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Forecasting — Time-Series ARIMA

File Name: Forecasting — Time-Series ARIMA

Location: Modeling Toolkit | Forecasting | ARIMA

Brief Description: This sample model illustrates how to run an econometric model called the Box-
Jenkins ARIMA, which stands for autoregressive integrated moving average, an advanced forecasting
technique that takes into account historical fluctuations, trends, seasonality, cycles, prediction errors,
and nonstationarity of the data

Requirements: Modeling Toolkit, Risk Simulator

The Data worksheet in the model contains some historical time-series data on money supply in the United
States, denoted M1, M2, and M3. M1 is the most liquid form of money (cash, coins, savings accounts,
and so forth); M2 and M3 are less liquid forms of money (bearer bonds, certificates of deposit, and so
forth). These data sets are useful examples of long-term historical time-series data where ARIMA can be

applied.

Briefly, ARIMA econometric modeling takes into account historical data and decomposes it into an
Autoregressive (AR) process, where there is a memory of past events (e.g., the interest rate this month is
related to the interest rate last month, and so forth, with a decreasing memory lag); an Integrated (1)
process, which accounts for stabilizing or making the data stationary and ergodic, making it easier to
forecast; and a Moving Average (MA) of the forecast errors, such that the longer the historical data, the
more accurate the forecasts will be, as it learns over time. ARIMA models therefore have three model
parameters, one for the AR(p) process, one for the I(d) process, and one for the MA(Q) process, all

combined and interacting among each other and recomposed into the ARIMA (p,d,q) model.

There are many reasons why an ARIMA model is superior to common time-series analysis and
multivariate regressions. The common finding in time series analysis and multivariate regression is that
the error residuals are correlated with their own lagged values. This serial correlation violates the standard
assumption of regression theory that disturbances are not correlated with other disturbances. The primary
problems associated with serial correlation are:

e Regression analysis and basic time-series analysis are no longer efficient among the different
linear estimators. However, as the error residuals can help to predict current error residuals,
we can take advantage of this information to form a better prediction of the dependent
variable using ARIMA.



e Standard errors computed using the regression and time-series formula are not correct and are
generally understated. If there are lagged dependent variables set as the regressors, regression

estimates are biased and inconsistent but can be fixed using ARIMA.

Autoregressive Integrated Moving Average or ARIMA(p,d,q) models are the extension of the AR model
that uses three components for modeling the serial correlation in the time series data. The first component
is the autoregressive (AR) term. The AR(p) model uses the p lags of the time series in the equation. An
AR(p) model has the form: y; = a;yw.1 + ... + apysp + €. The second component is the integration (d) order
term. Each integration order corresponds to differencing the time series. 1(1) means differencing the data
once. | (d) means differencing the data d times. The third component is the moving average (MA) term.
The MA(q) model uses the g lags of the forecast errors to improve the forecast. An MA(g) model has the
form: y;= e + biees + ... + byerq. Finally, an ARMA(p,q) model has the combined form: y;=a; yi1 + ... +

a pyt_p+ et+ b]_et_]_+ e + bq et_q.

In interpreting the results of an ARIMA model, most of the specifications are identical to the multivariate
regression analysis. However, there are several additional sets of results specific to the ARIMA analysis.
The first is the addition of Akaike Information Criterion (AIC) and Schwarz Criterion (SC), which are
often used in ARIMA model selection and identification. That is, AIC and SC are used to determine if a
particular model with a specific set of p, d, and g parameters is a good statistical fit. SC imposes a greater
penalty for additional coefficients than the AIC but generally, the model with the lowest AIC and SC
values should be chosen. Finally, an additional set of results called the autocorrelation (AC) and partial

autocorrelation (PAC) statistics are provided in the ARIMA report.

For instance, if autocorrelation AC(1) is nonzero, it means that the series is first order serially correlated.
If AC dies off more or less geometrically with increasing lags, it implies that the series follows a low-
order autoregressive process. If AC drops to zero after a small number of lags, it implies that the series
follows a low-order moving-average process. In contrast, PAC measures the correlation of values that are
k periods apart after removing the correlation from the intervening lags. If the pattern of autocorrelation
can be captured by an autoregression of order less than k, then the partial autocorrelation at lag k will be
close to zero. The Ljung-Box Q-statistics and their p-values at lag k are also provided, where the null
hypothesis being tested is such that there is no autocorrelation up to order k. The dotted lines in the plots
of the autocorrelations are the approximate two standard error bounds. If the autocorrelation is within

these bounds, it is not significantly different from zero at approximately the 5% significance level.



