

STAGED INVESTMENT PORTFOLIO WITH @RISK

0.00

-5.00%

^{40.00}, Presented by Eric Torkia, MASc

www.technologypartnerz.com

WHAT WE PO?

We support our clients in improving decisions and business outcomes by providing:

Success in analytics is more than just software and geeks...

Technology Partnerz Ltd. provides strategy, business analysis, solution selection and organizational change management support for the rapid adoption of predictive analytics tools and practices *in a variety of business functions, sectors and industries.*

TECHNOLOGY PARTNERZ

≊USGS

science for a changing world

NOVA Chemicals[®]

WHO WE DO IT FOR...

Schlumberger

VALE

Logitech.

MONSANTO

Hydro Ouébec TransÉnergie

BOMBARDIER *TRANSPORT*

We'll Get You Ready

Å ALBE

WHAT WE RO IT WITH ...

Each partner is selected based on the cutting edge and innovative nature of their products/services as well as their ability to add value to our customers.

MEET YOUR PRESENTER: ERIC TORKIA, MASC

SOME NOTABLE CLIENTS

Eric Torkia MASc is a senior management consultant/trainer and business analyst. He has collaborated with some of the worlds most recognized organizations to ensure the optimal design and delivery of enterprise systems, analytics as well as new forecasting and decision making processes. His skills and expertise include:

- Project Risk Analysis, Project Feasibility and Financial Valuations for projects of over 1+ billion dollars.
- Project Feasibility and Financial Valuations
- Portfolio Optimization
- Supply Chain Modeling and Risk Analysis
- Organizational Change Management consulting, training and instructional design
- Time Series Forecasting
- Spreadsheet Modeling and VBA automation for simulation, forecasting and optimization
- Certified Monte Carlo Simulation and Optimization Trainer & Consultant for Oracle Crystal Ball, Vose ModelRisk, Palisade @Risk, Frontline Solver

DESIGNING A MULTI-STAGED MODEL

This is not just about rock concerts!

PALISADE

partner

WIFM - MULTI-STAGE ANALYSIS

- Applies basic Real Options principles for Conditional NPV or Profit
- **x** Gives the full REAL range of portfolio values
- Incorporates several uncertainty components such as:
 - + Stage Gates
 - + Uncertain Investment Levels

MODEL RECIPE

× Pipeline:

- + IF () Statements
- + SUMPRODUCT ()
- + Survival & Cost Distributions
- + Correlation

