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Analytics — Statistical Analysis

File Name: Analytics — Statistical Analysis

Location: Modeling Toolkit | Analytics | Statistical Analysis

Brief Description: Applying the Statistical Analysis Tool to determine the key statistical characteristics
of your data set, including linearity, nonlinearity, normality, distributional fit, distributional moments,
forecastability, trends, and stochastic nature of the data

Requirements: Modeling Toolkit, Risk Simulator

This model provides a sample data set on which to run the Statistical Analysis tool in order to determine
the statistical properties of the data. The diagnostics run include checking the data for various statistical
properties. This means all you have to do is to select your existing data set and run the statistical analysis
tool, all but taking a few seconds, and out comes many detailed reports of the characteristics of your data
set. This provides a very powerful automated analytical tool which simply provides a wealth of

knowledge of your data set.

Procedure
To run the analysis, follow the instructions below:

1. Go to the Data worksheet and select the data including the variable names (cells C5:E55).

2. Click on Risk Simulator | Tools | Statistical Analysis (Figure 1).

3. Check the data type, whether the data selected are from a single variable or multiple variables
arranged in rows. In our example, we assume that the data areas selected are from multiple
variables. Click OK when finished.

4. Choose the statistical tests you wish performed. The suggestion (and by default) is to choose all
the tests. Click OK when finished (Figure 2).

Spend some time going through the reports generated to get a better understanding of the statistical tests

performed.

The analysis reports include the following statistical results:

e Descriptive Statistics: Arithmetic and geometric mean, trimmed mean (statistical
outliers are excluded in computing its mean value), standard error and its
corresponding statistical confidence intervals for the mean, median (the 50th

percentile value), mode (most frequently occurring value), range (maximum less



minimum), standard deviation and variance of the sample and population, confidence
interval for the population standard deviation, coefficient of variability (sample
standard deviation divided by the mean), first and third quartiles (25th and 75th
percentile value), skewness and excess kurtosis.

Distributional Fit: Fitting the data to all 24 discrete and continuous distributions in
Risk Simulator to determine which theoretical distribution best fits the raw data, and
proving it with statistical goodness-of-fit results (Kolmogorov-Smirnov and Chi-
Square tests’ p-value results).

Hypothesis Tests: Single variable one-tail and two-tail tests to see if the raw data is
statistically similar or different from a hypothesized mean value.

Nonlinear Extrapolation: Tests for nonlinear time-series properties of the raw data, to
determine if the data can be fitted to a nonlinear curve.

Normality Test: Fits the data to a normal distribution using a theoretical fitting
hypothesis test to see if the data is statistically close to a normal distribution.
Stochastic Calibration: Using the raw data, various stochastic processes are fitted
(Brownian motion, jump-diffusion, mean-reversion, and random walk processes) and
the levels of fit as well as the input assumptions are automatically determined.
Autocorrelation and Partial Autocorrelation: The raw data is tested to see if it is
correlated to itself in the past by applying some econometric estimations and tests of
autocorrelation and partial autocorrelation coefficients.

Time-Series Forecasting: Eight most-commonly used time-series decomposition
models are applied to determine if the raw data set follows any trend and seasonality,
and whether the time-series is predictable.

Trend Analysis: A linear time-trend is tested to see if the data has any appreciable

trend, using a linear regression approach.
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Figure 1: Running the statistical analysis tool
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Figure 2: Statistical tests



Figure 3 shows a sample report generated by Risk Simulator that analyzes the statistical characteristics of
your data set, providing all the requisite distributional moments and statistics to help you determine the
specifics of your data, including the skewness and extreme events (kurtosis and outliers). The descriptions

of these statistics are listed in the report for your review. Each variable will have its own set of reports.

Descriptive Statistics

Analysis of Statistics

Almost all distributions can be described within 4 moments (some distributions require one moment, while others require two moments, and so forth). Descriptive statistics
quantitatively capture these moments. The first moment describes the location of a distribution (i.e., mean, median, and mode) and is interpreted as the expected value, expected
returns, or the average value of occurrences.

