000
Enabled Yes Mean 700.0400
Cell $EB12 Median 99.8427 14 - 1.00
Standard Deviation 88331 12 A
Forecast Precision Variance 96,6302
Frecision Leve! 4 Average Deviation 7.8397 0
Error Level - Maximurm 134.5452 8 I e 3
Minimurn 669732 & e
Range B7.6320 i g
Skewness o2t 090 =
Kurtosis 01401 2 =1
25% Fercentiie 933063 1 g0
7504 Fercentie 106,553 685z 896z 10962 12962 14e
Ertor Precision at 93% Q0061
Name npie Secomnd Forecast Number of Datapoints {000
Enabled Yos Mean -0.0806
Cell FERT3 Meciizn Q.0733
Standard Deviation 49471
Forecast Precision Variance 16.9506 é
Frecision Leve! — Average Deviation 23389 g
Error Level — Mascimurn 9.3323 E
Miniwm 97871 E I
Range faf59¢ L £
Skewness -0.0494
Kurtosis -0.5394
23% Fercentile -2.8924
73% Percentile 28015
Errar Precision at 93% 31644
Name ‘ample Third Forecast Nurnber of Datapoints foo0
Enabled Yes Mean 0.2881
Celf FERT4 Madian 02621
Stanclard Deviation 01592
ForecastPrecision Varance 0.0204
Frecision Level — Average Deviation 04303
Error Level - Maximurm 08353
Minimurn 00126 &
Range 08232 E
Skewness 08797
Kurtosis -0.2084
23% Fercentile 01580
73% Percentiie 0.3335
Error Precision at 99% Q0345

Correlation Matrix

Sample First Assumption ssumption ssumption

Sample First Assumption
Sample Second Assumption
Sampie Third Assumption

1.00
0.00 1.00
0.00 0.00 1.00

Figure 5.21 — Sample Simulation Report
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Regression and Forecasting Diagnostic Tool

The regression and forecasting Diagnostic tool in Risk Simulator is an advanced analytical tool
used to determine the econometric properties of your data. The diagnostics include checking the
data for heteroskedasticity, nonlinearity, outliers, specification errors, micronumerosity,
stationarity and stochastic properties, normality and sphericity of the errors, and multicollinearity.
Each test is described in more detail in its respective report in the model.

Procedure
& Open the example model (Risk Simulator | Examples | Regression Diagnostics), go to
the Time-Series Data worksheet, and select the data, including the variable names (cells
C5:H55).

¥ Click on Risk Simulator | Tools | Diagnostic Tool.
¥ Check the data and select from the Dependent Variable Y drop-down menu. Click OK
when finished (Figure 5.22).
Multiple Regression Analysis Data Set
[\jfaprfa”hdleen\; ‘ariable X1 Variable %2 Variable %3 Variable ¥4 ‘atiable X5
521 18308 185 404 796 72
367 1145 B00 0.55 1 85
443 18065 372 3.665 323 5
365 723
G114 100484
ggg ::E;;g Thig tool is uzed to diagnose forecasting problems in a set of multiple vanables.
397 4003 Dependent ariable | Dependent Yarishle ¥ j
764 38927 .
437 29302 {Dependent Yariable ¥ | Yariable X1 ‘ariable ¥Z Yariable %3 Variat;A_
153 2711 521 18308 185 4.041 79.6 |
951 I 367 1148 £00 0.55 1
£04 50508 443 18063 372 3665 32.3
328 J855E 365 7729 142 2,351 45.1
240 1995 614 100454 432 29,76 190.8
2686 13035 355 16725 290 3.294 31.8
g5 12073 286 14630 346 3.287 678.4
£59 16309 397 4008 328 0,666 340.8
o5 5227 764 38927 354 12.938 239.6
198 19235 427 z2322 266 £.475 111.5[+|
481 44487 ) 2
468 44213
177 2519 QK w I Cancel
188 9106 T35 e T [afia]
453 24917 189 8117 74.3 BB
108 3872 196 0.793 S5 6.9
245 3945 183 1578 205 B
291 2373 417 1.202 1049 i
BB 7128 293 1.109 gl 72

Figure 5.22 — Running the Data Diagnostic Tool

A common violation in forecasting and regression analysis is heteroskedasticity, that is, the
variance of the errors increases over time (see Figure 5.23 for test results using the Diagnostic
tool). Visually, the width of the vertical data fluctuations increases, or fans out, over time, and,
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typically, the coefficient of determination (R-squared coefficient) drops significantly when
heteroskedasticity exists. If the variance of the dependent variable is not constant, then the error’s
variance will not be constant. Unless the heteroskedasticity of the dependent variable is
pronounced, its effect will not be severe: The least-squares estimates will still be unbiased, and
the estimates of the slope and intercept will either be normally distributed if the errors are
normally distributed, or at least normally distributed asymptotically (as the number of data points
becomes large) if the errors are not normally distributed. The estimate for the variance of the
slope and overall variance will be inaccurate, but the inaccuracy is not likely to be substantial if
the independent-variable values are symmetric about their mean.

If the number of data points is small (micronumerosity), it may be difficult to detect assumption
violations. With small sample sizes, assumption violations such as non-normality or
heteroskedasticity of variances are difficult to detect even when they are present. With a small
number of data points, linear regression offers less protection against violation of assumptions.
With few data points, it may be hard to determine how well the fitted line matches the data, or
whether a nonlinear function would be more appropriate. Even if none of the test assumptions are
violated, a linear regression on a small number of data points may not have sufficient power to
detect a significant difference between the slope and zero, even if the slope is nonzero. The power
depends on the residual error, the observed variation in the independent variable, the selected
significance alpha level of the test, and the number of data points. Power decreases as the residual
variance increases, decreases as the significance level is decreased (i.e., as the test is made more
stringent), increases as the variation in observed independent variable increases, and increases as
the number of data points increases.

Values may not be identically distributed because of the presence of outliers which are
anomalous values in the data. Outliers may have a strong influence over the fitted slope and
intercept, giving a poor fit to the bulk of the data points. Outliers tend to increase the estimate of
residual variance, lowering the chance of rejecting the null hypothesis, that is, creating higher
prediction errors. They may be due to recording errors, which may be correctable, or they may be
due to the dependent-variable values not all being sampled from the same population. Apparent
outliers may also be due to the dependent-variable values being from the same, but non-normal,
population. However, a point may be an unusual value in either an independent or dependent
variable without necessarily being an outlier in the scatter plot. In regression analysis, the fitted
line can be highly sensitive to outliers. In other words, least squares regression is not resistant to
outliers, thus, neither is the fitted-slope estimate. A point vertically removed from the other points
can cause the fitted line to pass close to it, instead of following the general linear trend of the rest
of the data, especially if the point is relatively far horizontally from the center of the data.

However, great care should be taken when deciding if the outliers should be removed. Although
in most cases when outliers are removed, the regression results look better, a priori justification

must first exist. For instance, if one is regressing the performance of a particular firm’s stock
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returns, outliers caused by downturns in the stock market should be included; these are not truly
outliers as they are inevitabilities in the business cycle. Forgoing these outliers and using the
regression equation to forecast one’s retirement fund based on the firm’s stocks will yield
incorrect results at best. In contrast, suppose the outliers are caused by a single nonrecurring
business condition (e.g., merger and acquisition) and such business structural changes are not
forecast to recur. These outliers, then, should be removed and the data cleansed prior to running a
regression analysis. The analysis here only identifies outliers and it is up to the user to determine
if they should remain or be excluded.

Sometimes, a nonlinear relationship between the dependent and independent variables is more
appropriate than a linear relationship. In such cases, running a linear regression will not be
optimal. If the linear model is not the correct form, then the slope and intercept estimates and the
fitted values from the linear regression will be biased, and the fitted slope and intercept estimates
will not be meaningful. Over a restricted range of independent or dependent variables, nonlinear
models may be well approximated by linear models (this is, in fact, the basis of linear
interpolation), but for accurate prediction, a model appropriate to the data should be selected. A
nonlinear transformation should first be applied to the data before running a regression. One
simple approach is to take the natural logarithm of the independent variable (other approaches
include taking the square root or raising the independent variable to the second or third power)

and run a regression or forecast using the nonlinearly transformed data.

Diagnostic Results

Heteroskedasticity Micronumerosity Outliers Nonlinearity
Wi-Test  Hypothesis Test Approximation Matural Matural Mumber of Monlinear Test Hypothesis Test
Wariahle p-value result result Lower Bound Upper Bound Fotential Outliers p-value result
N no problems -7.86 B71.70 2
variable ¥1 0.2543  Homoskedastic no problems -21377.95 64713.03 3 0.2458 linear
warisble 2 0.3371  Homoskedastic no problems 7747 44593 2 0.0335 nonlinear
variable 3 0.3649  Homoskedastic no problems 577 15.69 3 0.0305 nonlinear
variable ¥4 03086  Homoskedastic no problems -295.965 62821 4 0.9293 linear
variable 5 0.2485  Homoskedastic no problems 3.35 9.38 3 0.2727 linear

Figure 5.23 — Results from Tests of Outliers, Heteroskedasticity, Micronumerosity, and Nonlinearity

Another typical issue when forecasting time-series data is whether the independent-variable
values are truly independent of each other or are actually dependent. Dependent variable values
collected over a time series may be autocorrelated. For serially correlated dependent-variable
values, the estimates of the slope and intercept will be unbiased, but the estimates of their forecast
and variances will not be reliable and, hence, the validity of certain statistical goodness-of-fit tests
will be flawed. For instance, interest rates, inflation rates, sales, revenues, and many other time-
series data are typically autocorrelated, where the value in the current period is related to the
value in a previous period, and so forth (clearly, the inflation rate in March is related to
February’s level, which, in turn, is related to January’s level, etc.). Ignoring such blatant
relationships will yield biased and less accurate forecasts. In such events, an autocorrelated
regression model, or an ARIMA model, may be better suited (Risk Simulator | Forecasting |
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ARIMA). Finally, the autocorrelation functions of a series that is nonstationary tend to decay
slowly (see the nonstationary report in the model).

If autocorrelation AC(/) is nonzero, it means that the series is first-order serially correlated. If
AC(k) dies off more or less geometrically with increasing lag, it implies that the series follows a
low-order autoregressive process. If AC(k) drops to zero after a small number of lags, it implies
that the series follows a low-order moving-average process. Partial correlation PAC(k) measures
the correlation of values that are k periods apart after removing the correlation from the
intervening lags. If the pattern of autocorrelation can be captured by an autoregression of order
less than £, then the partial autocorrelation at lag & will be close to zero. Ljung-Box Q-statistics
and their p-values at lag k& have the null hypothesis that there is no autocorrelation up to order £.
The dotted lines in the plots of the autocorrelations are the approximate two standard error
bounds. If the autocorrelation is within these bounds, it is not significantly different from zero at
the 5% significance level.

Autocorrelation measures the relationship to the past of the dependent Y variable to itself.
Distributive lags, in contrast, are time-lag relationships between the dependent Y variable and
different independent X variables. For instance, the movement and direction of mortgage rates
tend to follow the federal funds rate but at a time lag (typically 1 to 3 months). Sometimes, time
lags follow cycles and seasonality (e.g., ice cream sales tend to peak during the summer months
and are, hence, related to last summer’s sales, 12 months in the past). The distributive lag analysis
(Figure 5.24) shows how the dependent variable is related to each of the independent variables at
various time lags, when all lags are considered simultaneously, to determine which time lags are

statistically significant and should be considered.

Autocorrelation

Time Lag AC PAC  LowerBound UpperBound  G-Stat Frob
1 0.0580 0.0580 -0.2828 0.za328 0.1786 06726 — —
2 -0.1213 -0.1281 -0.2828 0.2e38 0.9754 0.6140 AC PAC
3 0.0530 0.0756 -0.2828 0.2e38 1.1678 0.7607 1 I 1 |
4 0.2423 0.2232 -0.2828 0.2e38 4. 4865 0.3443 1 I 1 |
i 0.0067 -0.0078 -0.2828 0.2e38 4.4840 04814 1 i 1 |
[} -0.2654 -0.2345 -0.2828 0.2e38 8.6916 01941 1 I 1 1
7 0.0e14 0.0933 -0.2828 0.2e38 §.0524 0.2489 } 1 1 1
g 0.0634 -0.0442 -0.2828 02828 9.3012 03175 ] I 1 1
9 0.0204 0.0873 -0.2828 02828 9.3276 0.4076 | I 1 1
10 -0.0190 0.0865 -0.2828 0.ze:8 9.3512 0.4991 1 1 1 1
11 01035 0.0740 -0.2828 0.za328 10.0648 0.5246 1 1 1 1
12 0.1658 0.0878 -0.2828 0.za328 11.9466 0.4500 1 | 1 1
13 -0.0524 -0.0430 -0.2828 0.2e38 121394 05162 1 I 1 |
14 -0.2080 -0.2523 -0.2828 0.2e38 151738 0.3664 1 1 | 1
18 01783 0.2089 -0.2828 0.2e38 17.8315 0.2e: 1 I 1 1
16 -0.1022 -0.2591 -0.2828 0.2e38 18.3296 0.3050 1 I 1 |
17 -0.0861 0.0802 -0.2828 0.2e38 18.9141 0.3335 1 I 1 |
18 0.0418 0.1887 -0.2828 02838 18.0559 0.3884 1 I 1 1
19 0.0865 -0.0821 -0.2828 02828 19.68494 0.4135 1 ' ' '
20 -0.0091 -0.0268 -0.2828 02828 196966 0.4770 J J

Distributive Lags

P-Values of Distributive Lag Periods of Each Independent Variable

“ariable 1 2 3 4 5 B 7 g 9 10 1 12
Edl 0.8467 0.2045 0.3336 0.9105 0.97s7 01020 0.9205 01267 0.5431 09110 0.7495 0.4016
bl 0.6077 0.9800 0.8422 0.2851 0.0638 0.0032 0.a007 0.15851 0.4823 01126 0.0519 0.4383
%3 0.7394 0.2396 0.2741 08372 0.9808 0.0464 0.8355 0.0545 0.6628 0.7354 0.5093 0.3500
4 0.0061 0.6739 0.7932 077149 0.6748 0.8627 0.5586 0.9046 0.5726 0.6304 0.4812 0.5707
el 0.1591 0.2032 0.4123 0.5559 0.6416 0.3447 0.91490 0.9740 0.5185 (0.2856 0.1489 0.7784

Figure 5.24 — Autocorrelation and Distributive Lag Results
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Another requirement in running a regression model is the assumption of normality and sphericity
of the error term. If the assumption of normality is violated or outliers are present, then the linear
regression goodness-of-fit test may not be the most powerful or informative test available, and
this could mean the difference between detecting a linear fit or not. If the errors are not
independent and not normally distributed, it may indicate that the data might be autocorrelated or
suffer from nonlinearities or other more destructive errors. Independence of the errors can also be
detected in the heteroskedasticity tests (Figure 5.25).

The Normality test on the errors performed is a nonparametric test, which makes no assumptions
about the specific shape of the population from which the sample is drawn, allowing for smaller
sample data sets to be analyzed. This test evaluates the null hypothesis of whether the sample
errors were drawn from a normally distributed population, versus an alternate hypothesis that the
data sample is not normally distributed. If the calculated D-statistic is greater than or equal to the
D-critical values at various significance values, then reject the null hypothesis and accept the
alternate hypothesis (the errors are not normally distributed). Otherwise, if the D-statistic is less
than the D-critical value, do not reject the null hypothesis (the errors are normally distributed).
The Normality test relies on two cumulative frequencies: one derived from the sample data set
and the second from a theoretical distribution based on the mean and standard deviation of the
sample data.

