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Optimization – Project Portfolio and Efficient Frontier      

File Name: Optimization – Military Portfolio and Efficient Frontier  
Location: Modeling Toolkit | Optimization | Military Portfolio and Efficient Frontier 
Brief Description: This sample model illustrates how to run an optimization on discrete binary integer 
decision variables in project selection and mix, viewing and interpreting optimization results, creating 
additional qualitative constraints to the optimization model, and generating an investment Efficient 
Frontier by applying optimization on changing constraints 
Requirements: Modeling Toolkit, Risk Simulator  

       

This model shows 20 different projects with different risk-return characteristics as well as several 

qualitative measures such as strategic score, military readiness score, tactical score, and comprehensive 

score, and so forth (see Figure 1). These scores are obtained through subject matter experts, for instance, 

decision makers, leaders, and managers of organizations, where their expert opinions are gathered through 

the double-blind Delphi Method. After being scrubbed (e.g., extreme values are eliminated, large data 

variations are analyzed, and multiple iterations of the Delphi Method is performed, and so forth), their 

respective scores can be entered into a Distributional Fitting routine to find the best-fitting distribution, or 

used to develop a Custom Distribution for each project.  

      

The central idea of this model is to find the best portfolio allocation such that the portfolio’s total 

comprehensive strategic score and profits are maximized. That is, it is used to find the best project mix in 

the portfolio that maximizes the total Profit*Score measure, where profit points to the portfolio level net 

returns after considering the risks and costs of each project, while the Score measures the total 

comprehensive score of the portfolio, all the while being subject to the constraints of number of projects, 

budget constraint, full time equivalence resource (FTE) restrictions, and strategic ranking constraints. 

     

      

Objective:  
Maximize Total Portfolio Returns times the Portfolio Comprehensive Score (C28)  

Decision Variables:  
Allocation or Go/No-Go Decision (J5:J24)  

Restrictions on Decision Variables:  
Binary decision variables (0 or 1)  

Constraints:   
Total Cost (E26) is less than $3800 (in thousands or millions of dollars)   
Less than or equal to 10 projects selected (J26) in the entire portfolio  
Full-time Equivalence resources have to be less than 80 (M26)  
Total Strategic Ranking for the entire portfolio must be less than 100 (F28)  

 

 



 
Figure 1: The project selection optimization model 

 

Running an Optimization 

To run this preset model, simply open the profile (Risk Simulator | Change Profile) and select Military 

Portfolio and Efficient Frontier. Then, run the optimization (Risk Simulator | Optimization | Run 

Optimization) or for practice, set up the model yourself: 

1. Start a new profile (Risk Simulator | New Profile) and give it a name. 

2. In this example, all the allocations are required to be binary (0 or 1) values, so, first select cell 

J5 and make this a decision variable in the Integer Optimization worksheet. Select cell J5 and 

define it as a decision variable (Risk Simulator | Optimization | Decision Variables or click 

on the Define Decision icon) and make it a Binary Variable. This setting automatically sets 

the minimum to 0 and maximum to 1 and can only take on a value of 0 or 1. Then use the 

Risk Simulator Copy on cell J5, select cells J6 to J24, and use Risk Simulator’s Paste 

(Risk Simulator | Copy Parameter and Risk Simulator | Paste Parameter or use the Risk 

Simulator copy and paste icons, NOT the Excel copy/paste). 

3. Next, set up the optimization’s constraints by selecting Risk Simulator | Optimization | 

Constraints, and selecting ADD. Then link to cell E26, and make it <= 3800, select ADD 



one more time and click on the link icon and point to cell J26 and set it to <=10. Continue 

with adding the other constraints (cell M26 <= 80 and F28 <= 100). 

4. Select cell C28, the objective to be maximized, and select Risk Simulator | Optimization | 

Run Optimization. Review the different tabs to make sure that all the required inputs in 

steps 2 and 3 above are correct.  

5. You may now select the optimization method of choice and click OK to run the optimization. 

The model setup is illustrated in Figure 2 and the various optimization procedures are listed 

next. 