The Arithmetic Mean calculates the average of all occurrences by summing up all ofthe data points and dividing them by the number of points. The Geometric Mean is calculated by
taking the power root of the products of all the data points and requires them to all be positive. The Geometric Mean is more accurate for percentages or rates that fluctuate
significantly. For example, you can use Geometric Mean to calculate average growth rate given compound interest with variable rates. The Trimmed Mean calculates the arithmetic
average of the data set after the extreme outliers have been timmed. As averages are prone to significant bias when outliers exist, the Timmed Mean reduces such bias in skewed
distributions

The Standard Error of the Mean calculates the error surrounding the sample mean. The larger the sample size, the smallerthe error such that for an infinitely large sample size, the
error approaches zero, indicating that the population parameter has been estimated. Due to sampling errors, the 95% Confidence Interval for the Mean is provided. Based on an
analysis of the sample data points, the actual population mean should fall between these Lower and Upper Intervals for the Mean.

Median is the data point where 50% of all data points fall above this value and 50% below this value. Among the three first moment statistics, the median is least susceptible to
outliers. A symmetrical distribution has the Median equal to the Arithmetic Mean. A skewed distribution exists when the Median is far away from the Mean. The Mode measures the
maost frequently occurring data point.

Minimum is the smallestvalue in the data set while Maximum is the largestvalue. Range is the difference between the Maximum and Minimum values.

The second moment measures a distribution’s spread or width, and is frequently described using measures such as Standard Deviations, Variances, Quartiles, and Inter-Quartile
Ranges. Standard Deviation indicates the average deviation of all data points from their mean. Itis a popular measure as is associated with risk (higher standard deviations mean a
wider distribution, higher risk, or wider dispersion of data points around the mean) and its units are identical to original data set's. The Sample Standard Deviation differs from the
Population Standard Deviation in that the former uses a degree of freedom correction to account for small sample sizes. Alse, Lower and Upper Confidence Intervals are provided for
the Standard Deviation and the true population standard deviation falls within this interval. If your data set covers every element of the population, use the Population Standard
Deviation instead. The two Variance measures are simply the squared values of the standard deviations.

The Coefficient of Variability is the standard deviation of the sample divided by the sample mean, proving a unit-free measure of dispersion that can be compared across different
distributions (you can now compare distributions of values denominated in millions of dollars with one in billions of dollars, or meters and kilograms, etc.). The First Quartile
measures the 25th percentile of the data points when arranged from its smallest to largest value. The Third Quartile is the value of the 75th percentile data point. Sometimes
quartiles are used as the upper and lower ranges of a distribution as it truncates the data set to ignore outliers. The Inter-Quartile Range is the difference between the third and first
quartiles, and is often used to measure the width of the center of a distribution.

Skewness is the third moment in a distribution. Skewness characterizes the degree of asymmetry of a distribution around its mean. Positive skewness indicates a distribution with
an asymmetric tail extending toward more positive values. Megative skewness indicates a distribution with an asymmetric tail extending toward more negative values.

Kurtosis characterizes the relative peakedness or flatness of a distribution compared to the normal distribution. It is the fourth moment in a distribution. A positive Kurtosis value
indicates a relatively peaked distribution. A negative kurtosis indicates a relatively flat distribution. The Kurtosis measured here has been centered to zero (certain other kurtosis
measures are centered around 3.0). While both are equally valid, centering across zero makes the interpretation simpler. A high positive Kurtosis indicates a peaked distribution
around its center and leptokurtic or fat tails. This indicates a higher probability of extreme events (e.qg., catastrophic events, terrorist attacks, stock market crashes) than is predicted in
a normal distribution.

Summary Statistics

Statistics Variable X1

Observations 500000 Standard Deviation (Sample) 1728140
Arithmetic Mean 331.8200 Standard Deviation (Population) 171.1761
Geometric Mean 281.3247 Lower Confidence Interval for Standard Deviation 1486050
Trimmed Mean 3251738 Upper Confidence Interval for Standard Deviation 2077947
Standard Error of Arithimetic Mean 24 4337 Variance (Sample) 29899.2588
Lower Confidence Interval for Mean 2830125 Variance (Population) 25301 2736
Upper Confidence Interval for Mean 3808275 Coefficient of Variability 0.5210
Median 307.0000 First Quartile (Q1) 204.0000
Mode 47.0000 Third Quartile (Q3) 441.0000
Minimum 764 0000 Inter-Quartile Range 2370000
Maximum 717.0000 Skewness 0.4838
Range Kurtosis -0.0952

Figure 3: Sample report on descriptive statistics



Figure 4 shows the results of taking your existing data set and creating a distributional fit on 24
distributions. The best-fitting distribution (after Risk Simulator goes through multiple iterations
of internal optimization routines and statistical analyses) is shown in the report, including the test
statistics and requisite p-values, indicating the level of fit. For instance, Figure 4’s example data
set shows a 99.54% fit to a normal distribution with a mean of 319.58 and a standard deviation of
172.91. In addition, the actual statistics from your dataset are compared to the theoretical
statistics of the fitted distribution, providing yet another layer of comparison. Using this
methodology, you can take a large dataset and collapse it into a few simple distributional
assumptions that can be simulated, thereby vastly reducing the complexity of your model or
database while at the same time adding an added element of analytical prowess to your model by

including risk analysis.