× Simple Discounted Cashflow Model

- + NPV()
- + Cost and Sell Price Forecasts
- x @RISK + Risk Optimizer

Survival Rates

1 PART APPROVAL PIPELINE

R&D and Approval Pipeline for Product

partner

							-			
Survival	Rate	Logic Gate	Invest. In MM\$	Min	ML	Max		Min	ML	Max
1	87%	1	2.33	1	2	4		75%	90%	95%
1	68%	1	14.00	10	12	20		50%	75%	80%
1	60%	1	68.33	50	75	80		50%	55%	75%
1	52%	1	143.33	120	150	160		45%	50%	60%
1/	48%	1	350.00	250	300	500		40%	45%	60%
	\sim									
		Rate		Logic Ga	ite		Invest. In	MM\$		
ame(\$B\$6) =Risk	Triang(L6,M6,N6,Ris	Matrix1,1)) =C	6		=RiskTriang(G6,H6	5,16,RiskNa	me(\$B68	ι" "&F\$5)	,)	
ame(\$B\$7) =Risk	Triang(L7,M7,N7,Ris	kCorrmat(Newl	Matrix1,2)) =+	E6*C7		=RiskTriang(G7,H7	,I7,RiskNa	me(\$B78	ι" "&F\$5)	,)
PR1 - Stage 3 1 60% 1 68.33 PR1 - Stage 4 1 52% 1 143.3 PR1 - Stage 5 1 48% 1 350.0 Survival Rate Survival Survival <td></td> <td>=RiskTriang(G8,H8</td> <td>, I8, Risk Na</td> <td>me(\$B88</td> <td>u" "&F\$5)</td> <td>,)</td>						=RiskTriang(G8,H8	, I8, Risk Na	me(\$B88	u" "&F\$5)	,)
ame(\$B\$9) =Risk	Triang(L9,M9,N9,Ris	kCorrmat(Newl	Matrix1,4)) =+	E8*C9		=RiskTriang(G9,H9	, I9, Risk Na	me(\$B98	u" "&F\$5)	,)
Name(\$B\$1=Risk ⁻	Triang(L10,M10,N10	,RiskCorrmat(N	ewMatrix1,5)) =+	E9*C10		=RiskTriang(G10, H	110,110,Risl	kName(\$	B10&" "8	kF\$5),)
	Survival 1 1 1 1 1 ame(\$B\$6) =Risk ⁻ ame(\$B\$7) =Risk ⁻ ame(\$B\$8) =Risk ⁻ ame(\$B\$9) =Risk ⁻ ame(\$B\$1=Risk ⁻)	Survival Rate 1 87% 1 68% 1 60% 1 52% 1 48% ame(\$B\$6) =RiskTriang(L6, M6, N6, Ris ame(\$B\$7) =RiskTriang(L7, M7, N7, Ris ame(\$B\$8) =RiskTriang(L8, M8, N8, Ris ame(\$B\$9) =RiskTriang(L9, M9, N9, Ris Name(\$B\$1=RiskTriang(L10, M10, M10)	Survival Rate Logic Gate 1 87% 1 1 68% 1 1 60% 1 1 52% 1 1 52% 1 1 48% 1	Survival Rate Logic Gate Invest. In MM\$ 1 87% 1 2.33 1 68% 1 14.00 1 60% 1 68.33 1 52% 1 143.33 1 48% 1 350.00	Survival Rate Logic Gate Invest. In MM\$ Min 1 87% 1 2.33 1 1 68% 1 14.00 10 1 60% 1 68.33 50 1 52% 1 143.33 120 1 48% 1 350.00 259 Rate Logic Gate Logic Gate ame(\$B\$6) =RiskTriang(L6,M6,N6,RiskCortmat(NewMatrix1,1)) =C6 ame(\$B\$7) =RiskTriang(L7,M7,N7,RiskCortmat(NewMatrix1,2)) =+E6*C7 ame(\$B\$8) =RiskTriang(L8,M8,N8,RiskCortmat(NewMatrix1,3)) =+E7*C8 ame(\$B\$9) =RiskTriang(L9,M9,N9,RiskCortmat(NewMatrix1,4)) =+E8*C9 Name(\$B\$1=RiskTriang(L10,M10,N10,RiskCortmat(NewMatrix1,5)) =+E9*C10	Survival Rate Logic Gate Invest. In MM\$ Min ML 1 87% 1 2.33 1 2 1 68% 1 14.00 10 12 1 60% 1 68.33 50 75 1 52% 1 143.33 120 150 1 48% 1 350.00 259 300	Survival Rate Logic Gate Invest. In MM\$ Min ML Max 1 