Optimization: Inventory Optimization

Short Examples Series using Risk Simulator

For more information please visit: www.realoptionsvaluation.com or contact us at: admin@realoptionsvaluation.com

Optimization – Inventory Optimization

File Name: Optimization – Inventory Optimization Location: Modeling Toolkit / Optimization / Inventory Optimization Brief Description: This sample model illustrates how to run an optimization on manufacturing inventory to maximize profits and minimize costs subject to manufacturing capacity constraints Requirements: Modeling Toolkit, Risk Simulator

This model is used to find the optimal allocation of parts in a manufacturer's portfolio of inventory. In the model, 8 different parts are shown, with their respective prices per unit (Figure 1). The demand for these parts is divided into 4 phases or cycles. For example, in the automotive aftermarket, certain parts are required more or less at certain times in the car's lifecycle (e.g., fewer parts may be needed during the first three years of a car's life than perhaps in years four to six, or years seven to ten, versus over ten years) or parts of a machine, or the inventory in a retail shop during the four seasons in a year, and so forth. The demand levels in these cycles for each part is simulated (assumptions have already been preset in the model) and can be based on expert opinions, expectations, forecasts, or historical data (e.g., using distributional fitting methods in Risk Simulator).

In this model, if the manufacturer makes a higher quantity of a product than it can sell, there will be an added holding cost per unit (storage cost, opportunity cost, cost of money, and so forth). Thus, it is less profitable to make too many units, but too few units means lost sales. In other words, if the manufacturer makes too much, it loses money because it could have made some more of something else, but if it makes too little of a product, it should have made more to sell more of the product and make a profit. So an optimal inventory and manufacturing quantity is required. This model is used to find the best allocation of parts to manufacturer given the uncertainty in demand and, at the same time, to maximize profits while minimizing cost.

However, the manufacturer has constraints. It cannot manufacture too many units of a single part due to resource, budget, and manufacturing constraints (size of factory, cycle time, manufacturing time, cost considerations, and so forth). For example, say the firm cannot produce more than 100,000 units per part, and during each manufacturing or seasonal cycle, it cannot produce more than 250,000 units, and the total parts produced are set at no more than 800,000 units. In short, the problem can be summarized as:

Objective:	Maximize total net revenues
Problem:	Find the best allocation of parts to maximize net revenues
	Surplus and shortages are expensive
Constraints:	Each part cannot exceed 100,000 units
	Each cycle cannot exceed 250,000 units
	Each part during each cycle should be between 15,000 and 35,000 units
	Total parts cannot exceed 800,000 units
Assumptions:	Surplus units has a holding inventory cost of \$1

One very simple allocation is to produce an equal amount (e.g., 25,000 units per part, per cycle, thereby hitting all the constraints) as illustrated in Figure 1. The total net revenue from such a simple allocation is found to be \$105,082,000.

Inventory Optimization

Units in '000s Part Price	Part A512 \$154	Part V542 \$135	Part X221 \$188	Part AV12 \$250	Part CF88 \$54	Part X52 \$79	Part X72 \$155	Part FM2 \$230	TOTAL
Cycle 1 Demand Cycle 2 Demand Cycle 3 Demand Cycle 4 Demand	32.1200 33.6296 25.0197 21.0919	18.1869 29.1802 33.0849 15.0099	24.9693 17.0791 17.0325 17.0732	17.1145 20.0976 24.0091 31.2030	20.9422 25.0521 23.9793 20.1536	21.8852 19.9820 28.8729 21.9011	22.8831 22.1348 15.0658 30.9182	15.9424 22.8378 19.0125 21.0207	
Manufactured C1 Manufactured C2 Manufactured C3 Manufactured C4	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	25.000 25.000 25.000 25.000	200.00 200.00 200.00 200.00
Total Units Surplus/Shortage	100.00 -11.86	100.00 4.54	100.00 23.85	100.00 7.58	100.00 9.87	100.00 7.36	100.00 9.00	100.00 21.19	800.000
Gross Revenues Added Expenses Net Revenues	\$14,798 \$12 \$14,786	\$11,232 \$0 \$11,232	\$14,317 \$0 \$14,317	\$21,555 \$0 \$21,555	\$4,864 \$0 \$4,864	\$7,013 \$0 \$7,013	\$13,188 \$0 \$13,188	\$18,127 \$0 \$18,127	\$105,082
Assumed Holding	Cost (Per	Unit)	\$1						
Objective:	Maximize total net revenues								
Problem:	Find the best allocation of parts to maximize net revenues Surplus and shortages are expensive								
Constraints:	Each part cannot exceed 100,000 units Each cycle cannot exceed 250,000 units Total parts cannot exceed 800,000 units								
Assumptions:	sumptions: Surplus units has a holding inventory cost of \$1								

