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Forecasting — Data Diagnostics

File Name: Forecasting — Data Diagnostics

Location: Modeling Toolkit | Forecasting | Data Diagnostics

Brief Description: This model illustrates how to use Risk Simulator for running diagnostics on your data
before generating forecast models, including checking for heteroskedasticity, nonlinearity, outliers,
specification errors, micronumerosity, stationarity and stochastic properties, normality and sphericity of
the errors, and multicollinearity

Requirements: Modeling Toolkit, Risk Simulator

This example model provides a sample data set on which we can run Risk Simulator’s Diagnostic Tool so
that we can determine the econometric properties of the data. The diagnostics run include checking the
data for heteroskedasticity, nonlinearity, outliers, specification errors, micronumerosity, stationarity and
stochastic properties, normality and sphericity of the errors, and multicollinearity. Each test is described

in more detail in its respective report.

Procedure
To run the analysis, follow the instructions below:
1. Go to the Time-Series Data worksheet and select the data including the variable names (cells
C5:H55) as seen in Figure 1.
2. Click on Risk Simulator | Tools | Diagnostic Tool.
3. Check the data and select the dependent variable from the drop down menu. Click OK when
finished.

Spend some time reading through the reports generated from this diagnostic tool.

A common violation in forecasting and regression analysis is heteroskedasticity, that is, the variance of
the errors increases over time. Visually, the width of the vertical data fluctuations increases or fans out
over time, and typically, the coefficient of determination (R-squared coefficient) drops significantly when
heteroskedasticity exists. If the variance of the dependent variable is not constant, then the error’s
variance will not be constant. Unless the heteroskedasticity of the dependent variable is pronounced, its
effect will not be severe: The least-squares estimates will still be unbiased, and the estimates of the slope
and intercept will be either normally distributed if the errors are normally distributed, or at least normally
distributed asymptotically (as the number of data points becomes large) if the errors are not normally
distributed. The estimate for the variance of the slope and overall variance will be inaccurate, but the
inaccuracy is not likely to be substantial if the independent-variable values are symmetric about their

mean.



Multiple Regression Analysis Data Set
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Figure 1: Running a diagnostic analysis on your dataset

If the number of data points is small (micronumerosity), it may be difficult to detect assumption
violations. With small samples, assumption violations such as nonnormality or heteroskedasticity of
variances are difficult to detect even when they are present. With a small number of data points, linear
regression offers less protection against violation of assumptions. With few data points, it may be hard to
determine how well the fitted line matches the data or whether a nonlinear function would be more
appropriate. Even if none of the test assumptions is violated, a linear regression on a small number of data
points may not have sufficient power to detect a significant difference between the slope and zero, even if
the slope is nonzero. The power depends on the residual error, the observed variation in the independent
variable, the selected significance alpha level of the test, and the number of data points. Power decreases

as the residual variance increases, decreases as the significance level is decreased (i.e., as the test is made



more stringent), increases as the variation in observed independent variable increases, and increases as the

number of data points increases.

Values may not be identically distributed because of the presence of outliers. Outliers are anomalous
values in the data. Outliers may have a strong influence over the fitted slope and intercept, giving a poor
fit to the bulk of the data points. Outliers tend to increase the estimate of residual variance, lowering the
chance of rejecting the null hypothesis, i.e., creating higher prediction errors. They may be due to
recording errors, which may be correctable, or they may be due to the dependent-variable values not all
being sampled from the same population. Apparent outliers may also be due to the dependent-variable
values being from the same, but nonnormal, population. However, a point may be an unusual value in
either an independent or dependent variable without necessarily being an outlier in the scatter plot. In
regression analysis, the fitted line can be highly sensitive to outliers. In other words, least-squares
regression is not resistant to outliers, thus, neither is the fitted-slope estimate. A point vertically removed
from the other points can cause the fitted line to pass close to it instead of following the general linear

trend of the rest of the data, especially if the point is relatively far horizontally from the center of the data.