Test Result
_ Emmors  REAIVe ) orved Expected O
Regression Exror Avarage 0.00 Frequency

Standard Dewviation of Errors 41,82 -279.04 o2 o0z Q.0672 -00472
0 Statistic 0.§026 -202.53 002 Q.04 00766 -0.03266
O Crtical at 1% 07138 -186.04 0.02 Q.06 0.05948 -0.0348
O Critical at 5% 01225 -17497 0.02 008 0.1097 -0.0297
0 Crtical at 10% 0. {458 -162.13 002 ofg 01265 -0L0265
Mol Rivpothesis: The errors are hotmally cistritutec, -161.62 0.0z a1z Q9272 -0.0072
-150.39 0.02 014 01297 0.0109
Conclusion: The errors are normally distributed at the -745.40 002 016 01926 0.007g
1% alpha level. -138.92 002 Q18 0.1637 009163
-133.87 002 020 Qf727 0.0273
-120.76 0.02 02z 01973 0.0227
-120492 0.02 024 0.1985 0.0445

Figure 5.25 — Test for Normality of Errors

Sometimes, certain types of time-series data cannot be modeled using any other methods except
for a stochastic process, because the underlying events are stochastic in nature. For instance, you
cannot adequately model and forecast stock prices, interest rates, price of oil, and other
commodity prices using a simple regression model because these variables are highly uncertain
and volatile, and they do not follow a predefined static rule of behavior; in other words, the
process is not stationary. Stationarity is checked using the Runs Test function, while another
visual clue is found in the autocorrelation report (the ACF tends to decay slowly). A stochastic
process is a sequence of events or paths generated by probabilistic laws. That is, random events
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can occur over time but are governed by specific statistical and probabilistic rules. The main
stochastic processes include random walk or Brownian motion, mean reversion, and jump
diffusion. These processes can be used to forecast a multitude of variables that seemingly follow
random trends but restricted by probabilistic laws. The process-generating equation is known in
advance but the actual results generated are unknown (Figure 5.26).

The Random Walk Brownian Motion process can be used to forecast stock prices, prices of
commodities, and other stochastic time-series data given a drift or growth rate and volatility
around the drift path. The Mean-Reversion process can be used to reduce the fluctuations of the
Random Walk process by allowing the path to target a long-term value, making it useful for
forecasting time-series variables that have a long-term rate such as interest rates and inflation
rates (these are long-term target rates by regulatory authorities or the market). The Jump-
Diffusion process is useful for forecasting time-series data when the variable can occasionally
exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks
can make prices jump up or down). These processes can also be mixed and matched as required.

Stochastic Process

Statistical Summary

The following are the estirmated parameters for a stochastic process given the data provided. It is up to you to determine if the probability of fit
(similar to a goodness-offit computation) is sufficient to warrant the use of a stochastic process forecast, and if so, whether it is a random
walk, mean-reversion, or a jump-diffusion model, or combinations thereof. In choosing the right stochastic process model, you will have to rely
on past experiences and & prox economic and financial expectations of what the underlying data set is best represented by, These parameters

can be entered into a stochastic process forecast (Simulation | Forecasting | Stochastic Pr.
Periodic
Orit Rate -1.458% Reversion Rate  283.59% Jump Rate 20.41%
Volatihy  85.64% Long-Term Valve 22772 Jump Size 237.89
Probability of stochastic model fit: 45, 45%
A high Tt means a stochastic model s befter than conventional modais.
Runs 20 Standard Mormal  -1.73271
Fositive 25 F-lfzive (1-tail) 0.04{6
Negative 25 Plialue (2-tal)  0.0833
Expected Run 26

A o prvaive (below 010, 0.05, 0.01) means that the sequence s not random and hence suffers from stationariy problems, and an ARIMA
model rmight be more appropriate. Conversely, higher p-vaives indicate randomness and stochastic process modeals might be approprite.

Figure 5.26 — Stochastic Process Parameter Estimation

A note of caution is required here. The stochastic parameters calibration shows all the parameters
for all processes and does not distinguish which process is better and which is worse or which
process is more appropriate to use. It is up to the user to make this determination. For instance, if
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we see a 283% reversion rate, chances are, a mean-reversion process is inappropriate; or a very
high jump rate of, say, 100% most probably means that a jump-diffusion process is probably not
appropriate; and so forth. Further, the analysis cannot determine what the variable is and what the
data source is. For instance, is the raw data from historical stock prices or is it the historical prices
of electricity or inflation rates or the molecular motion of subatomic particles, and so forth. Only
the user would know about the raw data, and, hence, using a priori knowledge and theory, be able
to pick the correct process to use (e.g., stock prices tend to follow a Brownian motion random
walk, whereas inflation rates follow a mean-reversion process; or a jump-diffusion process is

more appropriate should you be forecasting the price of electricity).

Multicollinearity exists when there is a linear relationship between the independent variables.
When this occurs, the regression equation cannot be estimated at all. In near collinearity
situations, the estimated regression equation will be biased and provide inaccurate results. This
situation is especially true when a stepwise regression approach is used, where the statistically
significant independent variables will be thrown out of the regression mix earlier than expected,
resulting in a regression equation that is neither efficient nor accurate. One quick test of the
presence of multicollinearity in a multiple regression equation is that the R-squared value is
relatively high, while the t-statistics are relatively low.

Another quick test is to create a correlation matrix between the independent. A high cross-
correlation indicates a potential for autocorrelation. The rule of thumb is that a correlation with an
absolute value greater than 0.75 is indicative of severe multicollinearity.

Correlation Matrix

CORRELATION w2 3 L) x5

X1 0.333 0.959 0242 0.237
X2 1000 0249 03159 0120
X3 1.0000 0196 0227
X4 00Dy 0.290

Variance Inflation Factor

WIF w2 A X ]
X1 112 1246 1.06 1.08
X2 Bs 114 111 1.01
X3 s 1.04  1.05
X4 A 1.08

Figure 5.27 — Multicollinearity Errors
The Correlation Matrix lists the Pearson’s Product Moment Correlations (commonly referred to

as the Pearson’s R) between variable pairs. The correlation coefficient ranges between —1.0 and +
1.0 inclusive. The sign indicates the direction of association between the variables, while the
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coefficient indicates the magnitude or strength of association. The Pearson’s R only measures a

linear relationship and is less effective in measuring nonlinear relationships.

To test whether the correlations are significant, a two-tailed hypothesis test is performed and the
resulting p-values are listed. In Figure 5.27 (top), P-values less than 0.10, 0.05, and 0.01 are
highlighted in blue to indicate statistical significance. In other words, a p-value for a correlation
pair that is less than a given significance value is statistically significantly different from zero,
indicating that there is significant a linear relationship between the two variables.

The Pearson’s R between two variables (x and y) is related to the covariance (cov) measure,
(014

X,

where R, = . The benefit of dividing the covariance by the product of the two variables’

A

X0y
standard deviation (s) is that the resulting correlation coefficient is bounded between —1.0 and
+1.0 inclusive. This makes the correlation a good relative measure to compare among different
variables (particularly with different units and magnitude). The Spearman rank-based
nonparametric correlation is also included in the report. The Spearman’s R is related to the
Pearson’s R in that the data is first ranked and then correlated. The rank correlations provide a
better estimate of the relationship between two variables when one or both of them is nonlinear.

It must be stressed that a significant correlation does not imply causation. Associations between
variables in no way imply that the change of one variable causes another variable to change.
When two variables that are moving independently of each other but in a related path, they may
be correlated but their relationship might be spurious (e.g., a correlation between sunspots and the
stock market might be strong, but one can surmise that there is no causality and that this
relationship is purely spurious). Another test for multicollinearity is the use of the variance
inflation factor (VIF), obtained by regressing each independent variable to all the other
independent variables, obtaining the R-squared value, and calculating the VIF. A VIF exceeding
2.0 can be considered as severe multicollinearity. A VIF exceeding 10.0 indicates destructive
multicollinearity (Figure 5.27, bottom).

Statistical Analysis Tool

Another very powerful tool in Risk Simulator is the Statistical Analysis tool, which determines
the statistical properties of the data. The diagnostics run include checking the data for various
statistical properties, from basic descriptive statistics to testing for and calibrating the stochastic
properties of the data.

Procedure
& Open the example model (Risk Simulator | Examples | Statistical Analysis), go to the
Data worksheet, and select the data including the variable names (cells C5:ES5).
& Click on Risk Simulator | Tools | Statistical Analysis (Figure 5.28).
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¥ Check the data type, whether the data selected are from a single variable or multiple
variables arranged in rows. In our example, we assume that the data areas selected are
from multiple variables. Click OK when finished.

¥ Choose the statistical tests you wish to perform. The suggestion (and by default) is to
choose all the tests. Click OK when finished (Figure 5.29).

Spend some time going through the reports generated to get a better understanding of the
statistical tests performed (sample reports are shown in Figures 5.30 through 5.33).

Data Set
“ariable X1 Wariahle X2 “ariahle X3
521 18308 185
367 1148 BO0
443 18065 372
365 7729 —
14 SIrrl IR Statistical Ahalysic
33: 1?;;3 Thiz tool iz uged to describe and find statistical relationzhips in a set of raw data,
397 4008 Selected Data
764 38027 Varigble %1 Variable %2 Variable %3 [
427 22322 521 15305 185 1
153 37N 367 1148 600 ‘ = ‘
231 3136 443 15065 37z g
524 50503 365 779 142
328 28886 G614 100454 432
240 16996 385 16725 290
286 13035 286 14630 346
285 12973 397 4003 328
569 16309 7ot JE9ET 354
95 5227 427 22322 266
498 19235 | 1153 3711 320 i |
481 44487 || |z31 3136 197 (i)
468 44213
177 23619 || O Datais from a single variable
1908 9106 Diata comprises multiple variables in columns
458 24917 - ’ '
103 3872 | 56 I

Figure 5.28 — Running the Statistical Analysis Tool

[ @ Statistical Analyses L-LBJ

Select the analyses to run:

Run: ]AII Tests _ﬂ ¥ Stochastic Process Parameter Estimation
[V Descriptive Statistics Periodicty | Annual |
IV Distributional Fitting ¥ Time-series Autocomelation

{* Continuous " Discrete

[ Time-series Forecasting

¥ Histogram and Charts Seasonality (Periods/Cycle) 4 3:
¥ Hypothesis Testing Forecast (Periods) j 4 5:

Hypothesized Mean I 0 ¥ Trend Line Projection
v Monlinear Extrapolation Forecast (Periods) 4 =

Forecast (Perods) 4 —E}:
W MWommality Test l—l
OK Cancel |

Figure 5.29 — Statistical Tests
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Descriptive Statistics

Analysis of Statistics

Almost all distributions can be described within 4 moments (some distributions require one moment, while others require two moments, and so forth). Descriptive statistics
quantitatively capture these moments. The first moment describes the location of a distribution (i.e., mean, median, and mode) and is interpreted as the expected value, expected
returns, or the average value of occurrences

The Arithmetic Mean calculates the average of all accurrences by summing up all ofthe data points and dividing them by the number of points. The Geometric Mean is calculated by
taking the power root of the products of all the data points and requires them to all be positive. The Geometric Mean is more accurate for percentages or rates that fluctuate
significantly. For example, you can use Geometric Mean to calculate average growth rate given compound interest with variable rates. The Trimmed Mean calculates the arithmetic
average ofthe data set after the extreme outliers have been timmed. As averages are prone to significant bias when outliers exist, the Trimmed Mean reduces such bias in skewed
distributions

The Standard Error of the Mean calculates the error surrounding the sample mean. The larger the sample size, the smaller the error such that for an infinitely large sample size, the
error approaches zero, indicating that the population parameter has been estimated. Due to sampling errors, the 95% Confidence Interval for the Mean is provided. Based on an
analysis of the sample data points, the actual population mean should fall between these Lower and Upper Intervals for the Mean

Median is the data point where 50% of all data points fall above this value and 50% below this value. Among the three first moment statistics, the median is least susceptible to
outliers. A symmetrical distribution has the Median equal to the Arithmetic Mean. A skewed distribution exists when the Median is far away from the Mean. The Mode measures the
most frequently occurring data point.

Minimum is the smallest value in the data set while Maximum is the largest value. Range is the difference between the Maximum and Minimum values

The second moment measures a distribution’s spread or width, and is frequently described using measures such as Standard Deviations, Variances, Quartiles, and Inter-Cuartile
Ranges. Standard Deviation indicates the average deviation of all data points from their mean. It is a popular measure as is associated with risk (higher standard deviations mean a
wider distribution, higher risk, or wider dispersion of data points around the mean) and its units are identical to original data sets. The Sample Standard Deviation differs from the
Population Standard Deviation in that the former uses a degree of freedom correction to account for small sample sizes. Also, Lower and Upper Confidence Intervals are provided for
the Standard Deviation and the true population standard deviation falls within this interval. If your data set covers every element of the population, use the Population Standard
Deviation instead. The two Variance measures are simply the squared values ofthe standard deviations

The Coefficient of Variability is the standard deviation of the sample divided by the sample mean, proving a unit-free measure of dispersion that can be compared across different
distributions (you can now compare distributions of values denominated in millions of dollars with ene in billions of dollars, or meters and kilegrams, etc.). The First Quartile
measures the 25th percentile of the data points when arranged from its smallest to largest value. The Third Quartile is the value of the 75th percentile data point Sometimes
quartiles are used as the upper and lower ranges of a distribution as it truncates the data set to ignore outliers. The Inter-CQuartile Range is the difference between the third and first
quartiles, and is often used to measure the width of the center of a distribution

Skewness is the third momentin a distribution. Skewness characterizes the degree of asymmetry of a distribution around its mean. Positive skewness indicates a distribution with
an asymmetric tail extending toward more positive values. Negative skewness indicates a distribution with an asymmetric tail extending toward more negative values.

Kurtosis characterizes the relative peakedness or flatness of a distribution compared to the normal distribution. It is the fourth mement in a distribution. A positive Kurtosis value
indicates a relatively peaked distribution. A negative kurtosis indicates a relatively flat distribution. The Kurtosis measured here has been centered to zero (certain other kurtosis
measures are centered around 3.0). While both are equally valid, centering across zero makes the interpretation simpler. A high positive Kurtosis indicates a peaked distribution
around its center and leptokurtic or fat tails. This indicates a higher probability of extreme events (e.g., catastrophic events, terrorist attacks, stock market crashes) than is predictedin
a normal distribution

Summary Statistics

Siatistics Variable X1

Observations 50.0000 Standard Deviation {Sample) 172.9140
Arithmetic Mean 331.9200 Standard Deviation (Population) 171.1761
Geometric Mean 281.3247 Lower Confidence interval for Standard Deviation 148.6090
Trimmed Mean 32517339 Upper Confidence Interval for Standard Devialion 207.7947
Standard Error of Arithmetic Mean 244337 Variance (Sample) 29899.2588
Lower Confidence Interval for Mean 283.0125 Variance (Population) 293012736
Upper Confidence interval for Mean 380.8275 Coefficient of Variability 0.5210
Median 307.0000 First Quartile (Q1) 204.0000
Mode 47.0000 Third Quartile (Q3) 441.0000
Minirmwm 764.0000 Inter-Quartile Range 237.0000
Maximum 717.0000 Skewness 04838
Range Kurtosis -0.0952

Figure 5.30 — Sample Statistical Analysis Tool Report
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Hypothesis Test (t-Test on the Population Mean of One Variable)

Statistical Summary

Statistics from Dataset: Calculated Statistics:
Observations 50 t-Statistic 13.5734
Sample Mean 331.92 P-Value (right-tail) 0.0000
Sample Standard Deviation 17291 P-Value (left-tailed) 1.0000
P-Value (two-tailed) 0.0000
User Provided Statistics:
Null Hypothesis (Ho). 4 = Hypothesized Mean
Hypothesized Mean 0.00 Alternate Hypothesis (Ha) i <= Hypothesized Mean

Motes: "=="denotes "greater than"for right-tail, less than" for left-
tail, or "not equal to" for two-ail hypothesis tests.

Hypothesis Testing Summary

The one-variable ttest is appropriate when the population standard deviation is not known but the sampling distribution is assumed to be
approximately normal (the test is used when the sample size is less than 30 butis also appropriate and in fact, provides more conservative
results with larger data sets). This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a lefttailed test. Al
three tests and their respective results are listed below for your reference.

Two-Tailed Hypothesis Test

Atwo-tailed hypothesis tests the null hypothesis Ho such thatthe population mean is statistically identical to the hypothesized mean. The alternative
hypothesis is that the real population mean is statistically different from the hypothesized mean when tested using the sample dataset Using at-
test, if the computed pvalue is less than a specified significance amount (typically 0.10, 0.05, or 0.01), this means that the population mean is
statistically significantly different than the hypothesized mean at 10%, 5% and 1% significance value (or at the 90%, 95%, and 99% statistical
confidence). Conversely, ifthe p-value is higher than 0.10, 0.05, or 0.0, the population mean is statistically identical to the hypothesized mean and
any differences are due to random chance.