Figure 1: Inventory model before optimization

Optimization Procedure (Predefined)

In contrast, an optimization can be set up to solve this problem. The optimization has already been set up in the model and is ready to run. To run it:

- 1. Go to the Optimization Model worksheet and click on **Risk Simulator** | **Change Profile** and select the *Inventory Optimization* profile.
- 2. Click on the **Run Optimization** icon or click on **Risk Simulator** | **Optimization** | **Run Optimization** and click **OK**.
- Click Replace when optimization is completed. The results show the optimal allocation of manufactured parts that maximizes the total net profit, increasing it from \$105.082 million to \$110.116 million. Clearly optimization has created value.

	А	В	С	D	E	F	G	H		J	K
1											
2			Inventory Optimization								
3											
4		Units in 1000s									
5		Part	Part A512	Part V542	Part X221	Part AV12	Part CF88	Part X52	Part X72	Part FM2	TOTAL
6 7		Price	\$154	\$135	\$188	\$250	\$54	\$79	\$155	\$230	
		Cuolo 1 Domand	20 1000	10 1000	24 0602	17 11 <i>1</i> 5	20 0422	<u>11 0051</u>	<u>11 0001</u>	15 0404	
9		Cycle 7 Demand	33,6296	29 1802	24.9093	20.0976	20.3422	19 9820	22.0031	22 8378	
10		Cucle 3 Demand	25.0200	33 0849	17.0701	20.0070	23.0321	28 8729	15 0658	19.0125	
11		Cycle 4 Demand	21.0919	15.0099	17.0732	31.2030	20.1536	21.9011	30.9182	21.0207	
12			04.054	10,100	05.000	17,400			04.004		
13		Manufactured C1	31.851	18.188	25.000	17.466	23.000	22.258	24.261	24.411	180.43
14		Manufactured C2	24.623	31.000	25.000	23.750	27.000	24.360	22.391	25.753	204.00
16		Manufactured CA	20.017	15.000	25.000	33,009	25,000	23.022	30.958	20.001	102.88
10		T	400.00	10.012	20.000	400.000	400.000	400.00	400.000	400.00	102.00
18		Total Units Complete (Chartene	100.00	100.00	100.00	100.00	100.00	700.00	100.00	100.00	800.000
20		Surplus/Shortage	-11.00	4.94	23.05	7.50	9.07	7.30	9.00	21.19	
20		Gross Revenues	\$15.400	\$12 887	\$14 317	\$23,106	\$4 867	\$7 319	\$14 105	\$18 127	
22		Added Expenses	\$12	\$O	\$0	\$0	\$0	\$0	\$0	\$0	
23		Net Revenues	\$15,388	\$12,887	\$14,317	\$23,106	\$4,867	\$7,319	\$14,105	\$18,127	\$110,116
24											
25		Assumed Holding	ر Cost (Per Unit) \$1								
26											
27		Objective:	Maximize total net revenues								
20		Broblom:	Find the heat all eaction of norte to maximize not revenues								
30		Fioblein.	ning the best anocation of parts to maximize het revenues Sumlus and shortanes are expensive								
31				i onontageo are	expensive						
32		Constraints:	Each part cannot exceed 100,000 units								
33			Each cycle cannot exceed 250,000 units								
34			Total parts cannot exceed 800,000 units								
35											
36		Assumptions:	Surplus unit	s has a holding	g inventory cost	of \$1					

Figure 2: Optimized results

Using these optimal allocations, run a simulation (the assumptions and forecasts have been predefined in the model) by clicking on the RUN icon or select Risk Simulator | Run Simulation.