However, great care should be taken when deciding if the outliers should be removed. Although in most
cases the regression results look better when outliers are removed, a priori justification must first exist.
For instance, if you regress the performance of a particular firm’s stock returns, outliers caused by
downturns in the stock market should be included; these are not truly outliers as they are inevitabilities in
the business cycle. Forgoing these outliers and using the regression equation to forecast your retirement
fund based on the firm’s stocks will yield incorrect results at best. In contrast, suppose the outliers are
caused by a single nonrecurring business condition (e.g., merger and acquisition), and such business
structural changes are not forecast to recur. Then these outliers should be removed and the data cleansed
prior to running a regression analysis. The analysis here only identifies outliers; it is up to the user to

determine if they should remain or be excluded.

Sometimes a nonlinear relationship between the dependent and independent variables is more appropriate
than a linear relationship. In such cases, running a linear regression will not be optimal. If the linear
model is not the correct form, then the slope and intercept estimates and the fitted values from the linear
regression will be biased, and the fitted slope and intercept estimates will not be meaningful. Over a
restricted range of independent or dependent variables, nonlinear models may be well approximated by
linear models (this is in fact the basis of linear interpolation), but for accurate prediction, a model

appropriate to the data should be selected. A nonlinear transformation should be applied to the data first,



before running a regression. One simple approach is to take the natural logarithm of the independent
variable (other approaches include taking the square root or raising the independent variable to the second

or third power) and run a regression or forecast using the nonlinearly transformed data.

The results from running these tests are seen in Figure 2.

Diagnostic Results

Heteroskedasticity Micronumerosity Outliers Nonlinearity
W-Test  Hypothesis Test Approximation Matural Matural Mumber of Manlinear Test Hypothesis Test
“ariable p-value result result Lower Bound Upper Baund Fatential Outliers p-value result
Y no problems -7.86 671.70 2
Yariable X1 0.2543  Homoskedastic no problems -21377.95 B64713.03 3 0.2458 linear
wariable X2 0.3371  Homoskedastic no problems 77A7 44593 2 0.0335 nonlinear
wariable X3 0.36483  Homoskedastic no problems 877 15.69 3 0.0305 nonlinear
Yariable ¥4 0.3066  Homoskedastic no problems -295.96 B28.21 4 0.9293 linear
Wariable X5 0.2495  Homoskedastic no problems 335 9.38 3 02727 linear

Figure 2: Heteroskedasticity, micronumerosity, outliers, and nonlinearity results

Another typical issue when forecasting time-series data is whether the independent-variable values are
truly independent of each other or whether they are dependent. Dependent-variable values collected over
a time-series may be autocorrelated. For serially correlated dependent variable values, the estimates of the
slope and intercept will be unbiased, but the estimates of their forecast and variances will not be reliable.
Hence the validity of certain statistical goodness-of-fit tests will be flawed. For instance, interest rates,
inflation rates, sales, revenues, and many other time-series data typically are autocorrelated, where the
value in the current period is related to the value in a previous period, and so forth. Clearly, the inflation
rate in March is related to February’s level, which in turn, is related to January’s level, and so forth.
Ignoring such blatant relationships will yield biased and less accurate forecasts. In such events, an
autocorrelated regression model or an ARIMA model may be better suited (Risk Simulator | Forecasting
| ARIMA). Please refer to the advanced ARIMA forecasting chapter for details. Finally, the

autocorrelation functions of a series that is nonstationary tend to decay slowly (see Nonstationary report).

If autocorrelation AC(1) is nonzero, the series is first-order serially correlated. If AC(k) dies off more or
less geometrically with increasing lag, the series follows a low-order autoregressive process. If AC(K)
drops to zero after a small number of lags, the series follows a low-order moving-average process. Partial
correlation PAC(k) measures the correlation of values that are k periods apart after removing the
correlation from the intervening lags. If the pattern of autocorrelation can be captured by an
autoregression of order less than Kk, then the partial autocorrelation at lag k will be close to zero. Ljung-

Box Q-statistics and their p-values at lag k have the null hypothesis that there is no autocorrelation up to



order k. The dotted lines in the plots of the autocorrelations are the approximate two standard error
bounds. If the autocorrelation is within these bounds, it is not significantly different from zero at the 5%

significance level.