Right-Tailed Hypothesis Test

Aright-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically less than or equal to the hypothesized mean. The
alternative hypothesis is that the real population mean is statistically greater than the hypothesized mean when tested using the sample dataset.
Using a ttest, if the p-value is less than a specified significance amount (typically 0.10, 0.05, or 0.01), this means that the population mean is
statistically significantly greater than the hypothesized mean at 10%, 5% and 1% significance value (or 90%, 95%, and 99% statistical confidence).
Conversely, ifthe p-value is higher than 0.10, 0.05, or 0.01, the population mean is statistically similar or less than the hypothesized mean.

Left-Tailed Hypothesis Test

A left-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically greater than or equal to the hypothesized mean
The alternative hypothesis is thatthe real population mean is statistically less than the hypothesized mean when tested using the sample dataset.
Using a t-test, if the p-value is less than a specified significance amount (typically 0.10, 0.08, or 0.01), this means that the population mean is
statistically significantly less than the hypothesized mean at 10%, 5%, and 1% significance value (or 90%, 95%, and 99% statistical confidence).
Conversely, if the p-value is higher than 0.10, 0.05, or 0.0, the population mean is statistically similar or greater than the hypothesized mean and
any differences are due ti random chance.

Because the ttestis more conservative and does not require a known population standard deviation as in the Z-test, we only use this t-test.

Figure 5.31 — Sample Statistical Analysis Tool Report (Hypothesis Testing of One Variable)

Test for Normality

The Normality test is a form of nonparametric test, which makes no assumptions about the specific shape ofthe population fram which the
sample is drawn, allowing for smaller sample data sets to be analyzed. This test evaluates the null hypathesis of whether the data sample
was drawn fram a normally distributed population, versus an alternate hypothesis that the data sample is not normally distributed. If the
calculated p-value is less than or equal to the alpha significance value then reject the null hypothesis and acceptthe alternate hypothesis
Otherwise, if the p-value is higher than the alpha significance value, do not reject the null hypothesis. This test relies on two cumulative
frequencies: one derived from the sample data set, the second from a theoretical distribution based on the mean and standard deviation of
the sample data. An alternative to this test is the Chi-Square test for normality. The Chi-Square test requires more data peints to run
compared to the Mormality test used here

Test Result

Data Relative Observed Expected 0-E
Data Average 331.82 Frequency

Standard Deviation 172.91 47.00 Q.02 Q.02 0.0497 -0.0297
D Statistic 0.0839 68.00 a.02 a.04 00835 -0.0235
D Critical at 1% 0.1130 87.00 0.02 0.08 0.0782 -0.0182
D Critical at 3% 0.1237 96.00 Q.02 a.08 0.0862 -0.0062
D Critical at 10% 01473 102.00 Q.02 a10 0.0818 0.0082
Null Hypothesis: The data is normally distributed. 108.00 0.02 0.12 00577 0.0223
114.00 0.02 014 01038 0.0362
Conclusion: The sample data is normally distributed at 127.00 Q.02 Q.16 0.1160 0.0420
the 1% alpha level. 15200 a.02 018 01504 0.0238
177.00 0.02 a.20 0.1851 0.0143
186.00 Q.02 Q.22 0.1894 0.0208
188.00 a.02 a.24 02026 00374
198.00 0.02 0.26 02193 0.0407
222.00 Q.02 Q.28 0.2625 0.0173
231.00 a.02 Q.30 02797 0.0203
240.00 0.02 0.32 028735 0.0225
246.00 Q.02 0.34 0.3096 0.0304
251.00 a.02 0.36 03135 0.0401
265.00 a.02 038 03494 0.0308
280.00 0.02 0.40 0.32820 0.0180
283.00 Q.02 a.42 0.3831 0.0268
286.00 a.04 048 03353 0.0647
291.00 0.02 0.48 0.4065 0.0733
303.00 Q.02 a.30 04336 0.0664
311.00 a.02 a.52 04515 0.0681

Figure 5.32 — Sample Statistical Analysis Tool Report (Normality Test)
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Stochastic Process - Parameter Estimations

Statistical Summary

A stochastic process is a sequence of events or paths generated by probabilistic laws. That is, random events can occur over time but are governed by
specific statistical and probabilistic rules. The main stochastic processes include Random Walk or Brownian Motion, Mean-Reversion, and Jump-
Diffusion. These processes can be used to forecast a multitude of variables that seemingly follow random trends but yet are restricted by probabilistic
laws. The process-generating equation is known in advance but the actual results generated is unknown.

The Random Walk Brownian Motion process can be used to forecast stock prices, prices of commodities, and other stochastic time-series data given a
drift or growth rate and a volatility around the drift path. The Mean-Reversion process can be used to reduce the fluctuations of the Random Walk process
by allowing the path to target a long-term value, making it useful for forecasting time-series variables that have along-term rate such as interest rates and
inflation rates (these are long-term target rates by regulatory authorities or the market). The Jump-Diffusion process is useful for forecasting time-series
data when the variable can occasionally exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks can make prices
jump up or down). Finally, these three stochastic processes can be mixed and matched as required.

Stochastic Process

Statistical Summary

The following are the estimated parameters for a stochastic process given the data provided. It is up to you to determine ifthe probability of fit (similar to a
goodness-of-fit computation) is sufficient to warrant the use of a stochastic process forecast, and if so, whether it is a random walk, mean-reversion, or a
jump-diffusion model, or combinations thereof. In choosing the right stochastic process model, you will have to rely on past experiences and a priori
economic and financial expectations of what the underlying data set is best represented by. These parameters can be entered into a stochastic process
forecast (Simulation | Forecasting | Stochastic Processes).
(Annualized)

Drift Rate 5.66% Reversion Rate MA Jump Rate 16.33%

Volatility 7.04% Long-Term Value MA Jump Size 2133

Probability of stochastic model fit 463%

Figure 5.33 — Sample Statistical Analysis Tool Report (Stochastic Parameter Estimation)

Distributional Analysis Tool

The Distributional Analysis tool is a statistical probability tool in Risk Simulator that is useful in
a variety of settings. It can be used to compute the probability density function (PDF), which is
also called the probability mass function (PMF) for discrete distributions (these terms are used
interchangeably), where given some distribution and its parameters, we can determine the
probability of occurrence given some outcome x. In addition, the cumulative distribution function
(CDF) can be computed, which is the sum of the PDF values up to this x value. Finally, the
inverse cumulative distribution function (ICDF) is used to compute the value x given the

cumulative probability of occurrence.

This tool is accessible via Risk Simulator | Tools | Distributional Analysis. As an example of
its use, Figure 5.34 shows the computation of a binomial distribution (i.e., a distribution with two
outcomes, such as the tossing of a coin, where the outcome is either Head or Tail, with some
prescribed probability of heads and tails). Suppose we toss a coin two times. Setting the outcome
Head as a success, we use the binomial distribution with Trials = 2 (tossing the coin twice) and
Probability = 0.50 (the probability of success, of getting Heads). Selecting the PDF and setting
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the range of values x as from 0 to 2 with a step size of 1 (this means we are requesting the values
0, 1, 2 for x), the resulting probabilities, as well as the theoretical four moments of the
distribution, are provided in tabular and in graphical formats. As the outcomes of the coin toss are
Heads-Heads, Tails-Tails, Heads-Tails, and Tails-Heads, the probability of getting exactly no
Heads is 25%, one Head is 50%, and two Heads is 25%. Similarly, we can obtain the exact
probabilities of tossing the coin, say, 20 times, as seen in Figure 5.35.

Distribution Analysis @M
This tool generates the probability density function
(FOF), cumulative distribution funchion (COF) and
the Inverse COF {ICDF] of all the distributions in 0.50, E":‘;;: = é- gggg
Risk Simulater, including theoretical moments and Skewness = 0.0000
probability chart. 0.40 Kurtosis = -1,0000
Distribution | Binomial -
0.301
Trials 2 !
Probability 05 ! 0.204
! ! 0.101
| [
L 1
0.00"
Type \FDF - 0 1 2
Formatting |0.000000 ! X 5hF
i 0.250000:
(71 Single Value 1.000000 0500000
Value X | | 2,000000 0.250000
@ Range of Values
Lower Bound |ﬂ |
Upper Bound |2 |
Step Size 1 |

Figure 5.34 — Distributional Analysis Tool (Binomial Distribution with 2 Trials)
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i
Distribution Analysis E@g

This tool generates the probability density function

(PDF). cumulative distribution function (CDF) and

the Inverse COF (ICDF) of all the distributions in 0.18 e

Risk Simulator, including theoretical moments and 016 Skevmers = b.0000

probability chart. : Kurtosis = -0.1000

014

Distribution | Binomial - 0.12

Trizls fﬂ | 01D

- IEE-: 0.08:
Probability J | .06
' |
[ ]

Type PDF v] ~ g [ 10 14 18

Formatting oooo0 | % FDF

- — 0.000007

) Swnde ok 1.000000 0.000019
Value X | | 2 000000 0.000181

3.000000 0.001087

(-]

L RRLESAE : : 4,000000 0.004621
Lower Bound 0 | 5.000000 0.014786
Upper Bound 20 | £.000000 0.036964

: : 7.000000 0.072929
Step Size 1 | 8.000000 0.120134
9.000000 0.16017%

10.000000 0176197
11.000000 0.160179

12.000000 0.120134

13.000000 0.072923

14,000000 0.026964

15,000000 0.014786

16.000000 0.004621

17.000000 0.001087

12.000000 0.000121

19.000000 0.000019

20.000000 0.000001

Figure 5.35 — Distributional Analysis Tool (Binomial Distribution with 20 Trials)

Figure 5.36 shows the same binomial distribution for 20 trials, but now the CDF is computed.
The CDF is simply the sum of the PDF values up to the point x. For instance, in Figure 5.35, we
see that the probabilities of 0, 1, and 2 are 0.000001, 0.000019, and 0.000181, whose sum is
0.000201, which is the value of the CDF at x = 2 in Figure 5.36. Whereas the PDF computes the
probabilities of getting exactly 2 heads, the CDF computes the probability of getting no more than
2 heads or up to 2 heads (or probabilities of 0, 1, and 2 heads). Taking the complement (i.e., 1 —
0.00021) obtains 0.999799, or 99.9799%, which is the probability of getting at least 3 heads or

more.
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Distribution Analysis IEIM

This tool generates the probability density function

(PDF). cumulative distribution function (CDF) and
the Inverse CDF (ICDF) of all the distributions in 0.18 Maan = 100000
Risk Simulator, including thecretical moments and 4 Skewiness = 0.0000
probability chart. Kurtosis = -0.1000
Distribution | Binomial
Trials 20
Probability 05
Type CEE
Formatting | 0.000000
) Single Value
Value X I
@ Rande bl 3.000000 0.001288
3 . 4000000 0.005%09
Lower Bound |0 | 5.000000 0.020655
s Bourid (20 ] £.000000 0.057658
7.000000 0.131588
Step Size E | 8.000000 0.251722
5.000000 0.411501
10.000000 0.532099
11.000000 0.748278
12.000000 0.868412
13.000000 0.942341
14.000000 0.979305
15.000000 0.994091
16.000000 0.998712
17.000000 0.995799
18.000000 0.999580
19.000000 0.995599
20.000000 1.000000

Figure 5.36 — Distributional Analysis Tool (Binomial Distribution’s CDF with 20 Trials)

Using this Distributional Analysis tool in Risk Simulator, even more advanced distributions can
be analyzed, such as the gamma, beta, negative binomial, and many others. As further example of
the tool’s use in a continuous distribution and the ICDF functionality, Figure 5.37 shows the
standard normal distribution (normal distribution with a mean of zero and standard deviation of
one), where we apply the ICDF to find the value of x that corresponds to the cumulative
probability of 97.50% (CDF). That is, a one-tail CDF of 97.50% is equivalent to a two-tail 95%
confidence interval (there is a 2.50% probability in the right tail and 2.50% in the left tail, leaving
95% in the center or confidence interval area, which is equivalent to a 97.50% area for one tail).
The result is the familiar Z-score of 1.96. Therefore, using this Distributional Analysis tool, the
standardized scores for other distributions and the exact and cumulative probabilities of other
distributions can all be obtained quickly and easily.
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Distribution Analysis E@g

This tool generates the probability density funchion

(POF), cumulative distnbution funchon (COF) and
the Inverse COF (ICDF) of all the distributions in 0.40; E":Ea“ = E-gggg
Rizk Simulator, including theoretical moments and 0,351 E'rkewng = 0.0000
probability chart. : Kurtesis = 0.0000
0. 3N
Distribution | Nomal -
0.25
Mu |0 | 0.204
Sigma i | | o015
| | 0.101
| J 0.051
= 0.00/
Type |icDF -
Formatting (0.000000 | EDE
@ Single Value
Probability |0.975 I
(") Range of Values
Lower Bound |0 [
|Ipper Bound ,_2[-‘ [
Step Size |_1 [

Figure 5.37 — Distributional Analysis Tool (Normal Distribution’s ICDF and Z-Score)