Single Variable Distributional Fitting

Statistical Summary

—
Theoretical vs. Empirical Distribution
B0+
Fitted Distribution Normal
Mu 319.58 5o 4
Sigma 17291
40 1
Kolmogorov-Smirnov Statistic 0.08 304
P-Value for Test Statistic 0.9854
204
Actual  Theoretical
Mean 331.92 319.58 104
Standard Deviation 172.91 172.91 ’
Skewness 048 0.00 oo -
Excess Kurtosis -0.10 Q.00 o 100 200 300 400 00 gO0 a0 00
o

Figure 4: Sample report on distributional fitting

Sometimes, you might need to determine if the dataset’s statistics are significantly different than
a specific value. For instance, if the mean of your dataset is 0.15, is this statistically significantly
different than say, zero? What about if the mean was 0.5 or 10.5? How far enough away does the
mean have to be from this hypothesized population value to be deemed statistically significantly

different? Figure 5 shows a sample report of such a hypothesis test.



Hypothesis Test (t-Test on the Population Mean of One Variable)

Statistical Summary

Sratistics from Dataset: Calculared Statistics:
Observations 50 t-Statistic 135734
Sample Mean 331.52 P-Value (right-tail) 0.0000
Sample Standard Deviation 17281 P-Value (left-tailed) 1.0000
P-Value (two-tailed) 0.0000
User Provided Statistics:
Mull Hypothesis (Ho): u = Hypothesized Mean
Hypothesized Mean 0.00 Alternate Hypothesis (Ha). u == Hypothesized Mean

Maotes: "=="denotes "greater than" for right-tail, "less than'"for left-
tail, or "not equal to" for two-tail hypothesis tests.

Hypothesis Testing Summary

The one-variable t-test is appropriate when the population standard deviation is not known but the sampling distribution is assumed to be
approximately normal (the ttest is used when the sample size is less than 30 but is also appropriate and in fact, provides more conservative
results with larger data sets). This t-test can be applied to three types of hypothesis tests: a two-tailed test, a right-tailed test, and a lefi-tailed test. All
three tests and their respective results are listed below for your reference.

Two-Tailed Hypothesis Test

Atwo-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically identical to the hypothesized mean. The alternative
hypothesis is that the real population mean is statistically different from the hypothesized mean when tested using the sample dataset. Using at-
test, if the computed p-value is less than a specified significance amount (typically 0.10, 0.05, or 0.01), this means that the population mean is
statistically significantly different than the hypothesized mean at 10%, 5% and 1% significance value (or at the 80%, 95%, and 99% statistical
confidence). Conversely, ifthe p-value is higher than 0.10, 0.05, or 0.01, the population mean is statistically identical to the hypothesized mean and
any differences are due to random chance.

Right-Tailed Hypothesis Test

Aright-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically less than or equal to the hypothesized mean. The
alternative hypothesis is that the real population mean is statistically greater than the hypothesized mean when tested using the sample dataset.
Using a ttest, if the p-value is less than a specified significance amount (typically 0.10, 0.05, or 0.01), this means that the population mean is
statistically significantly greater than the hypothesized mean at 10%, 5% and 1% significance value (or 90%, 95%, and 99% statistical confidence).
Conversely, if the p-value is higherthan 0.10, 0.05, or 0.01, the population mean is statistically similar or less than the hypothesized mean.

Left-Tailed Hypothesis Test

A lefi-tailed hypothesis tests the null hypothesis Ho such that the population mean is statistically greater than or equal to the hypothesized mean.
The alternative hypothesis is thatthe real population mean is statistically less than the hypothesized mean when tested using the sample dataset.
Using a ttest, if the pvalue is less than a specified significance amount (typically 0.10, 0.05, or 0.01), this means that the population mean is
statistically significantly less than the hypothesized mean at 10%, 5%, and 1% significance value (or 80%, 95%, and 99% statistical confidence).
Conversely, if the pwvalue is higher than 0.10, 0.05, or 0.01, the population mean is statistically similar or greater than the hypothesized mean and
any differences are due ti random chance.