Finding the right ARIMA model takes practice and experience. These AC, PAC, SC, and AIC are highly
useful diagnostic tools to help identify the correct model specification. Finally, the ARIMA parameter
results are obtained using sophisticated optimization and iterative algorithms, which means that although
the functional forms look like those of a multivariate regression, they are not the same. ARIMA is a much

more computationally intensive and advanced econometric approach.

Running an ARIMA Forecast

To run this model, simply:

1. Go to the Data worksheet and select Risk Simulator | Forecasting | ARIMA.

2. Click on the LINK icon beside the Time Series Variable input box, and link in C7:C442.

3. Enter in the relevant P, D, Q inputs, forecast periods, maximum iterations, and so forth (Figure 1) and
click OK.
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Figure 1: Running a Box-Jenkins ARIMA model

The nice thing about using Risk Simulator is the ability to run its AUTO-ARIMA module. That is, instead
of needing advanced econometric knowledge, the AUTO-ARIMA module can automatically test all most
commonly used models and rank them from the best fit to the worst fit. Figure 2 illustrates the results
generated from an AUTO-ARIMA module in Risk Simulator and Figure 3 shows the best-fitting ARIMA

model report.
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AUTO-ARIMA (Autoregressive Integrated Moving Average)

Adjusted Akaike Information Schwarz Durbin-Watson  Mumber of Model
R-Squared Criterion [(AIC) Criterion (SC) Statistic (DW) lterations Rank
0.9999 4 RG24 4 6044 21254 0 1
0.9999 4 6213 4 BA32 1.8588 5 2
0.9909 4.8008 49187 0.9211 0 3
0.7309 12.9116 12.83495 0.1188 62 4
0.5025 4.496 4552 2.0424 15 5
0.4977 4 4966 45527 1.9676 20 ]
0.4865 4.5301 45721 1.7916 15 7
0.4514 4 587 4 6291 20969 0 3
0.434 4 6297 4 6577 2242 0 g
03242 47944 48224 17167 8 10
0.2689 4.4883 4.5444 1.9968 23 11
0.2672 4.5009 45711 2 28 12
0.2593 45118 45538 2.0413 11 13
0.2526 45127 4.5547 1.9681 8 14
0.2057 45862 4.6284 2.0417 0 15
0 51877 5.2016 0.6802 0 16
0 4 8166 48305 2 6443 0 17
WIE MIA A NIE HiA 18
WIE MIA A WIE A 18
WTE IR MIA WIE MiA 20

Figure 2: AUTO-ARIMA results



AUTO-ARIMA (Autoregressive Integrated Moving Average)

Regression Statistics

R-Squared (Coefiicient of Determination) 0.9999 Akaike Information Criterion (AIC) 45624
Adjusted R-Squared 0.9999 Schwarz Criterion (SC) 46044
Multiple R (Multiple Correlation Coefficient) 1.0000 Log Likelihood -990.0409
Standard Error of the Estimates (SEy) 297.5328 Durbin-Watson (DW) Statistic 21254
Number of Observations 434 MNumber of lterations 0

Autoregressive Integrated Moving Average or ARIMA(p,d,q) models are the extension of the AR model that use three components for modeling the serial correlation in
the time-series data. The first component is the autoregressive (AR)term. The AR(p) model uses the p lags of the time series in the equation. An AR(p) model has
the form: y(t}=a(1yy(i-1)+. +a(pfy{t-p)+e(t).The second component is the integration (d) order term. Each integration order corresponds to differencing the time
series. I(1) means differencing the data once. [{d) means differencing the data d times. The third component is the moving average (MA) term. The MA(g) model uses
the g lags of the forecast errors to improve the forecast An MA({g) model has the form: y(t)=e{t)+b(1y*e(t-1)+. +b(gy*e{t-g).Finally, an ARMA(p,q) model has the
combined form: y{t)=a(1*y{t-1)+. +a(pyyit-pi+e)+b(1)yel-1)+. +big)yeit-q).