Scenario Analysis Tool

The Scenario Analysis tool in Risk Simulator allows you to run multiple scenarios quickly and
effortlessly by changing one or two input parameters to determine the output of a variable. Figure
5.38 illustrates how this tool works on the discounted cash flow sample model (Model 7 in Risk
Simulator’s Example Models folder). In this example, cell G6 (net present value) is selected as
the output of interest, whereas cells C9 (effective tax rate) and C12 (product price) are selected as
inputs to perturb. You can set the starting and ending values to test, as well as the step size, or the
number of steps, to run between these starting and ending values. The result is a scenario analysis
table (Figure 5.39), where the row and column headers are the two input variables and the body
of the table shows the net present values.
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A B C D E 1= G H J K L
2 Discounted Cash Flow / ROl Model
¥
4 Base Year 2009 Sum PV Net Benefits $4,762.09 Discount Type | Discrete End-of-Year Discounting E]
5 Start Year 2009 Sum PV Investments $1,634.22
6 | Market Risk-Adjusted Discount Rate 15.00% Net Present Value [Cesizz87]  Model 7 [ nclude Terminal valuation =]
i Private-Risk Discount Rate 5.00% Internal Rate of Retum 55.68%
8 Terminal Period Growth Rate 2.00% Return on Investment 191.40%
a Effective Tax Rate 40.00% Profitability Index 291
10
=] Scenario Analysi ===
11 2009 2010 2017} B Scsgaio Aralyss 17 2018
12 Product A Avg Price/Unit $10.00 $10.50 $11.00 Start by entering the cell addresses for the output and input test variables (2.g.. Al): 10 $14.50
13 Product B Avg Price/Unit $12.25 $12.50 $12.75 Location of Output Varisble  [G6 1] 4] $14.50
14 Product C Avg Price/Unit $15.15 $15.30 $15.45 {Opiseed) 35 $16.50
i =] cz &
15 Product A Sale Quantity ('000s) 50 50 50 First Input Variable to Test Second Input Variable to Test 50 50
16 Product B Sale Quantity ('000s}) 35 35 35 Next, enter the starting value. ending value and number of steps or the step size to test: 35 35
,
17 Product C Sale Quantity ('000s) 20 20 20 Vabtie Variabls 2 20 20
18 Total Revenues $1,231.75 | $1,268.50 $1,305.25 9 5 $1,5662.50
g Starting Value JD £ Starting Value ,‘HJ—
19 Direct Cost of Goods Sold 5184.76 $100.28 $195.79 : : [6 $234.38
20 Gross Profit $1,046.99 | §1,078.23 | $1,109.46 Endng Velue  [o5 Endina Value  [30 9| 132813
21 Operating Expenses $157.50 5157 50 $157.50 " Steps 20 50 $157.50
22 Sales, General and Admin. Costs $15.75 $15.75 $15.75 &+ Step Size me " Step Size 5 $15.75
23 Operating Income (EBITDA) $873.74 $904.98 $936.21 ! ! i $1,154.88
24 Depreciation $10.00 $10.00 $10.00 Coroed 0 $10.00
25 Amortization $3.00 $3.00 $3.00 10 $3.00
26 EBIT $860.74 $891.98 $923.21 | TIvsHRT T URETE [ ST, UTY. FTTTU. §1,141.88
27 Interest Payments $2.00 $2.00 $2.00 $2.00 $2.00 $4.00 $5.00 $6.00 $7.00
28 EBT $858.74 $889.98 $921.21 $952.45 $983.69 | $1,013.93 | $1,044.16 | $1,074.40 | $1,104.64 $1,134.88
29 Taxes $343.50 $355.99 $368.49 $380.98 $393.48 $405.57 $MT.67 $429.76 $441.86 $453.95
30 Net Income $515.24 $533.99 $552.73 $571.47 $590.21 $608.36 $626.50 $644.64 $662.78 $680.93
H Noncash: Depreciation Amortization $13.00 $13.00 $13.00 $13.00 $13.00 $13.00 $13.00 $13.00 $13.00 $13.00
32 Noncash: Change in Net Waorking Capital $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00
33 MNoncash: Capital Expenditures $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 $0.00 50.00 $0.00
34 Free Cash Flow $528.24 $546.99 $565.73 $584.47 $603.21 $621.36 $639.50 $657.64 $675.78 $5,444.64
35
36| Investment Outlay [_ss00.00 | [ $1,500.00 | [ | [ [ |
Figure 5.38 — Scenario Analysis Tool
SCENARIO ANALYSIS TABLE
Output Variable: 656 Initial Base Case Value: $3,127.87
Column Variable: $C$12  Min: 10 Max: 30 Steps: 20 Stepsize: — Initial Base Case Value: 510.00
Row Variable: $C39 Min: 0.3 Max: 0.5 Steps: - Stepsize: 0.01 Initial Base Case Value: 40.00%
$10.00 $11.00 $12.00 $13.00 $14.00 $15.00 $16.00 $17.00 $18.00 $19.00 $20.00 $21.00 $22.00 $23.00 $24.00 $25.00 $26.00 $27.00 $28.00 $29.00 $30.00
30.00% $390483 5413443 5436404 $459364 $482324 $505284 $528244 $551204 §574164 8597124 $6,20085 $643045 $6,66005 $6,88065 $7,11025 §734885 §757845 5780805 $8,03765 $8,26726 $8.49686
31.00% $3827.14 5405346 5427978 $450610 $4,73242 $495874 $518508 $541139 5563771 $5864.03 $5,000.35 $6316.67 5654209 5676931 $6,99563 §$722106 5744828 §757460 $7,90092 $8127.24 §835356
32.00% $3749.44 5397248 $4,19552 $4,418.56 $4,641.61 $4,864.65 $5087.69 $5310.73 $5533.77 $5756.81 $5979.85 $6,202.89 $6,425.94 $6,648.98 $6,872.02 $7,09506 $7318.10 5754114 §$7,764.18 $7,987.22 $8,210.26
33.00% $367175 $3,88151 3411127 $433103 $4,55079 $477055 $4,99031 $521007 $542983 $564060 $5869.36 $6,080.12 $6,30888 3652864 $6,74340 $6,96816 $7,18792 $7407.68 $7,62745 §7847.21 $8,066.97
34.00% $3594.05 $381053 $4,027.01 $4,243.49 $4459.97 $4,676.45 $4,892.94 $5,109.42 $532590 $554238 §$5758.86 $5,975.34 $6,191.82 $6,408.30 $6,624.79 $6,84127 $7,057.75 9727423 §$7,490.71 $7,707.19 $7,923.67
35.00% $351635 $372055 $394276 $4,15506 $4,369.16 $4,58236 $4,70566 $500876 $522196 $543516 $564836 $586157 $6,07477 $6,287.97 8650117 $671437 $692757 $714077 $7,35397 §7,567.17 $7,780.38
36.00% $3438.66 5364858 5385850 $406842 5427834 5448826 $469818 $4,90810 5511803 $532795 $553787 $574779 §5095771 5616763 $6,37755 $6,58747 5679739 $7007.32 $7,21724 $742716 §7,637.08
37.00% $3360.96 $3567.60 $3,774.24 $3,980.88 $4,187.53 $4,394.17 $4,600.81 $4,807.45 $5014.09 $522073 $5427.37 $5634.01 $5840.65 $6,047.30 $6,253.94 $6,460.58 9666722 $6,873.86 $7,080.50 $7,287.14 $7,493.78
38.00% $3283.27 $3,48663 $368099 $3.89335 §4,00671 $430007 $4,50343 $4,70679 $491015 $511351 $5316.88 $552024 §572360 $5926096 $6,130.32 $6,33368 $6537.04 $6,74040 $594376 §7147.13 §7.35049
39.00% $320557 $340565 $3,605.73 $3,805.81 $4,005.89 $4,205.97 $4,406.06 $4,606.14 $4806.22 $5006.30 $5206.38 $5406.46 $5606.54 $5806.62 $6,006.70 $6,206.79 9$6,406.87 $6,606.95 $6,807.03 $7,007.11 $7,207.19
40.00% $3 12787 $332467 $352148 $371828 §391508 5411188 $430868 $450548 $470228 $489008 $500588 $520268 §548049 $568629 $588300 $6,07989 $627660 $647349 $667029 §686709 §7 06389
41.00% $3,05018 $324370 $3,43722 $363074 5382426 5401778 $421130 $440482 5450835 5479187 $4,98539 $517891 5537243 $556595 $575047 $5095299 §6,14651 $634003 $6,53358 $6,727.08 5692060
42.00% $2,972.48 $3,162.72 $3,352.96 $3,54320 $373345 $392369 $4,113.93 $4304.17 5449441 5468465 $4,874.89 $5065.13 $525537 $544561 $5635.86 $5826.10 $6,016.34 $6,206.58 $6,396.82 $6,587.06 $6,777.30
43.00% $2,89479 $308175 $3,26871 $345567 $364263 $3,82050 $4,01655 $420351 §$4,30047 $457743 $476440 $495136 $513832 $532528 $551224 $560920 $588616 $6,07312 $6,260.08 $6,447.04 $6634.01
44.00% $2,817.09 $3,000.77 $3,184.45 $3,368.13 $3551.81 $373549 $3,919.18 $4,102.86 $4,286.54 $4,470.22 $4,653.90 $4,837.58 $502126 $5204.94 $5388.62 $5572.30 $5755.98 $5939.67 $6,123.35 $6,307.03 $6,490.71
45.00% $2739.39 $291979 $310020 $328060 §$346100 $364140 $3,82180 $400220 $4,18260 $4,36300 $454340 $472380 5490420 8508461 $526501 $544541 §562581 $580621 $598661 $616701 $634741
46.00% 3266170 $283882 $3,01594 $3,19306 $3370.18 $354730 $372442 $390154 5407866 $425579 $4.43291 $461003 5478715 $4,96427 $514139 $531851 $540563 $567275 $584087 5602700 5620412
47.00% $2,584.00 $2,757.84 $2931.68 $3,10552 $3279.37 $3453.21 $3,627.05 $3,800.89 $3,974.73 $4,148.57 $4,322.41 $4,49625 $4670.09 5484393 $5017.77 $5191.62 $536546 $5539.30 $5713.14 $5886.98 $6,060.82
48.00% $250631 $267687 $2,84743 $3,01709 $318855 $3,35011 $352967 $3,70023 §3,87079 $404135 $421191 $438248 $4553.04 $472360 $4,80416 $506472 §523528 $540584 $557640 $574696 $591752
49.00% $2,428.61 $2,595.89 $2,763.17 $2930.45 $3097.73 $326501 $3,43229 $3,599.58 $3766.86 $3,934.14 $4,101.42 $426870 $443598 $460326 $4,770.54 $4,937.82 5510510 $5272.38 $5439.67 $5606.95 $5774.23
50.00% $235091 $251491 $267892 $2,84202 §$300692 $317092 $333492 $349802 §366292 53826092 $390092 $4,15492 $4318092 54482092 $464593 §481093 $497493 5513803 §530293 §546693 §563093

Figure 5.39 — Scenario Analysis Table
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Segmentation Clustering Tool

A final analytical technique of interest is that of segmentation clustering. Figure 5.40 illustrates a
sample dataset. You can select the data and run the tool through Risk Simulator | Tools |
Segmentation Clustering. Figure 5.40 shows a sample segmentation of two groups. That is,
taking the original data set, we run some internal algorithms (a combination or k-means
hierarchical clustering and other method of moments in order to find the best-fitting groups or
natural statistical clusters) to statistically divide, or segment, the original data set into two groups.
You can see the two-group memberships in Figure 5.40. Clearly you can segment this data set
into as many groups as you wish. This technique is valuable in a variety of settings including
marketing (market segmentation of customers into various customer relationship management

groups etc.), physical sciences, engineering, and others.

Figure 5.40 — Segmentation Clustering Tool and Results
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Cluster and Segmentation Analysis |5@|&J1
100 SEGMENTATION AND CLUSTER ANALYSIS RESULT
1.00 Clustering ar!d segmentation analysis is used to mathematically separate a set
of data into different segment groups or clusters Groups:

= Selected Data Sample Ordered Data 2
o - : 1 1.00 1

S 1 2 1.00 1
S : 3 2.00 1
i 5 4 3.00 1
16.00 = 5 2.00 1
14.00 2 6 4.00 1
15.00 a 7 15.00 1
125.00 is 8 16.00 1
126.00 16 9 14.00 1
128.00 14 10 15.00 1
120.00 15 11 125.00 2
130.00 125 12 126.00 2
175.00 s 13 128.00 2
179.00 ; 14 129.00 2
174.00 Options 15 130.00 2
@ Showall 2 %1/ segmentation clusters 16 175.00 2

() Show cluster number |2 = 1; ‘gjgg i

(7 Show cluster numbership for value Cancel



Risk Simulator 2011 New Tools

Random Number Generation, Monte Carlo versus Latin Hypercube, and Correlation
Copula Methods

Starting with version 2011, there are 6 Random Number Generators, 3 Correlation Copulas, and 2
Simulation Sampling Methods to choose from (Figure 5.41). These preferences are set through
the Risk Simulator | Options location.

The Random Number Generator (RNQG) is at the heart of any simulation software. Based on the
random number generated, different mathematical distributions can be constructed. The default
method is the ROV Risk Simulator proprietary methodology, which provides the best and most
robust random numbers. As noted, there are 6 supported random number generators and, in
general, the ROV Risk Simulator default method and the Advanced Subtractive Random Shuffle
method are the two approaches recommended for use. Do not apply the other methods unless
your model or analytics specifically calls for their use, and even then, we recommended testing
the results against these two recommended approaches. The further down the list of RNGs, the
simpler the algorithm and the faster it runs, in comparison with the more robust results from
RNGs further up the list.

In the Correlations section, three methods are supported: the Normal Copula, T-Copula, and
Quasi-Normal Copula. These methods rely on mathematical integration techniques, and when in
doubt, the normal copula provides the safest and most conservative results. The t-copula provides
for extreme values in the tails of the simulated distributions, whereas the quasi-normal copula
returns results that are between the values derived by the other two methods.

In the Simulation methods section, Monte Carlo Simulation (MCS) and Latin Hypercube
Sampling (LHS) methods are supported. Note that Copulas and other multivariate functions are
not compatible with LHS because LHS can be applied to a single random variable but not over a
joint distribution. In reality, LHS has very limited impact on the model output's accuracy the
more distributions there are in a model since LHS only applies to distributions individually. The
benefit of LHS is also eroded if one does not complete the number of samples nominated at the
beginning, that is, if one halts the simulation run in mid-simulation. LHS also applies a heavy
burden on a simulation model with a large number of inputs because it needs to generate and
organize samples from each distribution prior to running the first sample from a distribution. This
can cause a long delay in running a large model without providing much more additional
accuracy. Finally, LHS is best applied when the distributions are well behaved and symmetrical
and without any correlations. Nonetheless, LHS is a powerful approach that yields a uniformly
sampled distribution, where MCS can sometimes generate lumpy distributions (sampled data can

sometimes be more heavily concentrated in one area of the distribution) as compared to a more
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uniformly sampled distribution (every part of the distribution will be sampled) when LHS is
applied.

o N
'E Cptions &J

Random Mumber Generator

[T] Minimize Excel and All Charts \When Running @ ROV Risk Simulator (Default)
¥

Start Risk Simulator with Excel

) Advanced Subtractive Random Shuffle
[] Always Show Forecast Windows on Top

[ Show Cell Comments on Assumpticns, *) Leng Period Shuffle

F ts and Decision Variabl
orecasts and Decision Variables Portable Random Shuffle

Correlation ) Quick IEEE Hex
@ Mormal Copula (Default)
) T Copula: DF = a0

(7) Quasi-Normal Copula: DF = |37 : Simulation

") Basic Minimal Portable

@ Monte Carlo Simulation (Default)
73 Latin Hypercube Sampling (LHS)*

Parameters’ Color Scheme

| Assumption | | Decision | | Forecast

v
Language |English _v_J ik L= jaciéemibingy
* LHS is not recommended when there are l oK J [ Ceawel

correlated assumptions

Figure 5.41 — Risk Simulator Options

Deseasonalizing and Detrending Data

The data deseasonalization and detrending tool removes any seasonal and trending components in
your original data (Figure 5.42). In forecasting models, the process usually includes removing the
effects of accumulating data sets from seasonality and trend to show only the absolute changes in
values and to allow potential cyclical patterns to be identified after removing the general drift,
tendency, twists, bends, and effects of seasonal cycles of a set of time-series data. For example, a
detrended data set may be necessary to see a more accurate account of a company's sales in a
given year more clearly by shifting the entire data set from a slope to a flat surface to better
expose the underlying cycles and fluctuations.

Many time-series data exhibit seasonality where certain events repeat themselves after some time
period or seasonality period (e.g., ski resorts’ revenues are higher in winter than in summer, and
this predictable cycle will repeat itself every winter). Seasonality periods represent how many
periods would have to pass before the cycle repeats itself (e.g., 24 hours in a day, 12 months in a
year, 4 quarters in a year, 60 minutes in an hour, etc.). For deseasonalized and detrended data, a
seasonal index greater than 1 indicates a high period or peak within the seasonal cycle, and a
value below 1 indicates a dip in the cycle.
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Procedure (Deseasonalization and Detrending)

¥ Select the data you wish to analyze (e.g., B9:B28) and click on Risk Simulator |
Tools | Data Deseasonalization and Detrending.

8 Select Deseasonalize Data and/or Detrend Data, select any detrending models
you wish to run, enter in the relevant orders (e.g., polynomial order, moving
average order, difference order, and rate order), and click OK.

¥ Review the two reports generated for more details on the methodology,

application, and resulting charts and deseasonalized/detrended data.

Procedure (Seasonality Test)

¥ Select the data you wish to analyze (e.g., B9:B28) and click on Risk Simulator |
Tools | Data Seasonality Test.

& Enter in the maximum seasonality period to test. That is, if you enter 6, the tool
will test the following seasonality periods: 1, 2, 3, 4, 5, and 6. Period 1, of course,
implies no seasonality in the data.