Because the t-test is more conservative and does not require a known population standard deviation as in the Z-test, we only use this ttest.

Figure 5: Sample report on theoretical hypothesis tests

Figure 6 shows the test for normality. In certain financial and business statistics, there is a heavy
dependence on normality (e.g., asset distributions of option pricing models, normality of errors
in a regression analysis, hypothesis tests using t-tests, z-tests, analysis of variance, and so forth).
This theoretical test for normality is automatically computed as part of the statistical analysis

tool.



Test for Normality

The Mormality test is a form of nonparametric test, which makes no assumptions about the specific shape of the population from which the
sample is drawn, allowing for smaller sample data sets to be analyzed. This test evaluates the null hypothesis of whether the data sample
was drawn from a normally distributed population, versus an alternate hypothesis that the data sample is not normally distributed. If the
calculated p-value is less than or equal to the alpha significance value then reject the null hypothesis and accept the alternate hypothesis.
Otherwise, if the pvalue is higher than the alpha significance value, do not reject the null hypothesis. This test relies on two cumulative
frequencies: one derived from the sample data set, the second from a theoretical distribution based on the mean and standard deviation of
the sample data. An alternative to this test is the Chi-Square test for normality. The Chi-Square test requires more data points to run
compared to the Mormality test used here.

Test Result
Data Relative Observed Expected 0-E
Data Average 331.92 Frequency
Standard Deviation 17291 47.00 0.02 0.02 0.0487 -0.0257
D Statistic 0.0859 68.00 0.02 0.04 0.0635 -0.0235
D Critical at 1% 01150 87.00 0.02 0.06 0.0783 -0.0183
D Critical at 3% 01237 96.00 0.02 0.08 0.0862 -0.0062
D Critical at 10% 01473 102.00 0.02 0.10 00818 00082
Muil Hypothesis: The data is normally distributed. 108.00 Q.02 o012 Q0877 0.0223
11400 002 014 01038 00362
Conclusion: The sample data is normally distributed at 127.00 Qo2 016 a.1180 0.0420
the 1% alpha level. 133.00 0.02 0.18 01304 0.0256
177.00 0.02 0.20 01851 00149
186.00 0.02 022 0.15994 0.0206
18800 0.02 0.24 0.2026 00374
15800 0.02 0.26 02193 0.0407
22200 0.02 0.28 02625 00475
231.00 0.02 0.30 0.2797 0.0203
24000 002 0.32 02975 00225
246.00 0.02 0.34 0.3096 0.0304
251.00 0.02 0.36 0.3199 0.0401
265.00 0.02 0.38 0.3494 0.0306
280.00 0.02 0.40 0.3820 0.0180

Figure 6: Sample report on testing for normality

If your dataset is a time-series variable (i.e., data that has an element of time attached to them,
such as interest rates, inflation rates, revenues, and so forth, that are time-dependent) then the
Risk Simulator data analysis reports shown in Figures 7 to 11 will help in identifying the
characteristics of this time-series behavior, including the identification of nonlinearity (Figure 7)
versus linear trends (Figure 8), or a combination of both where there might be some trend and
nonlinear seasonality effects (Figure 9). Sometimes, a time-series variable may exhibit
relationship to the past (autocorrelation). The report shown in Figure 10 analyzes if these
autocorrelations are significant and useful in future forecasts, that is, to see if the past can truly
predict the future. Finally, Figure 11 illustrates the report on nonstationarity to test if the variable

can or cannot be readily forecasted with conventional means (e.g., stock prices, interest rates,



foreign exchange rates are very difficult to forecast with conventional approaches and require
stochastic process simulations) and identifies the best-fitting stochastic models such as a
Brownian motion random walk, mean-reversion and jump-diffusion processes, and provides the

estimated input parameters for these forecast processes.