The R-Squared, or Coefficient of Determination, indicates the percentvariation in the dependent variable that can be explained and accounted for by the independent
variables in this regression analysis. However, in a multiple regression, the Adjusted R-Squared takes into account the existence of additional independent variables
orregressors and adjusts this R-Squared value to a more accurate view the regression’s explanatory power. However, under some ARIMA modeling circumstances
(e.g., with nonconvergence models), the R-Squared tends to be unreliable.

The Multiple Correlation Coefficient (Multiple R) measures the correlation between the actual dependent variable (Y) and the estimated or fited (Y) based on the
regression equation. This correlation is also the square root of the Coefficient of Determination (R-Squared).

The Standard Error of the Estimates (SEy) describes the dispersion of data points above and below the regression line or plane. This value is used as part ofthe
calculation to obtain the confidence interval of the estimates later.

The AIC and SC are often used in model selection. SC imposes a greater penalty for additional coefficients. Generally, the user should select a model with the lowest
value ofthe AIC and SC.

The Durbin-Watson statistic measures the serial correlation in the residuals. Generally, DW less than 2 implies positive serial correlation.

Regression Results

Intercept AR AR(Z)
Coefficients -0.0025 1.5454 -0.5429
Standard Error 0.2020 0.0407 0.0410
t-Statistic -0.0122 379479 132551
p-Value 0.9902 0.0000 0.0000
Lower 5% 0.3304 1.6125 -0.4754
Upper 95% -0.3354 14782 -0.6104
Degrees of Freedom Hypothesis Test
Degrees of Freedom for Regression 2 Critical t-Statistic (99% confidence with df of 431) 25873
Degrees of Freedom for Residual 431 Critical t-Statistic (95% confidence with df of 431) 1.9655
Total Degrees of Freedom 433 Critical t-Statistic (90% confidence with df of 431) 1.6484

The Coeflicients provide the estimated regression intercept and slopes. For instance, the coefficients are estimates of the true; population b values in the following
regression equation ¥ = g0 + p1X1 + p2X2 + . + gnXn. The Standard Error measures how accurate the predicted Coefficients are, and the t-Statistics are the ratios of
each predicted Coefficient to its Standard Error.

The t-Statistic is used in hypothesis testing, where we set the null hypothesis (Ho) such thatthe real mean of the Coefficient = 0, and the alternate hypothesis (Ha)
such that the real mean of the Coefficient is not equal to 0. A ttest is is performed and the calculated t-Statistic is compared to the critical values at the relevant
Degrees of Freedom for Residual. The ttest is very important as it calculates if each of the coefficients is statistically significant in the presence of the other
regressors. This means that the t-test statistically verifies whether a regressor or independent variable should remain in the regression or it should be dropped.

The Coefficient is statistically significant if its calculated t-Statistic exceeds the Critical t-Statistic at the relevant degrees of freedom (df). The three main confidence
levels used to test for significance are 90%, 95% and 99%. If a Coefiicient's t-Statistic exceeds the Critical level, itis considered statistically significant. Alternatively,
the p-Value calculates each t-Statistic’s probability of occurrence, which means that the smaller the p-Value, the more significant the Coefficient. The usual significant
levels for the p-Value are 0.01, 0.05, and 0.10, corresponding to the 99%, 95%, and 99% confidence levels.

The Coefficients with their p-Values highlighted in blue indicate that they are statistically significant at the 90% confidence or 0.10 alpha level, while those highlighted
in red indicate that they are not statistically significant at any other alpha levels.