¥ Review the report generated for more details on the methodology, application,

and resulting charts and seasonality test results. The best seasonality periodicity
is listed first (ranked by the lowest RMSE error measure), and all the relevant
error measurements are included for comparison: root mean squared error
(RMSE), mean squared error (MSE), mean absolute deviation (MAD), and mean
absolute percentage error (MAPE).

ez [T D E F G H 1 J K L M N
8 Data - : 3
| 2 684.20 [F] Data Deseasonalization & Detrending @ Procedure for Deseasonalizing and Detrending:
£ ety This tool de-seascnalizes and de-trends your original data to take 1. select the data you wish to analyze (e.g., B9:B28)
11 765.40 out any | and trending compenents. In for g models, and click on Risk Simulator | Tools | Data
it the process of removing the effects of accumulating data sets from A 3
12 892 30 seasonality and trend to show only the absolute changes in values Deseasonalization and Detrending
and to allow potential cyclical patterns to be identified after :
13 885.40 et e el Skt A nis her st el of 2. 5elect Deseasonalize Data and/or Detrend Data,
14 677.00 seasonal cycles of a set of time-series data. select any detrending models you wish to run,
15 1,006.60 e e Foros and enterlﬁ the relevant order_s (e.g., Polynomial
16 1,122.10 order, moving average order, difference order,
17 1,163.40 ¥ Deseasonalize Data and rate order) and click OK
18 99320 Naaribex: of Pesicels Per Sesoned Cyele M 3. Review the two reports generated for more details
19 1,312.50 i on the methodology, application, and resulting
20 1,545.30 ¥ Detrend Data charts and deseasonalized/detrended data
21 1,596.20 -
v Li v i
22 1,960.40 v Linear [¥ Exponential S ity Teot $3
23 1,735.20 ¥ Logarithmic ¥ Polynomial {Order) ]E 5:
24 2,029.70 ¥ Power ¥ Moving Average (Order) |3 E‘i Time Series Data  |B9:E28
25 2,107.80 - - -
_2_6_ 165020 v Static Mean ' Difference (Order) 1 = Maximum Seasonality Period to Test 19 5:
= i ¥ Static Median ¥ Rate (Order) [ =
z 2.304.40 - conce_|
28 2,639.40 Cancel |
29
30

Figure 5.42 — Deseasonalization and Detrending Data
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Principal Component Analysis

Principal Component Analysis is a way of identifying patterns in data and recasting the data in
such a way as to highlight their similarities and differences (Figure 5.43). Patterns of data are
very difficult to find in high dimensions when multiple variables exist, and higher dimensional
graphs are very difficult to represent and interpret. Once the patterns in the data are found, they
can be compressed, and the number of dimensions is now reduced. This reduction of data
dimensions does not mean much reduction in loss of information. Instead, similar levels of
information can now be obtained with a smaller number of variables.

Procedure
¥ Select the data to analyze (e.g., B11:K30), click on Risk Simulator | Tools |
Principal Component Analysis, and click OK.
¥ Review the generated report for the computed results.

VARL VAR2 VAR3 VAR4 VAR5 VARG VAR7 VARE VARS VARI10 Procedure:

96.998 87.223 102.443 112.765 111.984 117.331 78.164 97.658 110.950 89.133 1. Select the data to analyze (e.g., B11:K30), click on
93.098 83.096 81.531 90.224  92.265 78.821 94.321 95.960 101.349 96.345 Risk Simulator | Tools | Principal Component Analysis
96,730 96.298 113.426  99.147 98.138 94.868 119.722 108.657 123.757 93.451 and click OK

116.615 83.876 105.389 109.022 119.189 99.155 94.762 106.751 96.187 107.576 | 2. Review the generated report for the computed results
85.358 91.528 84,784 96.371 99.675 100.281 96.773 121.945  82.575 92.635

74.224 114477 87202 93.464 107.577 104.667 108.746 105.957 86.282  88.843 — -

106940 103.226 90,602 97.591 101315 105578 101387 90.890 118.848 104.872 Prancipal Comparnen e S

100.722 108.298 108.620 93.635 90.768 111.112 87.988 84411 107113 106.384 Frincipal Component Analysis is a way of identifying patterns
in data, and recasting the data in such as way as to highlight

122.057 114438 113.039 101130 100.020 104.537 99.745 89453 82.252  108.283 e e L

104.442 106.179 102135 89.731 112.382 96.888 91.601 91789 95.710  95.466 dwf_ﬁu;ult tg Endhm l;_gh dlr_mnslwns v':hen mu\tlpf_:ranlatbtles

94762 108494 105132 93.917 113.050 82391 105506 98.837 100417  93.459 e e O e e

94504 108.493 108.030 1045564 106.914 116.306 103.039 105.890 118528 96.544 found, they can be compressed and the number of
dimensions is now reduced. This reduction of data

110.383 101435 111.410 98.517 92.202 110.760 94.182 105339 105458 96.836 dimensions does not mean much reduction in loss of
information. Instead, similar levels of information can now be

95502  86.340 119.930 94.335 100.861 97.657 128.354 112.520 108.809 113.322 e e e

101.879 105420 97504 §7.789 112667 97.111 86.941 107.643 107.843 104.282 e

104.039 93519 107.231 105253 110750 72.306 104.638 114.671 82.774  100.455

113.540 116.882 102.387 101.451 118.545 99.574 93.431 109.074 99.901  110.392 Cancel

104.347 114.534 98788 90.383  84.614  74.349 101.032 102.992 99.822  102.005

102.582 114.762 100.853 88.833 86.101 101.915 109511 84.912 93.900 105.235
97.832  96.564 98.365 95.603 91.974 106.448 100.588 112.635 102.622 100.571

Figure 5.43 — Principal Component Analysis

Structural Break Analysis

A structural break tests whether the coefficients in different data sets are equal, and this test is
most commonly used in time-series analysis to test for the presence of a structural break (Figure
5.44). A time-series data set can be divided into two subsets. Structural break analysis is used to
test each subset individually and on one another and on the entire data set to statistically
determine if, indeed, there is a break starting at a particular time period. The structural break test
is often used to determine whether the independent variables have different impacts on different
subgroups of the population, such as to test if a new marketing campaign, activity, major event,
acquisition, divestiture, and so forth have an impact on the time-series data.
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Suppose, for example, a data set has 100 time-series data points. You can set various breakpoints
to test, for instance, data points 10, 30, and 51. (This means that three structural break tests will
be performed: data points 1-9 compared with 10-100; data points 1-29 compared with 30-100;
and 1-50 compared with 51-100 to see if there is a break in the underlying structure at the start of
data points 10, 30, and 51.). A one-tailed hypothesis test is performed on the null hypothesis (Ho)
such that the two data subsets are statistically similar to one another, that is, there is no
statistically significant structural break. The alternative hypothesis (H,) is that the two data
subsets are statistically different from one another, indicating a possible structural break. If the
calculated p-values are less than or equal to 0.01, 0.05, or 0.10, then the hypothesis is rejected,
which implies that the two data subsets are statistically significantly different at the 1%, 5%, and
10% significance levels. High p-values indicate that there is no statistically significant structural
break.

Procedure
¥ Select the data you wish to analyze (e.g., B15:D34), click on Risk Simulator |
Tools | Structural Break Test, enter in the relevant test points you wish to apply
on the data (e.g., 6, 10, 12), and click OK.
& Review the report to determine which of these test points indicate a statistically
significant break point in your data and which points do not.

Y X1 X2
521 18308 135 Procedure:
367 1148 600 1. Select the data to analyze (e.g., B15:D34) and click on
443 18068 372 Risk Simulator | Tools | Structural Break Test, and enter
365 7729 142 in the relevant test points you wish to apply on the data
614 100484 | 432 {e.g., 6, 10, 12) and click OK
385 16728 290 2. Review the report to determine which of these test
286 14630 346 points indicate a statistically significant break point
397 4008 328 in your data and which points do not
764 38927 354
;1;; 232;1212 ;:(5} ( @ Structural Break Test &J
231 3136 197
o e = Time-Series Data [B15:024 =)
328 J8886 173 Test Breskpoints  |6.10,12
240 16396 190 et ke e o
286 13035 235
285 12973 190 Cancel |
569 16309 241

96 5227 189
498 19235 358

Figure 5.44 — Structural Break Analysis
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Trendline Forecasts

Trendlines can be used to determine if a set of time-series data follows any appreciable trend
(Figure 5.45). Trends can be linear or nonlinear (such as exponential, logarithmic, moving
average, power, polynomial, or power).

Procedure
¥ Select the data you wish to analyze, click on Risk Simulator | Forecasting |
Trendline, select the relevant trendlines you wish to apply on the data (e.g.,
select all methods by default), enter in the number of periods to forecast (e.g., 6
periods), and click OK.
& Review the report to determine which of these test trendlines provide the best fit
and best forecast for your data.

Historical Sales Revenues

Year Quarter Period Sales

20086 1 1 £6684.20

2008 2 2 £564.10

2008 3 3 S765.40 # “
2008 4 4 £892 30 E Trendline &J
2007 1 5 £865.40

2007 2 & SE77.00 Selected Trendlines

2007 3 7 §1,006 60 W Linear [W Exponential

;gg; j g g::gg;g V¥ Logarithmic ¥ Palynomial (Order) JZ 3:
2008 2 10 £993.20 ¥ Power [v Moving Average (Order) |2 3:
2008 3 i1 §1,312.50 ]
2008 4 12 51,545.30 Generate forecasts [§ =] periods

2009 2 14 |81.26040 L S Cancel I
2009 3 15 §1,735.20 h,

2008 4 16 8202870

2010 1 17 82 107 80

2010 2 18 £1,650 30

2010 3 19 82 304 40

2010 4 20 §2.638.40

Figure 5.45 — Trendline Forecasts

Model Checking Tool

After a model is created and after assumptions and forecasts have been set, you can run the
simulation as usual or run the Check Model tool (Figure 5.46) to test if the model has been set up
correctly. Alternatively, if the model does not run and you suspect that some settings may be
incorrect, run this tool from Risk Simulator | Tools | Check Model to identify where there might
be problems with your model. Note that while this tool checks for the most common model
problems as well as for problems in Risk Simulator assumptions and forecasts, it is in no way
comprehensive enough to test for all types of problems. It is still up to the model developer to
make sure the model works properly.
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Figure 5.46 — Model Checking Tool
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Percentile Distributional Fitting Tool

The Percentile Distributional Fitting tool (Figure 5.47) is another alternate way of fitting
probability distributions. There are several related tools and each has its own uses and
advantages:

* Distributional Fitting (Percentiles)—using an alternate method of entry (percentiles and
first/second moment combinations) to find the best-fitting parameters of a specified
distribution without the need for having raw data. This method is suitable for use when
there are insufficient data, only when percentiles and moments are available, or as a
means to recover the entire distribution with only two or three data points but the
distribution type needs to be assumed or known.

»  Distributional Fitting (Single Variable)—using statistical methods to fit your raw data to
all 42 distributions to find the best fitting distribution and its input parameters. Multiple
data points are required for a good fit, and the distribution type may or may not be known
ahead of time.

»  Distributional Fitting (Multiple Variables)—using statistical methods to fit your raw data
on multiple variables at the same time. This method uses the same algorithms as the
single variable fitting, but incorporates a pairwise correlation matrix between the
variables. Multiple data points are required for a good fit, and the distribution type may
or may not be known ahead of time.

*  Custom Distribution (Set Assumption)—using nonparametric resampling techniques to
generate a custom distribution with the existing raw data and to simulate the distribution
based on this empirical distribution. Fewer data points are required, and the distribution
type is not known ahead of time.

Procedure
& Click on Risk Simulator | Tools | Distributional Fitting (Percentiles), choose
the probability distribution and types of inputs you wish to use, enter the
parameters, and click Run to obtain the results. Review the fitted R-square results
and compare the empirical versus theoretical fitting results to determine if your
distribution is a good fit.
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- -
[F] Data Fitting — Subject Matter Expert Curve Fit EI_IE

This data fitting method allows you to enter custom percentiles in lieu of one or more regular input parameters to determine the theoretical distribution, and is useful when soliciting
subject matter expert opinions. For instance, instead of entering Mean and Standard Deviation for a Mormal distribution, you can replace any one or both of these parameters with
your own percentiles and this tool will perform a fitting to obtain the relevant distributional parameters.

Step 1: Select the distribution and parameter estimation type Step 2: Enter the relevant inputs

Triangular -- Minimum, MostLikely, Percentile - Parameter Value Percentile(%)
Triangular - Percentile, Percentile, Maximum

Percentile 253 10
Triangular — Percentile, MostLikely, Percentile
Triangular - Minimum, Percentile, Percentile Percentile 266 45
Triangular - Percentile, Percentile, Percentile Percentile 3.89 “
Triangular — Mean, Stdev, Percentile
* Uniform =
Uniform — Minimum, Percentile Step 3: Run curve-fit and review the empirical versus theoretical distributions

Uniform — Percentile, Maximum

Uniform — Percentile, Percentile Fitted R-Square AU
Uniform — Mean, Stdewv Alpha 0.7113

* Weibull * Beta 0.2935
Weibull - Alpha, Percentile Location 25176
Weibull - Percentile, Beta EE :
Weibull — Percentile, Percentile hanpdical [IeorEtical
Weibull - Mean, Stdev 25300 25300
= Weibull 3 * 26600 26600
Weibull 3 -- Percentile, Beta, Location 3.5900 38900
Weibull 3 -- Alpha, Percentile, Location Mean 28336
Weibull 3 -- Alpha, Beta, Percentile

Weibull 3 -- Percentile, Percentile, Location ey e
Weibull 3 - Percentile, Beta, Percentile i Skew 34054
Weibull 3 - Alpha, Percentile, Percentile

Weibull 3 — Percentile, Percentile, Percentile LM

Weibull 3 -- Mean, Stdev, Percentile

i Kurtosis 19,3606

Fl

Figure 5.47 — Percentile Distributional Fitting Tool

Distribution Charts and Tables: Probability Distribution Tool

Distributional Charts and Tables is a new Probability Distribution tool that is a very powerful
and fast module used for generating distribution charts and tables (Figures 5.48 through 5.51).
Note that there are three similar tools in Risk Simulator but each does very different things:

»  Distributional Analysis—used to quickly compute the PDF, CDF, and ICDF of the 42
probability distributions available in Risk Simulator, and to return a probability table of
these values.

»  Distributional Charts and Tables—the Probability Distribution tool described here used
to compare different parameters of the same distribution (e.g., the shapes and PDF, CDF,
ICDF values of a Weibull distribution with Alpha and Beta of [2, 2], [3, 5], and [3.5, 8],
and overlays them on top of one another).

*  Overlay Charts—used to compare different distributions (theoretical input assumptions
and empirically simulated output forecasts) and to overlay them on top of one another for
a visual comparison.
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Procedure
¥ Run ROV BizStats at Risk Simulator | Distributional Charts and Tables, click
on the Apply Global Inputs button to load a sample set of input parameters or
enter your own inputs, and click Run to compute the results. The resulting four
moments and CDF, ICDF, PDF are computed for each of the 45 probability
distributions (Figure 5.48).

[R] ROV PROBABILITY DISTRIBUTIONS o[

Distributions | Charts and Tables |

This tool lists all the probability distributions available in Real Options Valuation, Inc.'s suite of products.

Minimum 10 AMpha 2 Location 10 Percentle 0.5 Mean 10 Alpha 1 5 DF Numerstor 10
Apply Global Inputs
Madmum 20 Beta 5 Probabilty 0.5 DF 10 Stdev 2 Apha2 5§ DF Denominator 20

MostLikely 15 Lambda 12 Factor 2 Trals 20 Successes | Population 100 Pop Success 5
Arcsine Bernoulli Beta Beta 3 Beta 4 J
Minimum 10 Probability 05 Alpha 2 Alpha 2 Alpha 2
Maxirnum 20 Beta 5 Beta 5 Beta 5
Location 10 Location 10 - |
Factor 2
Random X 7 Random X 0 Random X 06 Random X 10.25 Random X
Percentile 05 Percentile 0.5 Percentile 05 Percentile 0.5 Percentile
PDF PDF PDF PDF PDF
COF CDF CDF CDF CDF
1CDF ICDF ICDF ICDF ICDF
Mean Mean Mean Mean Mean
Stdev Stdev Stdev Stdev Stdev
Skew Skew Skew Skew Skew
Kurtasis Kurtasis Kurtosis Kurtosis Kurtosis
Binomial Cauchy Chi-Square Cosine Discrete Uniform
Trials 20 Alpha 2 DF 10 Minimum 10 Minimum
Probability 05 Beta 5 Maximum 20 Maximum
Random X 10 Random X 12 Random X 14 Random X 155 Random X
Percentile 0.5 Percentile 0.5 Percentile 0.5 Percentile 0.5 Percentile
PDF PDF 1 PDF PDF PDF
CDF CDF CDF CDF CDF
1CDF ICDF ICDF ICDF ICDF
Mean Mean Mean Mean
Stdev Stdev Stdev Stdev
Skew Skew Skew Skew
Kurtosis 0.1 Kurtosis i Kurtosis 0.59 Kurtosis 1
Decimals: 4 = Language: |English - l Run ] I Close

Figure 5.48 — Probability Distribution Tool (45 Probability Distributions)

8 Click on the Charts and Tables tab (Figure 5.49), select a distribution [A] (e.g.,
Arcsine), choose if you wish to run the CDF, ICDF, or PDF [B], enter the
relevant inputs, and click Run Chart or Run Table [C]. You can switch between
the Charts and Table tab to view the results as well as try out some of the chart
icons [E] to see the effects on the chart.