Nonlinear Extrapolation

Statistical Summary

Extrapolation involves making statistical projections by using historical trends that are projected for a specified period of time into the future. Itis only used fortime-series forecasts. For cross-sectional or
mixed panel data (fime-series with cross-sectional data), multivariate regression is more appropriate. This methodology is useful when major changes are not expected, thatis, causal factors are expected
to remain constant or when the causal factors of a situation are not clearly understood. It also helps discourage the introduction of personal biases into the process. Extrapolation is fairly reliable, relatively
simple, and inexpensive. However, extrapolation, which assumes that recent and historical trends will continue, produces large forecast errors if discontinuities occur within the projected time period. Thatis,
pure extrapolation of time series assumes that all we need to know is contained in the historical values of the series thatis being forecasted. Ifwe assume that past behavior is a good predictor of future
behavior, extrapolation is appealing. This makes it a useful approach when all that is needed are many short-term forecasts.

This methodology estimates the fix) function for any arbitrary xvalue, by interpolating a smooth nonlinear curve through all the x values, and using this smooth curve, extrapolates future xvalues beyond the
historical data set. The methodology employs either the polynomial functional form or the rational functional form (a ratio of two polynomials). Typically, a polynomial functional form is sufficient for well-
behaved data, however, rational functional forms are sometimes more accurate (especially with polar functions, i.e., functions with denominators approaching zero).

Period Actual Forecast Fit  Extrapolation Emror Error Measurements
1 47.00 RMSE 1093.6463
2 6800 521.00 MSE 1196499 7664
2 B7.00 28327 MAD 4402718
4 9600 454.02 MAPE 269.16%
5 10200 32015 Theil's U 94724
6 10800 539.49
7 114.00 34412 r
8 127.00 164.52 Actual vs. Forecast
9 153.00 339.71 400061
10 177.00 849.31 STTREL H
11 186.00 37333 1l
12 188.00 23205 RIS ‘I".
13 19800 23326 100061 A o~
14 22200 69253 agdE 'l""'ia"ic,hh-ﬂ.:l'ﬂﬂh-ﬁ“:ﬂ'-{!\.h'ﬁﬂrﬂ'
15 231.00 296.62 004 \/ | | e
16 240.00 16877 : \/
17 246.00 269.54 -2000.8- 1 1] [® Forecast
16 251.00 28263 30004 |
19 26500 20608 P |
20 2680.00 127.22 [
21 28500 264.60 ST = |
22 28600 48049 60004 l
23 266,00 456.24 ey . . - - 1 i
24 2591.00 54293 o 10 20 30 40 a0 60
25 30300 196,88
26 311.00 462.25 s
27 312.00 135.43

Figure 7: Sample report on nonlinear extrapolation forecast (nonlinear trend detection)



Linear Trend Line Projection

Regression Statistics

R-Squared (Coefficient of Determinatiorn) 01153
Adjusted R-Squared 0.10058
Multiple R (Multiple Correlation Coefficient) 0.3454

The R-Squared or Coefficient of Determination indicates the percent variation in the data set that can be explained and accounted for by the linear trend line alone,
whereas the Adjusted R-Squared takes into account the limited data set and exogenous variables and adjusts this R-Squared value to a more accurate view of the
explanatory power of the trend line in isolation.

The Multiple Correlation Coeflicient (Multiple R) measures the correlation between the actual data and the fitted forecast of using atrend line. This is also the sgquare
root of the Coefficient of Determination (R-Squared).

Linear Trend Line Analysis Results

Intercept Trend
Coefficients 436.2910 -4.0989
Standard Error 47.0778 1.6067
t-Statistic 9.26596 -2.5458
p-Value 0.0000 0.0140
Lower 5% 341.7347 -7.3275
Upper 95% 531.0473 -0.8663

The Trend Line coefficients provide the estimated intercept and trend. The Standard Error measures how accurate the predicted Coefficients are, and the t-Statistics
are the ratios of each predicted Coefficient to its Standard Error.

The t-Statistic is used in hypothesis testing, where we set the null hypothesis (Ho) such that the real mean of the Coefficient = 0, and the alternate hypothesis (Ha)
such that the real mean of the Coefficient is not equal to 0. A ttest is is performed and the calculated t-Statistic is compared to the critical values at the relevant
Degrees of Freedom for Residual. The t4est is very important as it calculates ifthe trend line is statistically significant.

The Linear Trend Line is statistically significant and correct if its calculated t-Statistic exceeds the Critical t-Statistic at the relevant degrees of freedom (df). The three
main confidence levels used to test for significance are 99%, 95% and 90%. If a Coefficient's +-Statistic exceeds the Critical level, it is considered statistically
significant. Alternatively, the p-Value calculates each t-Statistic's probability of occurrence, which means that the smaller the p-Value, the more significant the
Coefiicient. The usual significant levels for the p-Value are 0.01, 0.05, and 0.10, corresponding to the 99%, 95%, and 90% confidence levels.

