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Forecasting – Time-Series ARIMA      
File Name: Forecasting – Time-Series ARIMA  
Location: Modeling Toolkit | Forecasting | ARIMA 
Brief Description: This sample model illustrates how to run an econometric model called the Box-
Jenkins ARIMA, which stands for autoregressive integrated moving average, an advanced forecasting 
technique that takes into account historical fluctuations, trends, seasonality, cycles, prediction errors, 
and nonstationarity of the data 
Requirements: Modeling Toolkit, Risk Simulator  

 

The Data worksheet in the model contains some historical time-series data on money supply in the United 

States, denoted M1, M2, and M3. M1 is the most liquid form of money (cash, coins, savings accounts, 

and so forth); M2 and M3 are less liquid forms of money (bearer bonds, certificates of deposit, and so 

forth). These data sets are useful examples of long-term historical time-series data where ARIMA can be 

applied.  

 

Briefly, ARIMA econometric modeling takes into account historical data and decomposes it into an 

Autoregressive (AR) process, where there is a memory of past events (e.g., the interest rate this month is 

related to the interest rate last month, and so forth, with a decreasing memory lag); an Integrated (I) 

process, which accounts for stabilizing or making the data stationary and ergodic, making it easier to 

forecast; and a Moving Average (MA) of the forecast errors, such that the longer the historical data, the 

more accurate the forecasts will be, as it learns over time. ARIMA models therefore have three model 

parameters, one for the AR(p) process, one for the I(d) process, and one for the MA(q) process, all 

combined and interacting among each other and recomposed into the ARIMA (p,d,q) model. 

 

There are many reasons why an ARIMA model is superior to common time-series analysis and 

multivariate regressions. The common finding in time series analysis and multivariate regression is that 

the error residuals are correlated with their own lagged values. This serial correlation violates the standard 

assumption of regression theory that disturbances are not correlated with other disturbances. The primary 

problems associated with serial correlation are: 

• Regression analysis and basic time-series analysis are no longer efficient among the different 

linear estimators. However, as the error residuals can help to predict current error residuals, 

we can take advantage of this information to form a better prediction of the dependent 

variable using ARIMA. 



• Standard errors computed using the regression and time-series formula are not correct and are 

generally understated. If there are lagged dependent variables set as the regressors, regression 

estimates are biased and inconsistent but can be fixed using ARIMA.  

 

Autoregressive Integrated Moving Average or ARIMA(p,d,q) models are the extension of the AR model 

that uses three components for modeling the serial correlation in the time series data. The first component 

is the autoregressive (AR) term. The AR(p) model uses the p lags of the time series in the equation. An 

AR(p) model has the form: yt = a1yt-1 + ... + apyt-p + et. The second component is the integration (d) order 

term. Each integration order corresponds to differencing the time series. I(1) means differencing the data 

once. I (d) means differencing the data d times. The third component is the moving average (MA) term. 

The MA(q) model uses the q lags of the forecast errors to improve the forecast. An MA(q) model has the 

form: yt = et + b1et-1 + ... + bqet-q. Finally, an ARMA(p,q) model has the combined form: yt = a1 yt-1 + ... + 

a p yt-p + et + b1 et-1 + ... + bq et-q. 

 

In interpreting the results of an ARIMA model, most of the specifications are identical to the multivariate 

regression analysis.  However, there are several additional sets of results specific to the ARIMA analysis. 

The first is the addition of Akaike Information Criterion (AIC) and Schwarz Criterion (SC), which are 

often used in ARIMA model selection and identification. That is, AIC and SC are used to determine if a 

particular model with a specific set of p, d, and q parameters is a good statistical fit. SC imposes a greater 

penalty for additional coefficients than the AIC but generally, the model with the lowest AIC and SC 

values should be chosen. Finally, an additional set of results called the autocorrelation (AC) and partial 

autocorrelation (PAC) statistics are provided in the ARIMA report.  

 

For instance, if autocorrelation AC(1) is nonzero, it means that the series is first order serially correlated. 

If AC dies off more or less geometrically with increasing lags, it implies that the series follows a low-

order autoregressive process. If AC drops to zero after a small number of lags, it implies that the series 

follows a low-order moving-average process. In contrast, PAC measures the correlation of values that are 

k periods apart after removing the correlation from the intervening lags. If the pattern of autocorrelation 

can be captured by an autoregression of order less than k, then the partial autocorrelation at lag k will be 

close to zero. The Ljung-Box Q-statistics and their p-values at lag k are also provided, where the null 

hypothesis being tested is such that there is no autocorrelation up to order k. The dotted lines in the plots 

of the autocorrelations are the approximate two standard error bounds. If the autocorrelation is within 

these bounds, it is not significantly different from zero at approximately the 5% significance level. 



Finding the right ARIMA model takes practice and experience. These AC, PAC, SC, and AIC are highly 

useful diagnostic tools to help identify the correct model specification. Finally, the ARIMA parameter 

results are obtained using sophisticated optimization and iterative algorithms, which means that although 

the functional forms look like those of a multivariate regression, they are not the same. ARIMA is a much 

more computationally intensive and advanced econometric approach. 

 

Running an ARIMA Forecast 

To run this model, simply: 

1. Go to the Data worksheet and select Risk Simulator | Forecasting | ARIMA.  

2. Click on the LINK icon beside the Time Series Variable input box, and link in C7:C442. 

3. Enter in the relevant P, D, Q inputs, forecast periods, maximum iterations, and so forth (Figure 1) and 

click OK. 

 

 
Figure 1: Running a Box-Jenkins ARIMA model 

 

The nice thing about using Risk Simulator is the ability to run its AUTO-ARIMA module. That is, instead 

of needing advanced econometric knowledge, the AUTO-ARIMA module can automatically test all most 

commonly used models and rank them from the best fit to the worst fit. Figure 2 illustrates the results 

generated from an AUTO-ARIMA module in Risk Simulator and Figure 3 shows the best-fitting ARIMA 

model report.  



 
Figure 2: AUTO-ARIMA results 

 



  



  



 
 

Figure 3: Best-Fitting AUTO-ARIMA results  