Analysis of Variance

Sums of Mean of e
Squares Squares F-Statistic
Regression 3832921566 1916460783 33926295
Residual 2434 67 5.65
Total 3833165033 19164613.48

The Analysis of Variance (AMOWA) table provides an F-test of the regression model's overall statistical significance. Instead of looking at individual regressors asin
the t-test, the F-testlooks at all the estimated Coefficients’ statistical properties. The F-Statistic is calculated as the ratio of the Regression's Mean of Squares to the
Residual's Mean of Squares. The numerator measures how much of the regression is explained, while the denominator measures how much is unexplained.
Hence, the largerthe F-Statistic, the more significant the model. The corresponding p-Value is calculated to test the null hypothesis (Ho) where all the Coefficients are
simultaneously equal to zero, versus the alternate hypothesis (Ha) that they are all simultaneously different from zero, indicating a significant overall regression
maodel. Ifthe p-Value is smallerthan the 0.01, 0.05, or 0.10 alpha significance, then the regression is significant. The same approach can be applied to the F-Statistic

p-Value
0

Hypothesis Test

Critical F-statistic (99% confidence with df of 2 and 431)
Critical F-statistic (95% confidence with df of 2 and 431)
Critical F-statistic (90% confidence with df of 2 and 431)

by comparing the calculated F-Statistic with the critical F values atvarious significance levels.

46547
30167
2.3148

Autocorrelation

Time Lag AC PAC Lower Bound Upper Bound
1 0.9521 09521 (0.0858) 0.0858
2 0.9841 (0.0105) (0.0958) 0.0858
3 0.9760 (0.0109) (0.0958) 0.0958
4 0.9678 (0.0142) (0.0958) 0.0958
5 0.9504 (0.0098) (0.0958) 0.0958
[ 0.9509 (0.0113) (0.0958) 0.0958
7 0.9423 (0.0124) (0.0958) 0.0958
8 0.9336 (0.0147) (0.0958) 0.0958
9 0.9247 (0.0121) (0.0958) 0.0958

10 0.9156 (0.0139) (0.0958) 0.0958
11 0.9066 (0.0049) (0.0958) 0.0958
12 0.8975 (0.0088) (0.0958) 0.0858
13 0.8883 (0.0087) (0.0958) 0.0958
14 0.8791 (0.0087) (0.0958) 0.0958
15 0.8598 (0.0084) (0.0958) 0.0858
16 0.8505 (0.0058) (0.0958) 0.0958
17 0.8512 (0.0082) (0.0958) 0.0958
12 0.8419 (0.0038) (0.0958) 0.0958
19 0.8326 (0.0003) (0.0958) 0.0958
20 0.8235 0.0002 (0.0958) 0.0958

Q-stat
4301374
8543510

1,272 5766

1,6847083

2,000.7005

2,490.4913

2,884.0058

3,271.1421

3,651.8357

4,026.0019

43936732

4,754 8509

5,109.5382

5,457.6999

5,799.3668

8,134 5714

6,463 3408

6,785.7337

7,101.8507

74117987
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Forecasting

Period

Actual (1)
139.699997
139.699997
140.699997
141.199997
141.699997
141.899994

141

140.5
140.399994
140

140
139.899994
139.800003
139.600008
139.600008
139.600008
140.199997
141.300003
141.199997
140.899994
140.899994
140.699997
141.100008
141.600008
141.899994
142100008
142 699997
142 899994
142 899994
143.5
143.800003
144100008
144 800003
145.199997
145.199997
145 699997
145
146.399994
145.800003
145.600008

Forecast (F)
140.0142
140.2083
140.0435
141.5888
141.8188
142.3199
1423575
140.8581
140.5740
140.6909
1401271
140.3442
1401897
140.0894
139.8347
139.9432
139.9432
140.8704
1422445
141.4929
141.0838
141.2454
140.9374
141.6641
1422198
14241128
142 5580
143.3768
143.3800
143.2514
1441788
144 3185
1448172
145.5361
1457742
145.8571
145.3298
1455219
1489772
147 3782

Error (E}
(0.3142)
(0.5083)
0.6565
(0.3888)
(0.1188)
(0.4199)
(1.3575)
(0.3581)
(0.1740)
(0.6909)
(0.1271)
(0.4442)
(0.3897)
(0.4894)
(0.2347)
(0.3432)
0.2558
0.4295
(1.0448)
(0.5929)
(0.1838)
(0.5484)
0.1628
(0.0841)
(0.3198)
(0.3118)
0.1420
(0.4788)
(0.4600)
0.2485
(0.3788)
(0.2185)
01828
(0.3381)
(0.5742)
01429
(0.3298)
(0.1219)
0.1772)
(0.7782)
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Figure 3: Best-Fitting AUTO-ARIMA results