The Coefficients with their p-\Yalues highlighted in blue indicate thatthey are statistically significant at the 90% confidence or 0.10 alpha level, while those highlighted
in red indicate that they are not statistically significant at any other alpha levels.

Forecasting

Period Actual () Forecast (F) Error (E}
1 521 4322941 88.7058
2 87 4251972 (61.1872) Actual vs. Forecast
3 443 4241003 18.8997 200.0
4 365 420.0034 (55.0034)
5 a4 415.9085 198.0835 7000+
8 385 411.3098 (26.8096)
7 286 4077127 (1217127} 6000+
g 287 4036158 (6.6158)
g 764 399.5189 3644811 sH00.07
10 427 395.4220 31.5780 400, & Actual
11 153 381.3251 (238.3251) ‘B Forecast
12 231 387.2282 (156.2282) 300 .
13 524 383.1313 140.8687 BT .Tﬂ"-'-
14 328 379.0344 (51.0244) 200.01 u -
15 240 374.9375 (134.9375)
18 286 370.3406 (24.3408) 100.04
17 285 366.7437 (81.7437) o0 : : :
18 59 3526458 206.3532 & a0 0 &0
19 95 358.5499 (262.5499)
20 498 354.4530 143.5470
2 481 350.3551 1306439

Figure 8: Sample report on trend line forecasts (linear trend detection)




Time-Series Forecasting

Time-Series Analysis Summary

Time-series forecasting is used to forecast the future based on historical data, through the decompositon of the historical data into the baszeline
The bestfitting test for the moving average forecast uses the root mean squared errors (RMSE). The RM3E calculates the square root of the
average squared deviations of the fitted values versus the actual data points.

Mean Sguared Error (MSE) is an absolute error measure that squares the errors (the difference between the actual historical data and the forecast-
fitted data predicted by the model) to keep the positive and negative errors from canceling each other out. This measure also tends to exaggerate
large errors by weighting the large errors more heavily than smaller errors by squaring them, which can help when comparing different time-series
models. Root Mean Square Error (RMSE) is the square root of MSE and is the most popular error measure, also known as the quadratic loss
function. RMSE can be defined as the average of the absolute values of the forecast errors and is highly appropriate when the cost of the forecast
errors is proportional to the absolute size of the forecast error. The RMSE is used as the selection criteria for the best-fitting time-series model.

Mean Absolute Percentage Error (MAPE) is a relative error statistic measured as an average percent error of the historical data points and is most
appropriate when the cost of the forecast error is more closely related to the percentage error than the numerical size of the error. Finally, an
associated measure is the Theil's U statistic, which measures the naivety of the model's forecast. That is, if the Theil's U statistic is less than 1.0,
then the forecast method used provides an estimate that is statistically better than guessing.

Period
1
2
3
4
bl
6
7
8

9
10
11
12
13
14
15
16
17
18
13
20
21
22
23
24
25
26
27
28
23
30

Actual
47.00
68.00
87.00
96.00

102.00

108.00

114.00

127.00

153.00

177.00

186.00

185.00

155.00

222.00
231.00
240.00
246.00
251.00
2635.00
260.00
282.00
286.00

286.00

291.00

303.00

211.00

312.00

328.00

363.00

367.00

Forecast Fit

41275
413.00
408.75
352.83
386.25
358.82
374.17
358.33
366.75
34317
346.58
348.58
343.83
340.33
322.00
322.50
32292
304.83

The analysis was run with periodicity =12

Error Measurements
RMSE  169.4315
MSE 28707.0343
MAD 1384189
MAPE §5.13%
Theil's U 0.4781

Actual vs. Forecast

a00.0+

7000+

G000+

500.0+

- Actual
- Forecast

400.0+

3000+

200.0+

100.0+

0o t 1 i i } |

Figure 9: Sample report on time-series forecasting (seasonality and trend detection)



Autocorrelation

Autocorrelation

If autacorrelation AC(1) is nonzero, it means thatthe series is first order serially correlated. If AC{k) dies off more or less geometrically with increasing lag, itimplies thatthe
series follows a low-order autoregressive process. If AC{k) drops to zero after a small number of lags, itimplies thatthe series follows a low-order moving-average process.
Partial Autocorrelation PAC(k) measures the correlation of values that are k periods apart after removing the correlation from the intervening lags. If the pattern of
autocorrelation can be captured by an autoregression of order less than &, then the partial autocorrelation at lag k will be close to zero. Ljung-Box Q-statistics and their p-values
at lag k has the null hypothesis that there is no autocorrelation up to order &. The dotted lines in the plots of the autocorrelations are the approximate two standard error
bounds. Ifthe autocorrelation is within these bounds, itis not significantly different from zero atthe 5% significance level.