Autocorrelation measures the relationship to the past of the dependent Y variable to itself. Distributive
Lags, in contrast, are time-lag relationships between the dependent Y variable and different independent
X variables. For instance, the movement and direction of mortgage rates tend to follow the Federal Funds
Rate but at a time lag (typically 1 to 3 months). Sometimes, time lags follow cycles and seasonality (e.g.,
ice cream sales tend to peak during the summer months and hence are related to last summer’s sales, 12
months in the past). The distributive lag analysis in Fiure 80.3 show how the dependent variable is related
to each of the independent variables at various time lags, when all lags are considered simultaneously, to

determine which time lags are statistically significant and should be considered.

Autocorrelation

Time Lag AC FAC Lower Bound  Upper Bound Q-Stat Prab
1 0.0880 00560 -0.2828 0.2828 04785 DBT26 - -
2 042113 01281 -0.2828 0.2828 08754 06140 AC pAC
3 0.0890 00756 -0.2828 0.2828 11679 07607 | | | |
4 0.2423 02232 02828 0.2828 44865 03442 : | : |
5 0.0067 00078 -0.2828 0.2828 44890 04814 | | | |
8 -0.2654  -02345  -0.2828 0.2828 8E516 01941 | | | |
7 0.0814 00838 -0.2828 0.2828 90524 02489 | | | |
3 0.0834 00442 -0.2828 0.2828 93012 03175 | | | |
3 0.0204 00673 -0.2828 0.2828 93276 04076 | | | |
10 -00180  0.0865  -0.2828 0.2828 93512 04991 | | | |
11 04036 00790 -0.2828 0.2828 100648 0.5246 : : : :
12 01858 00878 -0.2828 0.2828 119486 0.4500 | | | |
13 -00524  -0.0430  -0.2828 0.2828 121384 05162 | | | |
14 02050 -0.2523  -0.2828 0.2828 151738 0.3664 | | : |
15 01782 02088 -0.2828 0.2828 175315 0.2881 | | | |
18 -01022 -0.2591  -0.2828 0.2828 123206 10,3040 | | | |
17 -D081T 0.0808  -0.2828 0.2828 189141 0333 | | | |
18 0.0418 01887 -0.2828 0.2828 100559 0.3884 : : : :
19 0.0868 00821 -0.2828 0.2828 196894 0.4135 : : : :
0 00081 -0.0269  -0.2828 0.2828 19.6986  0.4770 J J

Distributive Lags

P-Values of Distributive Lag Periods of Each Independent Variable

Wariable 1 2 3 4 a 5} 7 g 9 10 11 12
X1 0.8467 0.2045 0.3336 0.9105 08757 01020 0.920% 0.1267 0.5431 049110 0.74495 04016
2 0.6077 0.94900 0.8422 0.2851 0.0638 0.0032 n.eoor 0.1551 0.4823 01126 0.0519 0.4383
#3 0.7394 0.2396 0.2741 0.8372 0.9a08 0.0464 0.8355 0.0545 0.6828 0.7354 0.5093 0.3500
R 0.0061 0.6734 0.7932 07714 0.6748 0.8627 0.5586 0.9046 0.5726 0.6304 0.4812 0.5707
] 0.1591 0.2032 0.4123 0.5599 06416 0.3447 0.9140 0.9740 0.5185 0.2856 0.1489 0.7794

Figure 3: Autocorrelation and distributive lags

Another requirement in running a regression model is the assumption of normality and sphericity of the
error term. If the assumption of normality is violated or outliers are present, then the linear regression
goodness-of-fit test may not be the most powerful or informative test available, and this could mean the

difference between detecting a linear fit or not. If the errors are not independent and not normally



distributed, the data might be autocorrelated or suffer from nonlinearities or other more destructive errors.

Independence of the errors can also be detected in the heteroskedasticity tests.