® You can also change two parameters [H] to generate multiple charts and
distribution tables by entering the From/To/Step input or using the Custom inputs
and then hitting Run. For example, as illustrated in Figure 5.50, run the Beta
distribution and select PDF [G], select Alpha and Beta to change [H] using
custom [I] inputs and enter the relevant input parameters: 2;5;5 for Alpha and
5;3;5 for Beta [J], and click Run Chart. This will generate three Beta
distributions [K]: Beta (2,5), Beta (5,3), and Beta (5,5) [L]. Explore various chart
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types, gridlines, language, and decimal settings [M], and try rerunning the
distribution using theoretical versus empirically simulated values [N].

Figure 5.51 illustrates the probability tables generated for a binomial distribution
where the probability of success and number of successful trials (random variable
X) are selected to vary [O] using the From/To/Step option. Try to replicate the
calculation as shown and click on the Table tab [P] to view the created
probability density function results. This example uses a binomial distribution
with a starting input set of Trials = 20, Probability (of success) = 0.5, and
Random X, or Number of Successful Trials, = 10, where the Probability of
Success is allowed to change from 0., 0.25, ..., 0.50 and is shown as the row
variable, and the Number of Successful Trials is also allowed to change from 0,
1, 2, ..., 8 and is shown as the column variable. PDF is chosen and, hence, the
results in the table show the probability that the given events occur. For instance,
the probability of getting exactly 2 successes when 20 trials are run where each
trial has a 25% chance of success is 0.0669, or 6.69%.

-
ROV PROBABILITY DISTRIBUTIONS

= - g‘

Distributions | Charts and Tables |

This tool generates a probability table and comparative charts for a chosen distrbution as well as the diferent shapes based on different input parameters. To view multiple distributions, use Risk Simulator's

QOveray Chart tool
Distibution: [ Arcsine A | Chatts and Tabies Chat
i Change First Parameter Change Second Parsmeter @ Theorstical Distrbution
Mini 0 @ POF
e ) B Farameter [ 7] | @ Smilsted Distibution
eomag X IBE Fom 0 Fom 0 Tidk 10000
Random X 12 akne @ From/To Series To E To 1 Seed 123
Hest. ©) Custom Step 01 Step 01
v "
Chart | Table
FEHE W-E &Pl OF SO0 KN V8 ® E e Coler

25

[l

Probabilty Density

1

D&

o
10.2000 11.2669 12.3338 13.4007

F  Decimals: 4=

14 4875 15 5344

186013

@ Minimum: 10.0000
Maximum: 20.0000

17 6682 18.7381 19.8020

Chart Type: 2D Area

=

Close

[ Gidines | [ Rmn ]

Figure 5.49 — ROV Probability Distribution (PDF and CDF Charts)
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1
ROV PROBABILITY DISTRIBUTIONS L = g
Distributions | Charts and Tables
This tool generates a probability table and comparative charts for a chosen distribution as well as the different shapes based on different input parameters. To view muttiple distributions, use Risk Simulator's
Overay Chart toal
Distribution” | Beta | Charts and Tabiss Chart
Change First Parameter.:  H  Change Second Parameter. Theoretical Distribution
Mpha 2 @PDF G P N
- arameter [Aipha v| [Beta v| @ Simulated Distribution
5 @ CDF 1
Beta E From 0 From 0 Trials 1000
06 | @ ICDF —— B -
Random X - () From/Ta Series To 1 ! To| 1 Seed 123
{ | Feeut. ® Custom Sep [ 01 | Sep | 0
255 J 5:3.8
0. Choose Ganm detbtion, sl Alpha and Beta 2 paramelers o change, and ener: 2. 3and 5 in the o custom npul
Chat | Table boxes for generating Gamma(2 5) and Gamma(3.5) charts
CHSM-E4+ 00 s Al e 0K ki v Index
e [ Alpha: 2.0000]
H Beta: 5.0000
| Alpha 5.0000)
K L Beta: 3.0000
2 | Alpha: 5.0000|
Beta: 5.0000
=
2 15
5
a
=
=1
=
E 1
[
05
0
0.0083 0.2483 0.4883 0.7284 0.9684
Decimals: 4 Language: M Chart Type: [ZD Line v] [ e l l Run ] l Close

Figure 5.50 — ROV Probability Distribution (Multiple Overlay Charts)

-
[FR] ROV PROBABILITY DISTRIBUTIONS

Distributions | Charts and Tables
This tool generates a probabilty table and comparative charts for a chosen distribution as well as the dfferent shapes based on different input parameters. To view multiple distributions, use: Risk Simulator's
Owerlay Chart tool.
Distribution [Ehnomial + | Charts and Tables Chart
Change First Parameter: Change Second Parameter: @ Thearetical Distibution
D . i3 fhe Parameter [Prebabiey v|  [Rendomx 5| | ® Smulied Distibiition
Ectcary 03 FEEDE ol 02 Fon| 0 Tids 1000
Random X 19 | 3 ICDF From./To Series o] %[ 05 To| 8 Seed | 123
0| Resut: () Custom Sep | 005 | Step 1
0 0.176197 A :
255 | 535
'
Table 5
Row Variable: Probability Column Variable: Random X Type: PDF

M 0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 8.0000

1 0.2000 0.0115 0.0576 01362 0.2054 02182 01746 01091 00545 0.0222

2 0.2500 0.0032 00211 0.0663 01339 01897 02023 01686 01124 0.0603

3 0.3000 0.0008 0.0068 00278 00716 01304 01789 01916 01643 01144

4 0.3500 0.0002 0.0020 0.0100 0.0323 0.0738 01272 01712 01844 0.1614

5 0.4000 0.0000 0.0005 0.0031 0.0123 0.0350 00746 01244 01659 01797

6 0.4500 0.0000 0.0001 0.0008 0.0040 00139 0.0365 00746 01221 01623

7 0.5000 0.0000 0.0000 0.0002 0.0011 0.0046 0.0148 0.0370 00739 0.1201

— oo

Decimals

Figure 5.51 — ROV Probability Distribution (Distribution Tables)
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ROV BizStats

This new ROV BizStats tool is a very powerful and fast module in Risk Simulator that is used for

running business statistics and analytical models on your data. It covers more than 130 business

statistics and analytical models (Figures 5.52 through 5.55). The following provides a few quick

getting started steps on running the module and details on each of the elements in the software.

Procedure

Notes

Run ROV BizStats at Risk Simulator | ROV BizStats and click on Example to load a
sample data and model profile [A] or type in your data or copy/paste into the data grid
[D] (Figure 5.52). You can add your own notes or variable names in the first Notes row
[C].

Select the relevant model [F] to run in Step 2 and using the example data input settings
[G], enter in the relevant variables [H]. Separate variables for the same parameter using
semicolons and use a new line (hit Enter to create a new line) for different parameters.
Click Run [I] to compute the results [J]. You can view any relevant analytical results,
charts, or statistics from the various tabs in Step 3.

If required, you can provide a model name to save into the profile in Step 4 [L]. Multiple
models can be saved in the same profile. Existing models can be edited or deleted [M]
and rearranged in order of appearance [N], and all the changes can be saved [O] into a
single profile with the file name extension *.bizstats.

The data grid size can be set in the menu, where the grid can accommodate up to 1,000
variable columns with 1 million rows of data per variable. The menu also allows you to
change the language settings and decimal settings for your data.

To get started, it is always a good idea to load the example file [A] that comes complete
with some data and precreated models [S]. You can double-click on any of these models
to run them and the results are shown in the report area [J], which sometimes can be a
chart or model statistics [T/U]. Using this example file, you can now see how the input
parameters [H] are entered based on the model description [G], and you can proceed to
create your own custom models.

Click on the variable headers [D] to select one or multiple variables at once, and then
right-click to add, delete, copy, paste, or visualize [P] the variables selected.

Models can also be entered using a Command console [V/W/X]. To see how this works,
double-click to run a model [S] and go to the Command console [V]. You can replicate
the model or create your own and click Run Command [X] when ready. Each line in the
console represents a model and its relevant parameters.

The entire * bizstats profile (where data and multiple models are created and saved) can
be edited directly in XML [Z] by opening the XML Editor from the File menu. Changes
to the profile can be programmatically made here and takes effect once the file is saved.
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e Click on the data grid’s column header(s) to select the entire column(s) or variable(s),
and once selected, you can right-click on the header to Auto Fit the column, Cut, Copy,
Delete, or Paste data. You can also click on and select multiple column headers to select
multiple variables and right-click and select Visualize to chart the data.

e Ifa cell has a large value that is not completely displayed, click on and hover your mouse
over that cell and you will see a popup comment showing the entire value, or simply
resize the variable column (drag the column to make it wider, double click on the
column’s edge to auto fit the column, or right click on the column header and select auto
fit).

e Use the up, down, left, right keys to move around the grid, or use the Home and End keys
on the keyboard to move to the far left and far right of a row. You can also use
combination keys such as: Ctr/+Home to jump to the top left cell, Ctr/+End to the
bottom right cell, Shift+Up/Down to select a specific area, and so forth.

e You can enter short notes for each variable on the Notes row. Remember to make your
notes short and simple.

e Try out the various chart icons on the Visualize tab to change the look and feel of the
charts (e.g., rotate, shift, zoom, change colors, add legend, and so forth).

e The Copy button is used to copy the Results, Charts, and Statistics tabs in Step 3 after a
model is run. If no models are run, then the copy function will only copy a blank page.

e The Report button will only run if there are saved models in Step 4 or if there is data in
the grid, else the report generated will be empty. You will also need Microsoft Excel to
be installed to run the data extraction and results reports, and Microsoft PowerPoint
available to run the chart reports.

e  When in doubt about how to run a specific model or statistical method, start the Example
profile and review how the data is setup in Step I or how the input parameters are entered
in Step 2. You can use these as getting started guides and templates for your own data and
models.

e The language can be changed in the Language menu. Note that currently there are 10
languages available in the software with more to be added later. However, sometimes
certain limited results will still be shown in English.

e You can change how the list of models in Step 2 is shown by changing the View drop list.
You can list the models alphabetically, categorically, and by data input requirements—
note that in certain Unicode languages (e.g., Chinese, Japanese, and Korean), there is no
alphabetical arrangement and therefore the first option will be unavailable.

e The software can handle different regional decimal and numerical settings (e.g., one
thousand dollars and fifty cents can be written as 1,000.50 or 1.000,50 or 1°000,50 and so
forth). The decimal settings can be set in ROV BizStats’ menu Data | Decimal Settings.
However, when in doubt, please change the computer’s regional settings to English USA
and keep the default North America 1,000.50 in ROV BizStats (this setting is guaranteed
to work with ROV BizStats and the default examples).
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P [ EXAMPLE | - ROV Biz Stats [ |

File Data Language Help
STEP 1: Data Manually enter your data, paste from another application, A STEP 2: Analysis Choose an analysis and enter the
B or load an example dataset with analysis E parameters required (see example

. 5 parameter inputs below)
Dataset |visualize | Command D isualize View: | alphabstical -

N | VARL ‘ VARZ ‘ VAR ‘ VAR4 | VARS | VARG | VART | VARS | VAR9 ‘ VARIO # | Absolute Values (ABS) * | vARS 7
NO... | ML M2 X2 a P WS || | anOVA: Randomized B\ndﬁs Multiple Treatme... |E| gAlRﬁ;VART;VARS H
1 |13889.. 286.70.. 521 18308 185 4041 796 72 ANV Single Factor Mitple Treaments;: L L
2 |13939.. 287.79.. 67 148 600 055 1 85 ANOVA: Tuo Way Analysis . )
3 [13969.. 28910.. 43 18068 372 3665 313 57 Tt F S
4 [13969.. 20040.. 365 7729 142 2351 451 73 M T o ] Nltes. b akie et
614 100484 432 2076 1908 75 MtaEaeneies Delid) (Optional:0. 1), Time-Series Lags
385 16728 290 1204 18 5 Auto Econometrics (Quick) (ijp\?onlam):
286 14630 346 3287 6784 67 Autocorrelation and Partial Autocorrelation z V:;Z} Vagives G
397 4008 38 0666 3408 62 Average (WVG) >0
764 38027 354 12038 2306 73 e e >0
7 73 86 F4IR 1119 5 ~ | Control Chart: C
+ Control Chart: NP
T T sukersh ki 0 S 2 st Control Chart: P
saved analysis in Step 4, view the results, charts Control Chart: R
and statistics, copy the results and charts to Control Chart: U
dipboard, or generate reports Contral Chart: ¥ e
Results | Charts | Statistics STEP 4: Save (Optional) ‘You can save multiple analyses and notes in the profile
- for future retrieval
Number of Dependent Variables Tested @ 3 -
Number of Econometric Models Tested : 61 |*|
MNumber of Best Models Shown : 20 Eer Name: Auto Econometrics (Detailed) L
Summary of Top Models: J
it s o —_—
039034 VAR LVARZ;LN(VARS) This is a test model running AE methodology inside ROV BizStats
0.372065 LM(VAR2);LN(VAR3) -
0.365719 VARZ;LN(VARS) =
0.35724 LN(VAR 1)+LN(VAR 3);LN(VAR Z) =
0.352202 LN(VARZ)+LN(VAR3);LN(VAR 1) EDIm At Vot “IN
0.348903 LN(VAR1)+LN (VAR 3); VAR2 ANOVA Randomized Block (4
0.336822 LN((\JVARl;;LNgAR3§ ANOVA Single Factor Multiple Treatments B
0.31356 LN(VAR 1);LN{VAR 2)
0.308614 LN(VAR 1);VAR2 M BT Wy
0.301851 LM(VAR L)+LN(VARZ) ARIMA (1,0, 1)
0.292659 LN(VARZ)+LN(VAR3) ARIMA (1, 0, )
0.287761 LN(VAR 1)+LN(VAR Z) H (VAR )
0.285293 LN(VAR3) Alito ARIMA .
0.281735 LN(VARZ);VAR3 Auto Econometrics (Detailed)
0,281577 LM{VAR1)HN(vARI) Auto Econometrics {Quick)
0.263211 VARZ;VAR3 Autocorrelation and Partial Autocorrelation
0.245075 VAR LLN(VAR2) i— T

Figure 5.52 — ROV BizStats (Statistical Analysis)
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5T [ EXAMPLE ] - ROV Biz Stats = —i3—]

File Data Language Help
STEP 1: Data Manually enter your data, paste from another application, STEP 2: Analysis Choose an analysis and enter the
p orload an example dataset with analysis parameters required (see example
= parameter inputs below)
i e [ R View:  [phasescal -
v = = - Trend Line (Power) - 100 &
L FEY L LOF SO W B s —A | TrendLine Rate Detrended) 0.05 |
Trend Line (Static Mean Detrended) 01.025 i
Trend Line (Static Median Detrended) = -
Variance {Population)
2 Variance (Sample) Initial Value, Drift Rate, Volatility,
Volatil Horizon, Steps, Random Seed,
g 2 oty Iterations:
r_:n 1 Volatility: EGARCH > 100
= Volatiity: EGARCH-T > 0.05
o > 0,25
Volatiity: GARCH > 10
o GARCH-M ]
=2 GIR. GARCH > 123456
ftn GIRTGARCH #i 1
STEP 3: Run Runs the current analysis in Step 2 or selected Lo txns Appenad
saved analysis in Step 4, view the results, charts TGARCH
and statistics, copy the results and charts to Volatiity: TGARCH-M
S clipboard, or generate reports Vield Curve (Biss) =
Results | Charts | Statisti STEP 4: Save (Optional) You can save multiple analyses and notes in the profile
for future retrieval
= — 2
BES 68 "t F20 50 F 5 6~
E AR eIl .. | Bl i Moti
600
5001 u
Stdev Population -
Stdev Sample
Stepwise Regression (Backward)
Stepwise Regression (Correlation)
Stepwise Regression (Forward)
Stepwise Regression (Forward-Backward) S
Stochastic Process - Exp Brownian Motion
Stochastic Process - Mean Reverting Jump Diffusion
5UM
Time Series Forecast (Auto) i

Figure 5.53 — ROV BizStats (Data Visualization and Results Charts)
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p
5 [EXAMPLE ] - ROV Biz Stats

[ESY )

Choose an analysis and enter the
parameters required (see example

parameter inputs below)

VAR63)

2 062_ANOVATwoWayAnalysis ( VAR40; VAR4 1, VAR42: VAR43: VAR44: VAR4S:
VAR46; VARA7. VAR4S; VAR40, VARSD; VARS1 # 3 )

061_ANOVASingleFactorMultipleTreatments ( VARS 7 VARSS, VAR )

060_ANOVARandomizedBlocksMultiple Treatments  VARG0. VARG 1: VARG2,
VAR63)

001_AutoEconometricsDetailed (VARS # VARG VART: VARS #0.14 0)

6 010_PrincipalComponentAnalysis { VARG, VAR, VARS; VARS: VAR10)

Y

e

File Data Language Help
STEP 1: Data Manually enter your data, paste from another application, STEP 2: Analysis
or load an example dataset with analysis
Dataset | Visualize | Command | WV X i [Alphabeﬁm\ bt
1 D60_ANOVARandomizedBlocksMultipleTreatmenis [ VARGD: VARG 1: VARGZ: Stepwise Regression (Backward) -

Stepwise Regression {Correlation)

Stepwise Regression (Forward)

Stepwise Regression (Forward-Backward)
Stochastic Process (Exponential Brownian M...
Stochastic Process (Geometric Brownian Mot ..
Stochastic Process (Jump Diffusion)
Stochastic Process (Mean Reversion and Ju...
Stochastic Process (Mean Reversion)
Structural Break

Sum

Time-Series Analysis (Auto)

STEP 3: Run Runs the current analysis in Step 2 or selected
saved analysis in Step 4, view the results, charts
and statistics, copy the results and charts to

dipboard, or generate reparts

Time-Series Analysis (Double Moving Average)
Time-Series Analysis (Holt-Winter's Additive)
Time-Series Analysis (Holt-Winter's Multiplica. ..
Time-Series Analysis (Seasonal Additive) B

Time-Series Analysis (Double Exponential Sm...