- 5. On the Net Revenues forecast chart, select **Two-Tail** and type in **90** in the *Certainty* box and hit **TAB** on the keyboard to obtain the 90% confidence interval (between \$105 million and \$110 million). View the *Statistics* tab to obtain the mean expected value of \$108 million for the net revenues.
- 6. Select **Right-Tail** and type in **105082** in the *Value* box, to find the probability that this optimal allocation's portfolio of manufactured products (Figure 2) will exceed the simple equal allocation's net revenues seen in Figure 1. The results indicate that there is a 94.70% probability that by using this optimal portfolio, the manufacturer will make more net profits than going with a simple equal allocation (Figure 3).

Figure 3: Optimized net revenues

Optimization Procedure (Manual)

To set up the model again from scratch, follow the instructions below:

- Go to the *Optimization Model* worksheet and click on **Risk Simulator** | New Profile and give the profile a new name. You may have to reset the decision variables to some starting value (i.e., make the cells C13:J16 all 25 as a starting point), so that you can immediately see when the optimization generates new values.
- Click on cell K23 and make it the objective to maximize (Risk Simulator | Optimization | Set Objective, and select Maximize).
- 3. Click on cell C13 and make it a decision variable (Risk Simulator | Optimization | Set Decision, and select Continuous for getting a continuous variable (we need this because the model's values are in thousands of units and thousands of dollars) and set the bounds to be

between **15** and **35** (you can set your own bounds but these are typically constraints set by the manufacturer), to signify that the manufacturer can make only between 15,000 and 35,000 units of this part per cycle due to resource and budget or machine constraints.

- 4. Set the constraints by clicking on Risk Simulator | Optimization | Set Constraint, and select ADD for adding a new constraint. Add the three additional constraints in the model, namely, cells K13 to K16 <= 250 for each cell, C18 to J18 <= 100 for each cell, and K18 <=800. Do this one constraint at a time (Figure 4).</p>
- 5. Click on the Run Optimization icon or click on Risk Simulator | Optimization | Run Optimization. Look through the tabs to make sure everything is set up correctly. Click on the *Method* tab and select Static Optimization and click OK to run the optimization.
- 6. Click **Replace** when optimization is completed. The results illustrate that the optimal allocation of manufactured parts that maximizes net profit, increases it from \$105.082 million to \$110.116 million. Clearly optimization has created value.
- Using these optimal allocations, run a simulation (the assumptions and forecasts have been predefined in the model) by clicking on the RUN icon or select Risk Simulator | Run Simulation.
- 8. On the Net Revenues forecast chart, select **Two-Tail** and type in **90** in the *Certainty* box and hit **TAB** on the keyboard to obtain the 90% confidence interval (between \$105 million and \$110 million). View the *Statistics* tab to obtain the mean expected value of \$108 million for the net revenues.
- 9. Select **Right-Tail** and type in **105082** in the *Value* box, to find the probability that this optimal allocation's portfolio of manufactured products will exceed the simple equal allocation's net revenues seen previously.

R Constraints	🛛 🔀
Current Constraints:	
☑ \$K\$18 <= 800	Add
✓ \$K\$13 <= 250	
✓ \$K\$14 <= 250	Lhange
▼ \$K\$15 <= 250	Delete
▼ \$K\$16 <= 250	
SC\$18 <= 100	
☑ \$D\$18 <= 100	
✓ \$E\$18 <= 100	
✓ \$F\$18 <= 100	
☑ \$G\$18 <= 100	
✓ \$H\$18 <= 100	ПК
✓ \$I\$18 <= 100	
S18 <= 100	Cancel

Figure 4: Setting constraints one at a time