The Normality test on the errors performed is a nonparametric test, which makes no assumptions about
the specific shape of the population from which the sample is drawn, allowing for smaller sample data
sets to be analyzed. This test evaluates the null hypothesis of whether the sample errors were drawn from
a normally distributed population versus an alternate hypothesis that the data sample is not normally
distributed (Figure 4). If the calculated D-Statistic is greater than or equal to the D-Critical values at
various significance values, reject the null hypothesis and accept the alternate hypothesis (the errors are
not normally distributed). Otherwise, if the D-Statistic is less than the D-Critical value, do not reject the
null hypothesis (the errors are normally distributed). This test relies on two cumulative frequencies: one
derived from the sample data set, the second derived from a theoretical distribution based on the mean

and standard deviation of the sample data.

Test Result
_ Errors  ROAIVe ) cerved Expected O
Regression Exvar Avarage Q.00 Frequency

Standiard Deviation of Errors 1471.83 -299.04 0.02 Q.02 00672 -0.04492
0 Statistic 01036 -202.53 0.0z 0.04 0.0766 -0.0366
O Critical at 1% 01438 -186.04 0.0z 0.06 0.0845 -0.0348
O Critical at 5% 01225 -i7d 47 0.0z 0.08 01097 -0.0297
0 Critical at 10% 014585 -162.13 0.02 a1 012635 -0.0263
Null Hypothesis: The errars are harmaliy distribubed, -T61.62 o0z afz Qy272 -0.0072
-160.39 0.0z 014 01291 0.0109
Conciusion: The errors are normally distributed at the =145.40 00z 016 01926 0.0074
1% alpha level -136.92 0.0z 018 01637 00163
-133.87 0.02 0.20 01727 00273
-120.76 0.02 022 01973 0.0227
-12012 0.02 0.24 01983 0.0413

Figure 4: Normality of errors

Sometimes certain types of time-series data cannot be modeled using any other methods except for a
stochastic process, because the underlying events are stochastic in nature. For instance, you cannot
adequately model and forecast stock prices, interest rates, price of oil, and other commodity prices using a
simple regression model, because these variables are highly uncertain and volatile, and do not follow a
predefined static rule of behavior. In other words, the processes are not stationary. Stationarity is checked
here using the Runs Test while another visual clue is found in the Autocorrelation report (the ACF tends
to decay slowly). A stochastic process is a sequence of events or paths generated by probabilistic laws.
That is, random events can occur over time but are governed by specific statistical and probabilistic rules.
The main stochastic processes include Random Walk or Brownian Motion, Mean-Reversion, and Jump-

Diffusion. These processes can be used to forecast a multitude of variables that seemingly follow random



trends but are restricted by probabilistic laws. The process-generating equation is known in advance, but
the actual results generated are unknown. The Random Walk Brownian Motion process can be used to
forecast stock prices, prices of commodities, and other stochastic time-series data given a drift or growth
rate and volatility around the drift path. The Mean-Reversion process can be used to reduce the
fluctuations of the Random Walk process by allowing the path to target a long-term value, making it
useful for forecasting time-series variables that have a long-term rate, such as interest rates and inflation
rates (these are long-term target rates by regulatory authorities or the market). The Jump-Diffusion
process is useful for forecasting time-series data when the variable occasionally can exhibit random
jumps, such as oil prices or price of electricity (discrete exogenous event shocks can make prices jump up
or down). These processes can also be mixed and matched as required. Figure 5 illustrates the results
from Risk Simulator’s data diagnostic tool, to determine the stochastic parameters of the data set. It shows
the probability of a stochastic fit as opposed to conventional models, and the relevant input parameters in
these stochastic models. It is up to the user to determine if the probability of fit is significant enough to

use these stochastic processes.

Stochastic Process
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Statistical Summary

The following are the estimated parameters for a stochastic process given the data provided. It is up to you to determine if the probability of fit
(similar to a goodness-of-fit computation) is sufficient to warrant the use of a stochastic process forecast, and if so, whether it is a random
walk, mean-reversion, or a jump-diffusion model, or combinations thereof. In choosing the right stochastic process model, you will have to rely
on past experiences and & prion economic and financial expectations of what the underlying data set is best represented by. These parameters
can be entered into a stochastic process forecast (Simulation | Forecasting | Stochastic Processes).