VARS; VART; VARS; VARS; VA -

+ 1 ] »

Data:
> Varl; Var2; Var3

STEP 4: Save (Optional)

* indicates negative values
Standard Deviations:
21685.9352 92.8151 5.4043 232.7934 1.5207
Reduced Data Matrix:
=0.0219 *0,1338 *0.0235 *0.0909 0.5140 *0.0322  *0.0459 *0.1152 ]
*0.1169 0.5155 0.1681  *0.1324 0.2595 0.0431 0,1284 0.1010 Q
*0.0241 *0.1154 *0.0339 *0.0683 0.6488 *0.0436 *0.0438 *0.1124 a.
*0.0526 *0.1003 *0.0813 *0.0735 0.0150 *0.0816 0.3112 0.1061 0,
0.0776 0.1985 #0.0619 0.0869 0.1055 =0.1270 0.0311  *0.0154 a
Correlation Matrix:
1.0000 0.3333 0.9590 0.2422 0.2374
0.3333 1.0000 0.3494 0.3187 0.1200
0.9550 0.3494 1.0000 0.1964 0.2271
0.2422 0.3187 0.1964 1.0000 0.2905
0.2374 0.1200 0.2271 0.2905 1.0000
Covariance Matrix:
470279784.3284 670889.8820 112410,0992 1222792.7730 7829.8444
670889.8820 8614.6500 175.2712 6886.4692 16.9438
| 117410 Naa? 175 7717 20 7130 247 1172 1 RART
<

.Autu Econometrics (Detailed)

‘You can save multiple analyses and notes in the profile
for future retrieval

This is a test model running AE methodology inside ROV BizStats

Pawer

Relative LN Returns

Relative Returns

Seasonality

Segmentation Clustering
Semi-Standard Deviation (Lower)

P et R e S

Parametric - 2 Yar T Test for Independent Unequal Yariances =
Parametric - 2 Var Z Test for Independent Means
Parametric - 2 Var Z Test for Independent Proportions

cpal Component Analysis

[

E] &)

Figure 5.54 — ROV BizStats (Command Console)

SF [ EXAMPLE] - ROV Biz Stats

=)

Y File [Data] Langusge Help

STEP| Data Grid Cenfiguration te from another application,
th anahsi

STEP 2: Analysis

Example

Decimal Settings

o R

Morth America (1,000.50)

Europe and Latin America (1.000,50)

Choose an analysis and enter the
parameters required (see cxample

rameter inputs belaw
View:  [Alphabetical P > !

Mutiple (Linear)

i_ Auto Fit Columns
| T T

T T —
Multiple Regression (Nonlinear)

VARS; VART; VARS; VARS; VA«

You can save multiple analyses and notes in the profile

This is a test model running AE methodology inside ROV BizStats

4| n, | F

Data:
> Varl; Var2; Var3

Semi-Standard Deviation (Lower)

': XML Editor T g‘ Monlinear Regression
Nonparametric: Chi-Square Goodness of Fit
 EEEETTETTT = Nonparametric: Chi-Square Independence
S8 <var name—"VAR9E" Nonparametric: Chi-Square Population Varia.

100  <var name—"VARST" Nonparametric: Friedman’s Test

101 <var name="VAR9B" Nonparametric: Kruskal-Walis Test

102  <var name—"VAR99" Nonparametric: Lillefors Test

103  <var name="VAR100" Nonparametric: Runs Test

104 </data> Nonparametric: Wicoxon Signed-Rank (One ...
105 <analysis> Nonparametric: Wilcoxon Signed-Rank (Two ...
186 el ne Variable (T) Mean

107 <model "0 §4-"60" parameter—"VARGO;VARGL;VARG2;VARG3" /> e Variable (2) Mean

108 <model ANOVA Single Factor Multiple Treatments” notes="" id="61" pararmeter= vie Variabie (2) Proportion

RS VARDEI VRN S wo Variable (F) Variances
A soode] ERie STANENA Tuo Mg apegens IostEo ™ Bhy) Parametric: Two Variable (T) Dependent Means ™
"VARAD ;VARSL /VARA2 ; VARAS ; VAR [VARAS {VARSE ; VARAT ;VARAE ;VARAS VARSO VARS1 ;

1103"/> STEP 4: Save (Optional) n
231 <model name="ARIMA (1, 0, 1)" notes="" id="17" parameter="VARL foG ke e
3ag1 =

.5 o Name: Auto Econometrics (Detailed)
1381%/> ot

115  <model name="ARIMA (1, 0, 2)" notes="" id="17" parameter="VARL

1170

138 27/> ED!

118 <model ARTMA" notes="" id="18" parameter—"VARL"/> Parametric - 2 Var Z Test for Independent Means

Econometrics (Detailed)" notes="" id="1" parameter="VARS Parametric - 2 Var Z Test for Independent Proportions
Power
= Relative LN Returns
124 model name="Auto Econometrics (Ouickl® notes="" $d="2" parapecer—"VARS = s
[ Hide basic XML tags save | | ok | canes ] Seasonality
Segmentation Clustering
Exit

I Parametric - 2 Var T Test for Independent Unequal Variances «

Prindpal Comparnent Analysis

[

E ) )

Figure 5.55 — ROV BizStats (XML Editor)
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Neural Network and Combinatorial Fuzzy Logic Forecasting Methodologies

The term Neural Network is often used to refer to a network or circuit of biological neurons,
while modern usage of the term often refers to artificial neural networks comprising artificial
neurons, or nodes, recreated in a software environment. Such networks attempt to mimic the
neurons in the human brain in ways of thinking and identifying patterns and, in our situation,
identifying patterns for the purposes of forecasting time-series data. In Risk Simulator, the
methodology is found inside the ROV BizStats module located at Risk Simulator | ROV
BizStats | Neural Network as well as in Risk Simulator | Forecasting | Neural Network.
Figure 5.56 shows the Neural Network forecast methodology.

Procedure

¥ Click on Risk Simulator | Forecasting | Neural Network.

& Start by either manually entering data or pasting some data from the clipboard (e.g.,
select and copy some data from Excel, start this tool, and paste the data by clicking on the
Paste button).

¥ Select if you wish to run a Linear or Nonlinear Neural Network model, enter in the
desired number of Forecast Periods (e.g., 5), the number of hidden Layers in the Neural
Network (e.g., 3), and number of Testing Periods (e.g., 5).

8 Click Run to execute the analysis and review the computed results and charts. You can
also Copy the results and chart to the clipboard and paste it in another software
application.

Note that the number of hidden layers in the network is an input parameter and will need to be
calibrated with your data. Typically, the more complicated the data pattern, the higher the number
of hidden layers you would need and the longer it would take to compute. It is recommended that
you start at 3 layers. The testing period is simply the number of data points used in the final
calibration of the Neural Network model, and we recommend using at least the same number of
periods you wish to forecast as the testing period.
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#
TI Meural Network Forecast

.
[ESREERX
STEP 1: Data Manually enter your data, paste from another application, or load an

example dataset with analysis

N | vAR2 | VARS VARS | VARS | VARs | VAR | VARS | VAR | vARIO | vARL 4
NOT... B L
1 |1 45911
e 2 460,71
3 |3 4a60.34
4 |4 460,68
555 460.83
6 |6 461.68
T 461.66
8 |8 461.64
9 |9 46597
i 110 479 3R i
(T ¢
STEP 2: Choose analysis type, variable, and forecast period to run:
(") Cosine with Hyperbolic Tangent VARZ T
(@ Hyperbolic Tangent Layers: 3
() Linear
7 i Testing Periods: 210
© Logsc -
Forecast Periods: 210
Results | Charts Apply Multiphased Optimization -“
Sum of Squared Errors (Training) : 1.822044 -
RMSE (Training) : 0.093820 |
Sum of Squared Errors (Modified) : 59375.218349 =
RMSE (Modified) : 16.514849
Forecasting
*indicates negative values
Period Actual () Forecast (F) Error (E)
211 581.5000 ©513.3528 *31.8528
212 584.2200 613.5197 ¥29,2997
213 589.7200 ©513.6203 *23.9003
214 590.5700 613.7188 *23.1488
215 588.4600 513.8520 *25.3920
216 586.3200 514.0608 *27.7408
217 591.7100 014,204 *22.9940
213 593.2000 514.3029 *21.0429
219 592.7200 514.4223 *21.7023
220 592.3000 514.5671 *22.2671
221 589,2900 614.7154 *25,4254
222 593.9600 514.8963 *20.9383
223 597.3400 514.9954 *17.6554
229 ©600.0700 ©515.0992 *15.0292
225 596.3500 615.2115 *18.3615 >

'—
Figure 5.56 — Neural Network Forecast

In contrast, the term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is
approximate rather than accurate—as opposed to crisp logic, where binary sets have binary logic,
fuzzy logic variables may have a truth value that ranges between 0 and 1 and is not constrained to
the two truth values of classic propositional logic. This fuzzy weighting schema is used together
with a combinatorial method to yield time-series forecast results in Risk Simulator as illustrated
in Figure 5.57, and is most applicable when applied to time-series data that has seasonality and
trend. This methodology is found inside the ROV BizStats module in Risk Simulator, at Risk
Simulator | ROV BizStats | Combinatorial Fuzzy Logic as well as in Risk Simulator |
Forecasting | Combinatorial Fuzzy Logic.
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Procedure

& Click on Risk Simulator | Forecasting | Combinatorial Fuzzy Logic.

& Start by either manually entering data or pasting some data from the clipboard (e.g.,
select and copy some data from Excel, start this tool, and paste the data by clicking on the
Paste button)

¥ Select the variable you wish to run the analysis on from the drop-down list, and enter in
the seasonality period (e.g., 4 for quarterly data, 12 for monthly data, etc.) and the desired
number of Forecast Periods (e.g., 5).

& Click Run to execute the analysis and review the computed results and charts. You can
also Copy the results and chart to the clipboard and paste it in another software
application.

Note that neither neural networks nor fuzzy logic techniques have yet been established as valid
and reliable methods in the business forecasting domain, on either a strategic, tactical, or
operational level. Much research is still required in these advanced forecasting fields.
Nonetheless, Risk Simulator provides the fundamentals of these two techniques for the purposes
of running time-series forecasts. We recommend that you do not use any of these techniques in
isolation, but, rather, in combination with the other Risk Simulator forecasting methodologies to
build more robust models.
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-
E Combinatorial Fuzzy Logic Forecast

!

STEP 1: Data Manually enter your data, paste from anather application, or load an
;i : Paste
example dataset with analysis

N | vaRt vaR2 | vAR3 | vaARe | vaRS | vARs | vAR7 | vARs | vARS | vamio +
NOT... Tz B

1 |684.20
584,10
T65.40
892.30
88540
677.00
1006.50
112210
1163.40

199320
T r

STEP 2: Enter required inputs and select the variable to forecast
—
o)
Seasonality: By

WO | =S (ln [ (R

ik
=

Forecast Periods:

Results | Charts 10

Results RMSE : 707.039492

Auto ARIMA RMSE : 249,425091

Time-Series Auto RMSE @ 287.252753

Trend Line Exponential RMSE : 775.4036758
Trend Line Linear RMSE : 912.616213

Trend Line Logarithmic RMSE : 1488.012692
Trend Line Moving Average RMSE @ 988.333906
Trend Line Polynomial RMSE : 758.307610
Trend Line Power RMSE : 1268.6560430

lom | »

RESULTS

Forecast Fit

*indicates negative values

Period Actual {Y) Forecast {F) Error {E)
1 584, 2000
2 584. 1000
3 7565.4000
4 892,3000
5 £885,4000 802.4454 82.9515
3] 677.0000 863.9179 *1386.9179
7 1006.6000 971.7020 34,8330 =
R 1122 1000 1NR2 &NIR 2] 4072
4 1] | »

—m—m———m—m—

Figure 5.57 — Fuzzy Logic Time-Series Forecast

Optimizer Goal Seek

The Goal Seek tool is a search algorithm applied to find the solution of a single variable within a
model. If you know the result that you want from a formula or a model, but are not sure what
input value the formula needs to get that result, use the Risk Simulator | Tools | Goal Seek
feature. Note that Goal Seek works only with one variable input value. If you want to accept more
than one input value, use Risk Simulator’s advanced Optimization routines. Figure 5.58 shows

how Goal Seek is applied to a simple model.
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1 100
2 200
il 3ﬂ=0.|{<A1+A2
4 i ’
5 @ Cne Vanable Target Seek @
]
7 Set cell: A3 E] Result:
8 To value: 300 -
9

changing cell: [A1

10 By changing | %]
11 Carmel‘
12
12 ——

Figure 5.58 — Goal Seek

Single Variable Optimizer

The Single Variable Optimizer tool is a search algorithm used to find the solution of a single
variable within a model, just like the goal seek routine discussed previously. If you want the
maximum or minimum possible result from a model but are not sure what input value the formula
needs to get that result, use the Risk Simulator | Tools | Single Variable Optimizer feature
(Figure 5.59). Note that this tool runs very quickly but is only applicable to finding one variable
input. If you want to accept more than one input value, use Risk Simulator’s advanced
Optimization routines. Note that this tool is included in Risk Simulator because if you require a
quick optimization computation for a single decision variable, this tool provides that capability
without having to set up an optimization model with profiles, simulation assumptions, decision

variables, objectives, and constraints.

i A | B C D E F G

250
200
450_ << A1+ A2

:

3

4 g .
5 One Variable Quick Optimizer @
o o
- Objective Cell: iAB %i * Maximize { Minimize
3

9

Variable Cell: [AT B min: [50 Max: |250
Tolerance: 0.000000001 Mazx lterations: 1‘]1}|}

10
11 Optimized Varizble: 250.0000

v e Cancel I
12 Optimized Objective: 450.0000
13 e —
14

Figure 5.59 — Single Variable Optimizer
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Genetic Algorithm Optimization

Genetic Algorithms belong to the larger class of evolutionary algorithms that generate solutions
to optimization problems using techniques inspired by natural evolution, such as inheritance,
mutation, selection, and crossover. Genetic Algorithm is a search heuristic that mimics the
process of natural evolution and is routinely used to generate useful solutions to optimization and
search problems.