Time Lag AC PAC Lower Bound Upper Bound Q-Stat Prob
1 0.0580 0.0580 -0.2828 0.2828 01752 0.6755 PAC
2z -0.1213 -0.1251 -0.2828 0.2828 0.9574 0.6196 | |
3 0.0550 0.0755 -0.2828 0.2828 1.1464 0.7659 | |
4 0.2423 0.2232 -0.2828 0.2828 4.4070 0.3537 | |
3 0.0067 -0.0078 -0.2828 0.2828 4.4085 0.4321 | |
[ -0.2654 -0.2345 -0.2828 0.2828 8.5034 0.2035 | |
7 0.0814 0.0939 -0.2828 0.2828 8.8978 0.2601 | |
8 0.0634 -0.0442 -0.2828 0.2828 91427 0.3304 | |
9 0.0204 0.0573 -0.2828 0.2828 9.1688 0.4218 | |
10 -0.01580 0.0855 -0.2828 0.2828 9.1520 0.5140 | |
11 0.1035 0.0750 -0.2828 0.2828 9.8960 0.5398 | |
12 0.1658 0.0578 -0.2828 0.2828 11.7535 0.4857 | |
13 -0.0524 -0.0430 -0.2828 0.2828 11.5440 0.5322 | |
14 -0.2050 -0.2523 -0.2828 0.2828 14.5439 0.3820 I |
15 017E2 0.2089 -0.2828 0.2828 17.2765 0.3025 | |
16 -01022 -0.2591 -0.2828 0.2828 18.0670 0.3200 | |
17 -0.0861 0.0808 -0.2828 0.2828 18.6483 0.3452 | |
18 0.0418 0.1987 -0.2828 0.2828 18.7870 0.4050 ] i
19 0.0869 -0.0821 -0.2828 0.2828 19.4181 0.4304
20 -0.0081 -0.0259 -0.2828 0.2828 19.4233 0.4545

Figure 10: Sample report on autocorrelation (past relationship and correlation detection)



Stochastic Process - Parameter Estimations

Statistical Summary

A stochastic process is a sequence of events or paths generated by probabilistic laws. That is, random events can occur aver time but are governed by
specific statistical and probabilistic rules. The main stochastic processes include Random Walk or Brownian Motion, Mean-Reversion, and Jump-
Diffusion. These processes can be used to forecast a multitude of variables that seemingly follow random trends but yet are restricted by probabilistic
laws. The process-generating equation is known in advance butthe actual results generated is unknown.

The Random Walk Brownian Motion process can be used to forecast stock prices, prices of commeadities, and other stochastic time-series data given a
drift or growth rate and a volatility around the drift path. The Mean-Reversion process can be used to reduce the fluctuations of the Random Walk process
by allowing the path to target a long-term value, making it useful for forecasting time-series variables that have a long-term rate such as interest rates and
inflation rates (these are long-term target rates by regulatory authorities or the market). The Jump-Diffusion process is useful for forecasting time-series
data when the variable can occasionally exhibit random jumps, such as oil prices or price of electricity (discrete exogenous event shocks can make prices
jump up or down). Finally, these three stochastic processes can be mixed and matched as required.
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Statistical Summary

The following are the estimated parameters for a stochastic process given the data provided. It is up to you to determine if the probability of fit (similar to a
goodness-of-fit computation) is sufficient to warrant the use of a stochastic process forecast, and if so, whether itis a random walk, mean-reversion, or a
jump-difiusion model, or combinations thereof. In choosing the right stochastic process model, you will have to rely on past experiences and a priori
economic and financial expectations of what the underlying data set is best represented by. These parameters can be entered into a stochastic process
forecast (Simulation | Forecasting | Stochastic Processes).

(Annualized)

Drift Rate -1.48% Reversion Rate 283.89% Jump Rate 20.41%
Volatility — 88.84% Long-Term Value 32772 Jump Size 237.89
Probability of stochastic model fit: 46 48%

Figure 11: Sample report on stochastic parameter calibration (nonstationarity detection)