Periodic
Drift Rate -1.48% Reversion Rate  283.80% Jurnn Rate 20.41%
lFoiztins &8.84% Long-Tenn Y alue 32F T2 Jump Size 237.89
Probability of stochastic mode! fit: 46, 45%
A high it means a stochastic model is belter than comventional modials.
Runs 20 Standard Nowmal  -1.7327
Poaitive 25 F-ligive (1-tail) Q0416
Negative 25 F-ligive (2-tail) Q.0833
Expected Run 26

A low pevalue (below 010, 0.05, 0.04) means that the sequence is not rahdom and hence suffers from stationarily probiems, and an ARIMA
rmodel might be move approptiate. Conversaly, higher pvalues Indicate randormness and stochastic process models might be appropriate.

Figure 5: Stochastic processes



Multicollinearity exists when there is a linear relationship between the independent variables. When this
occurs, the regression equation cannot be estimated at all. In near-collinearity situations, the estimated
regression equation will be biased and provide inaccurate results. This situation is especially true when a
step-wise regression approach is used, where the statistically significant independent variables will be
thrown out of the regression mix earlier than expected, resulting in a regression equation that is neither
efficient nor accurate. One quick test of the presence of multicollinearity in a multiple regression equation

is that the R-squared value is relatively high while the t-statistics are relatively low.

Another quick test is to create a correlation matrix between the independent variables. A high cross-
correlation indicates a potential for autocorrelation. The rule of thumb is that a correlation with an
absolute value greater than 0.75 is indicative of severe multicollinearity. Another test for multicollinearity
is the use of the Variance Inflation Factor (VIF), obtained by regressing each independent variable to all
the other independent variables, obtaining the R-squared value, and calculating the VIF (Figure 6). A VIF
exceeding 2.0 can be considered as severe multicollinearity. A VIF exceeding 10.0 indicates destructive

multicollinearity.

Correlation Matrix

CORRELATION w2 M3 bt K3

H1 0.333 0.859 0.242 0.237
Hz2 10000 0.349 0.319 0120
H3 10000 01986 0.227
Hd 1.000) 0.290

Variance Inflation Factor

I w2 3 x4 X3
=1 112 1246 1.06 1.06
H2 s 114 111 1.
H3 Fis o 104 105
Hd s 1.09

Figure 6: Correlation and variance inflation factors

The Correlation Matrix lists the Pearson’s Product Moment Correlations (commonly referred to as the
Pearson’s R) between variable pairs. The correlation coefficient ranges between —1.0 and + 1.0 inclusive.
The sign indicates the direction of association between the variables while the coefficient indicates the
magnitude or strength of association. The Pearson’s R only measures a linear relationship and is less

effective in measuring nonlinear relationships.



To test whether the correlations are significant, a two-tailed hypothesis test is performed and the resulting
p-values are listed as shown in Figure 6. P-values less than 0.10, 0.05, and 0.01 are highlighted in blue to
indicate statistical significance. In other words, a p-value for a correlation pair that is less than a given
significance value is statistically significantly different from zero, indicating that there is significant a
linear relationship between the two variables.

The Pearson’s Product Moment Correlation Coefficient (R) between two variables (x and y) is related to

(6{0)
the covariance (cov) measure where R, , = “¥ . The benefit of dividing the covariance by the product
' SSy

of the two variables’ standard deviation (s) is that the resulting correlation coefficient is bounded between
-1.0 and +1.0 inclusive. This makes the correlation a good relative measure to compare among different
variables (particularly with different units and magnitude). The Spearman rank-based nonparametric
correlation is also included in the report. The Spearman’s R is related to the Pearson’s R in that the data is
first ranked and then correlated. The rank correlations provide a better estimate of the relationship

between two variables when one or both of them is nonlinear.

It must be stressed that a significant correlation does not imply causation. Associations between variables
in no way imply that the change of one variable causes another variable to change. When two variables
are moving independently of each other but in a related path, they may be correlated, but their
relationship might be spurious (e.g., a correlation between sunspots and the stock market might be strong

but one can surmise that there is no causality and that this relationship is purely spurious).