The genetic algorithm is available in Risk Simulator | Tools | Genetic Algorithm (Figure 5.60).
Care should be taken in calibrating the model’s inputs as the results will be fairly sensitive to the
inputs (the default inputs are provided as a general guide to the most common input levels), and it
is recommended that the Gradient Search Test option be chosen for a more robust set of results
(you can deselect this option to get started and then select this choice, rerun the analysis, and
compare the results).

Notes

In many problems, genetic algorithms may have a tendency to converge towards local optima or
even arbitrary points rather than the global optimum of the problem. This means that it does not
know how to sacrifice short-term fitness to gain longer-term fitness. For specific optimization
problems and problem instances, other optimization algorithms may find better solutions than
genetic algorithms (given the same amount of computation time). Therefore, it is recommended
that you first run the Genetic Algorithm and then rerun it by selecting the Apply Gradient Search
Test option (Figure 5.60) to check the robustness of the model. This gradient search test will
attempt to run combinations of traditional optimization techniques with Genetic Algorithm
methods and return the best possible solution. Finally, unless there is a specific theoretical need to
use Genetic Algorithm, we recommend using Risk Simulator’s Optimization module, which
allows you to run more advanced risk-based dynamic and stochastic optimization routines, for

more robust results.
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\ariables: Add |

ColumnCell
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Figure 5.60 — Genetic Algorithm
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Helpful Tips and Techniques

The following are some quick helpful tips and shortcut techniques for advanced users of
Risk Simulator. For details on using specific tools, refer to the relevant sections in this

user manual.

TIPS: Assumptions (Set Input Assumption User Interface)

e Quick Jump—select any distribution and type in any letter and it will jump to the
first distribution starting with that letter (e.g., click on Normal and type in W and
it will take you to the Weibull distribution).

e Right-Click Views—select any distribution, right-click, and select the different
views of the distributions (large icons, small icons, list).

e Tab to Update Charts—after entering some new input parameters (e.g., you type
in a new mean or standard deviation value), hit 74AB on the keyboard or click
anywhere on the user interface away from the input box to see the distributional
chart automatically update.

o Enter Correlations—enter pairwise correlations directly here (the columns are
resizable as needed), use the multiple distributional fitting tool to automatically
compute and enter all pairwise correlations, or, after setting some assumptions,
use the edit correlation tool to enter your correlation matrix.

e Equations in an Assumption Cell—only empty cells or cells with static values
can be set as assumptions; however, there might be times when a function or
equation is required in an assumption cell, and this can be done by first entering
the input assumption in the cell and then typing in the equation or function (when
the simulation is being run, the simulated values will replace the function, and
after the simulation completes, the function or equation is again shown).

TIPS: Copy and Paste

e Copy and Paste using FEscape—when you select a cell and use the Risk
Simulator Copy function, it copies everything into Windows clipboard, including
the cell’s value, equation, function, color, font, and size, as well as Risk
Simulator assumptions, forecasts, or decision variables. Then, as you apply the
Risk Simulator Paste function, you have two options. The first option is to apply
the Risk Simulator Paste directly, and all cell values, color, font, equation,
functions and parameters will be pasted into the new cell. The second option is to
first click Escape on the keyboard, and then apply the Risk Simulator Paste.
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Escape tells Risk Simulator that you wish to paste only the Risk Simulator
assumption, forecast, or decision variable, and not the cell’s values, color,
equation, function, font, and so forth. Hitting Escape before pasting allows you to
maintain the target cell’s values and computations, and pastes only the Risk
Simulator parameters.

e Copy and Paste on Multiple Cells—select multiple cells for copy and paste (with
contiguous and noncontiguous assumptions).

TIPS': Correlations

e Set Assumption—set pairwise correlations using the set input assumption dialog
(ideal for entering only several correlations).

e Edit Correlations—set up a correlation matrix by manually entering or pasting
from Windows clipboard (ideal for large correlation matrices and multiple
correlations).

e Multiple Distributional Fitting—automatically computes and enters pairwise
correlations (ideal when performing multiple variable fitting to automatically
compute the correlations for deciding what constitutes a statistically significant

correlation).

TIPS: Data Diagnostics and Statistical Analysis

e Stochastic Parameter Estimation—in the Statistical Analysis and Data
Diagnostic reports, there is a tab on stochastic parameter estimations that
estimates the volatility, drift, mean-reversion rate, and jump-diffusion rates based
on historical data. Be aware that these parameter results are based solely on
historical data used, and the parameters may change over time and depending on
the amount of fitted historical data. Further, the analysis results show all
parameters and do not imply which stochastic process model (e.g., Brownian
Motion, Mean-Reversion, Jump-Diffusion, or mixed process) is the best fit. It is
up to the user to make this determination depending on the time-series variable to
be forecasted. The analysis cannot determine which process if best; only the user
can do this (e.g., Brownian Motion process is best for modeling stock prices, but
the analysis cannot determine that the historical data analyzed is from a stock or
some other variable, and only the user will know this). Finally, a good hint is that
if a certain parameter is out of the normal range, the process requiring this input
parameter is most probably not the correct process (e.g., if the mean-reversion

rate is 110%, chances are, mean-reversion is not the correct process).
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TIPS: Distributional Analysis, Charts and Probability Tables

e Distributional Analysis—used to quickly compute the PDF, CDF, and ICDF of
the 42 probability distributions available in Risk Simulator, and to return a table
of these values.

e Distributional Charts and Tables—used to compare different parameters of the
same distribution (e.g., takes the shapes and PDF, CDF, ICDF values of a
Weibull distribution with Alpha and Beta of [2, 2], [3, 5], and [3.5, 8] and
overlays them on top of one another).

e Overlay Charts—used to compare different distributions (theoretical input
assumptions and empirically simulated output forecasts) and overlay them on top

of one another for a visual comparison.

TIPS: Efficient Frontier

o Efficient Frontier Variables—to access the frontier variables, first set the model’s
Constraints before setting efficient frontier variables.

TIPS': Forecast Cells

e Forecast Cells with No Equations—you can set output forecasts on cells without
any equations or values (simply ignore the warning message) but be aware that
the resulting forecast chart will be empty. Output forecasts are typically set on
empty cells when there are macros that are being computed and the cell will be
continually updated.

TIPS': Forecast Charts

e TAB versus Spacebar—hit TAB on the keyboard to update the forecast chart and
to obtain the percentile and confidence values after you enter some inputs, and hit
the Spacebar to rotate among the various tabs in the forecast chart.

e Normal versus Global View—click on these views to rotate between a tabbed
interface and a global interface where all elements of the forecast charts are
visible at once.

e Copy—-copies the forecast chart or the entire global view depending on whether

you are in the normal or global view.
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TIPS: Forecasting

e Cell Link Address—if you first select the data in the spreadsheet and then run a
forecasting tool, the cell address of the selected data will be automatically
entered into the user interface Otherwise, you will have to manually enter in the
cell address or use the link icon to link to the relevant data location.

e Forecast RMSE—use as the universal error measure on multiple forecast models
for direct comparisons of the accuracy of each model.

TIPS: Forecasting: ARIMA

e Forecast Periods—the number of exogenous data rows has to exceed the time-
series data rows by at least the desired forecast periods (e.g., if you wish to
forecast 5 periods into the future and have 100 time-series data points, you will
need to have at least 105 or more data points on the exogenous variable).
Otherwise, just run ARIMA without the exogenous variable to forecast as many
periods as you wish without any limitations.

TIPS: Forecasting: Basic Econometrics

e Variable Separation with Semicolons—separate independent variables using a

semicolon.

TIPS: Forecasting: Logit, Probit, and Tobit

e Data Requirements—the dependent variables for running logit and probit models
must be binary only (0 and 1), whereas the tobit model can take binary and other
numerical decimal values. The independent variables for all three models can

take any numerical value.

TIPS: Forecasting: Stochastic Processes

e Default Sample Inputs—when in doubt, use the default inputs as a starting point
to develop your own model.

e Statistical Analysis Tool for Parameter Estimation—use this tool to calibrate the
input parameters into the stochastic process models by estimating them from
your raw data.
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e Stochastic Process Model—sometimes if the stochastic process user interface
hangs for a long time, chances are your inputs are incorrect and the model is not
correctly specified (e.g., if the mean-reversion rate is 110%, mean-reversion is
probably not the correct process). Try with different inputs or use a different
model.

TIPS: Forecasting: Trendlines

e Forecast Results—scroll to the bottom of the report to see the forecasted values.

TIPS': Function Calls

e RS Functions—there are functions that you can use inside your Excel
spreadsheet to set input assumption and get forecast statistics. To use these
functions, you need to first install RS Functions (which include Start, Programs,
Real Options Valuation, Risk Simulator, Tools, and Install Functions) and then
run a simulation before setting the RS functions inside Excel. Refer to the
example model 24 for examples on how to use these functions.

TIPS: Getting Started Exercises and Getting Started Videos

e QGetting Started Exercises—there are multiple step-by-step hands-on examples
and results interpretation exercises available in the Start, Programs, Real Options
Valuation, Risk Simulator shortcut location. These exercises are meant to quickly
get you up to speed with the use of the software.

e Getting Started Videos—these are all available for free on our website:
www.realoptionsvaluation.com/download.html or
www.rovdownloads.com/download.html.

TIPS: Hardware ID

e Right-Click HWID Copy—in the Install License user interface, select or double-
click on the HWID to select its value, right-click to copy or click on the E-mail
HWID link to generate an e-mail with the HWID.

e Troubleshooter—run the Troubleshooter from the Start, Programs, Real Options
Valuation, Risk Simulator folder, and run the Get HWID tool to obtain your
computer’s HWID.
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TIPS: Latin Hypercube Sampling (LHS) vs. Monte Carlo Simulation (MCS)

e Correlations—when setting pairwise correlations among input assumptions, we
recommend using the Monte Carlo setting in the Risk Simulator Options menu.
Latin Hypercube Sampling is not compatible with the correlated copula method
for simulation.

e LHS Bins—a larger number of bins will slow down the simulation while
providing a more uniform set of simulation results.

e Randomness—all of the random simulation techniques in the Options menu have
been tested and are all good simulators and approach the same levels of

randomness when larger number of trials are run.

TIPS': Online Resources

o Books, Getting Started Videos, Models, White Papers—resources available on
our website: www.realoptionsvaluation.com/download.html or
www.rovdownloads.com/download.html.

TIPS: Optimization

e Infeasible Results—if the optimization run returns infeasible results, you can
change the constraints from an Equal (=) to an Inequality (>= or <=) and try
again. This also applies when you are running an efficient frontier analysis.

TIPS: Profiles

e Multiple Profiles—create and switch among multiple profiles in a single model.
This allows you to run scenarios on simulation by being able to change input
parameters or distribution types in your model to see the effects on the results.

e Profile Required—Assumptions, Forecasts, or Decision Variables cannot be
created if there is no active profile. However, once you have a profile, you no
longer have to keep creating new profiles each time. In fact, if you wish to run a
simulation model by adding additional assumptions or forecasts, you should keep
the same profile.

e Active Profile—the last profile used when you save Excel will be automatically
opened the next time the Excel file is opened.
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e Multiple Excel Files—when switching between several opened Excel models, the
active profile will be from the current and active Excel model.

e Cross Workbook Profiles—be careful when you have multiple Excel files open
because if only one of the Excel files has an active profile and you accidentally
switch to another Excel file and set assumptions and forecasts on this file, the
assumptions and forecast will not run and will be invalid.

e Deleting Profiles—you can clone existing profiles and delete existing profiles,
but note that at least one profile must exist in the Excel file if you delete profiles.

e Profile Location—the profiles you create (containing the assumptions, forecasts,
decision variables, objectives, constraints, etc.) are saved as an encrypted hidden
worksheet. This is why the profile is automatically saved when you save the
Excel workbook file.

TIPS: Right-Click Shortcut and Other Shortcut Keys

Right-Click—you can open the Risk Simulator shortcut menu by right-clicking
on a cell anywhere in Excel.

TIPS': Save

e Saving the Excel File—saves the profile settings, assumptions, forecasts,
decision variables, and your Excel model (including any Risk Simulator reports,
charts, and data extracted).

e Saving the Chart Settings—saves the forecast chart settings such that the same
settings can be recovered and applied to future forecast charts (use the save and
open icons in the forecast charts).

e Saving and Extracting Simulated Data in Excel—extracts a simulated run’s
assumptions and forecasts; the Excel file itself will still have to be saved in order
to save the data for retrieval later.

e Saving Simulated Data and Charts in Risk Simulator—using the Risk Simulator
Data Extract and saving to a * RiskSim file will allow you to reopen the dynamic
and live forecast chart with the same data in the future without having to rerun
the simulation.

e Saving and Generating Reports—simulation reports and other analytical reports
are extracted as separate worksheets in your workbook, and the entire Excel file
will have to be saved in order to save the data for future retrieval later.
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TIPS: Sampling and Simulation Techniques

e Random Number Generator—there are six supported random number generators
(see the user manual for details) and, in general, the ROV Risk Simulator default
method and the Advanced Subtractive Random Shuffle method are the two
recommended approaches to use. Do not apply the other methods unless your
model or analytics specifically calls for their uses, and, even then, we
recommended testing the results against these two recommended approaches.

TIPS: Software Development Kit (SDK) and DLL Libraries

e SDK, DLL, and OEM—all of the analytics in Risk Simulator can be called
outside of this software and integrated in any user proprietary software. Contact
admin@realoptionsvaluation.com for details on using our Software Development
Kit to access the Dynamic Link Library (DLL) analytics files.

TIPS: Starting Risk Simulator with Excel

e ROV Troubleshooter—run this troubleshooter to obtain your computer’s HWID
for licensing purposes, to view your computer settings and prerequisites, and to
reenable Risk Simulator if it has been accidentally disabled.

o Start Risk Simulator when Excel Starts—you can let Risk Simulator start
automatically when Excel starts each time or start it manually from the Start,
Programs, Real Options Valuation, Risk Simulator shortcut location. This
preference can be set in the Risk Simulator, Options menu.

TIPS: Super Speed Simulation

e Model Development—if you wish to run super speed in your model, test run a
few super speed simulations while the model is being constructed to make sure
that the final product will run the super speed simulation. Do not wait until the
final model is complete before testing super speed to avoid having to backtrack
to identify where any broken links or incompatible functions exist.

e Regular Speed—when in doubt, regular speed simulation always works.
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TIPS: Tornado Analysis

e Tornado Analysis—the tornado analysis should never be run just once. It is
meant as a model diagnostic tool, which means that it should ideally be run
several times on the same model. For instance, in a large model, Tornado can be
run the first time using all of the default settings and all precedents should be
shown (select Show All Variables). This single analysis may result in a large
report and long (and potentially unsightly) Tornado charts. Nonetheless, it
provides a great starting point to determine how many of the precedents are
considered critical success factors. For example, the Tornado chart may show
that the first 5 variables have high impact on the output, while the remaining 200
variables have little to no impact, in which case, a second tornado analysis is run
showing fewer variables. For the second run, select Show Top 10 Variables if the
first 5 are critical, thereby creating a nice report and a Tornado chart that shows a
contrast between the key factors and less critical factors. (You should never show
a Tornado chart with only the key variables without showing some less critical
variables as a contrast to their effects on the output.)

e Default Values—the default testing points can be increased from the £10% value
to some larger value to test for nonlinearities (the Spider chart will show
nonlinear lines and Tornado charts will be skewed to one side if the precedent
effects are nonlinear).

e Zero Values and Integers—inputs with zero or integer values only should be
deselected in the Tornado analysis before it is run. Otherwise, the percentage
perturbation may invalidate your model (e.g., if your model uses a lookup table
where Jan = 1, Feb = 2, Mar = 3, etc., perturbing the value 1 at a £10% value
yields 0.9 and 1.1, which makes no sense to the model).

e Chart Options—try various chart options to find the best options to turn on or off
for your model.

TIPS': Troubleshooter

e ROV Troubleshooter—run this troubleshooter to obtain your computer’s HWID
for licensing purposes, to view your computer settings and prerequisites, and to
reenable Risk Simulator if it has been accidentally disabled.
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