 

Discrete Optimization is an optimization that is run on a discrete or static model, where no simulations 
are run. This optimization type is applicable when the model is assumed to be known and no uncertainties 
exist. Also, a discrete optimization can be first run to determine the optimal portfolio and its 
corresponding optimal allocation of decision variables before more advanced optimization procedures 
are applied. For instance, before running a stochastic optimization problem, a discrete optimization is 
first run to determine if there exist solutions to the optimization problem before a more protracted 
analysis is performed.         
Dynamic Optimization is applied when Monte Carlo simulation is used together with optimization. 
Another name for such a procedure is Simulation-Optimization. In other words, a simulation is run for N 
trials, and then an optimization process is run for M iterations until the optimal results are obtained or an 
infeasible set is found. That is, using Risk Simulator’s optimization module, you can choose which 
forecast and assumption statistics to use and replace in the model after the simulation is run. Then, these 
forecast statistics can be applied in the optimization process. This approach is useful when you have a 
large model with many interacting assumptions and forecasts, and when some of the forecast statistics 
are required in the optimization.           
Stochastic Optimization is similar to the dynamic optimization procedure with the exception that the 
entire dynamic optimization process is repeated T times. The results will be a forecast chart of each 
decision variable with T values. In other words, a simulation is run and the forecast or assumption 
statistics are used in the optimization model to find the optimal allocation of decision variables. Then, 
another simulation is run, generating different forecast statistics, and these new updated values are then 
optimized, and so forth. Hence, the final decision variables will each have its own forecast chart, 
indicating the range of the optimal decision variables. For instance, instead of obtaining single-point 
estimates in the dynamic optimization procedure, you can now obtain a distribution of the decision 
variables, and, hence, a range of optimal values for each decision variable, also known as a stochastic 
optimization.            
 

Note: Remember that if you are to run either a dynamic or stochastic optimization routine, make sure that 

you have assumptions first defined in the model. That is, make sure that some of the cells in C5:C24 and 

E5:F24 are assumptions. The suggestion for this model is to run a Discrete Optimization. 

 



  
 

  
Figure 2: Setting up an optimization model 

 

Portfolio Efficient Frontier  

Clearly, running the optimization procedure will yield an optimal portfolio of projects where the 

constraints are satisfied. This represents a single optimal portfolio point on the efficient frontier, for 

example, Portfolio B on the chart in Figure 3. Clearly, by subsequently changing some of the constraints, 

for instance, by increasing the budget and allowed projects, we can rerun the optimization to produce 



another optimal portfolio given these new constraints. Therefore, a series of optimal portfolio allocations 

can be determined and graphed. This graphical representation of all optimal portfolios is called the 

Portfolio Efficient Frontier. At this juncture, each point represents a portfolio allocation, for instance, 

Portfolio B might represent projects: 1, 2, 5, 6, 7, 8, 10, 15, and so forth, while Portfolio C might 

represent projects 2, 6, 7, 9, 12, 15, and so forth, each resulting in different tactical, military, or 

comprehensive scores, and portfolio returns. It is up to the decision maker to decide which portfolio 

represents the best decision and if sufficient resources exist to execute these projects.   

  

Typically, in an Efficient Frontier analysis, you would select projects where the marginal increase in 

benefits is positive and the slope is steep. In the next example, you would rather select Portfolio D rather 

than Portfolio E as the marginal increase is negative on the y-axis (e.g., Tactical Score). That is, spending 

too much money may actually reduce the overall tactical score, and hence this portfolio should not be 

selected. Also, in comparing Portfolios A and B, you would be more inclined to choose B as the slope is 

steep and the same increase in budget requirements (x-axis) would return a much higher percentage 

Tactical Score (y-axis). The decision to choose between Portfolios C and D would depend on available 

resources and the decision maker deciding if the added benefits warrant and justify the added budget and 

costs.  

 

 
 



 
Figure 3: Efficient frontier 

 

To further enhance the analysis, you can obtain the optimal portfolio allocations for C and D and then run 

a simulation on each optimal portfolio to decide what the probability that D will exceed C in value is, and 

whether this probability of occurrence justifies the added costs. 