87% 1 2.33 1 2 4 1 68% 1 14.00 10 12 20 1 60% 1 68.33 50 75 80 1 52% 1 143.33 120 150 160 1 48% 1 350.00 250 300 500 Rate Logic Gate Ame(\$B\$6) =RiskTriang(L6,M6,N6,RiskCorrmat(NewMatrix1,1)) =C6 =RiskTriang(G6,H6 ame(\$B\$7) =RiskTriang(L6,M8,N8,RiskCorrmat(NewMatrix1,2)) =+E6*C7 =RiskTriang(G7,H7 ame(\$B\$8) =RiskTriang(L8,M8,N8,RiskCorrmat(NewMatrix1,3)) =+E7*C8 =RiskTriang(G8,H8 ame(\$B\$8) =RiskTriang(L9,M9,N9,RiskCorrmat(NewMatrix1,4)) =+E8*C9 =RiskTriang(G9,H9 Name(\$B\$1=RiskTriang(L10,M10,N10,RiskCorrmat(NewMatrix1,5)) =+E9*C10 =RiskTriang(G10,H9	Survival Rate Logic Gate Invest. In MM\$ Min ML Max 1 87% 1 2.33 1 2 4 1 68% 1 14.00 10 12 20 1 60% 1 68.33 50 75 80 1 52% 1 143.33 120 150 160 1 48% 1 350.00 259 300 500 Rate Logic Gate Invest. In ame(\$B\$6) =RiskTriang(L6,M6,N6,RiskCorrmat(NewMatrix1,1)) =C6 =RiskTriang(G6,H6,I6,RiskNa ame(\$B\$7) =RiskTriang(L2,M7,N7,RiskCorrmat(NewMatrix1,2)) =+E6*C7 =RiskTriang(G7,H7,I7,RiskNa ame(\$B\$8) =RiskTriang(L2,M9,N9,RiskCorrmat(NewMatrix1,3)) =+E7*C8 =RiskTriang(G8,H8,I8,RiskNa ame(\$B\$9) =RiskTriang(L9,M9,N9,RiskCorrmat(NewMatrix1,4)) =+E8*C9 =RiskTriang(G9,H9,I9,RiskNa Name(\$B\$1=RiskTriang(L10,M10,N10,RiskCorrmat(NewMatrix1,5)) =+E9*C10 =RiskTriang(G10,H10,I10,RiskNa	Survival Rate Logic Gate Invest. In MM\$ Min ML Max Min 1 87% 1 2.33 1 2 4 75% 1 68% 1 14.00 10 12 20 50% 1 60% 1 68.33 50 75 80 50% 1 52% 1 143.33 120 150 160 45% 1 48% 1 350.00 259 300 500 40% Kate Logic Gate Invest. In MM\$ me(\$B\$6) =RiskTriang(L6,M6,N6,RiskCorrmat(NewMatrix1,1)) =C6 =RiskTriang(G6,H6,I6,RiskName(\$B68 ame(\$B\$7) =RiskTriang(L7,M7,N7,RiskCorrmat(NewMatrix1,2)) =+E6*C7 =RiskTriang(G7,H7,I7,RiskName(\$B78 ame(\$B\$8) =RiskTriang(L8,M8,N8,RiskCorrmat(NewMatrix1,3)) =+E7*C8 =RiskTriang(G8,H8,I8,RiskName(\$B88 ame(\$B\$9) =RiskTriang(L9,M9,N9,RiskCorrmat(NewMatrix1,4)) =+E8*C9 =RiskTriang(G9,H9,I9,RiskName(\$B88 ame(\$B\$91=RiskTriang(L10,M10,N10,RiskCorrmat(Ne	Survival Rate Logic Gate Invest. In MM\$ Min ML Max Min MIn Max 1 87% 1 2.33 1 2 4 75% 90% 1 68% 1 14.00 10 12 20 50% 75% 1 60% 1 68.33 50 75 80 50% 55% 1 52% 1 143.33 120 150 160 45% 50% 1 48% 1 350.00 259 300 500 40% 45% ame(\$B\$6) =RiskTriang(L6,M6,N6,RiskCorrmat(NewMatrix1,1)) =C6 =RiskTriang(G6,H6,I6,RiskName(\$B6&" "&F\$5) ame(\$B\$7) =RiskTriang(L7,M7,N7,RiskCorrmat(NewMatrix1,2)) =+E6*C7 =RiskTriang(G7,H7,I7,RiskName(\$B7&" "&F\$5) ame(\$B\$8) =RiskTriang(L8,M8,N8,RiskCorrmat(NewMatrix1,3)) =+E7*C8 =RiskTriang(G8,H8,I8,RiskName(\$B8&" "&F\$5) ame(\$B\$8) =RiskTriang(L9,M9,N9,RiskCorrmat(NewMatrix1,4)) =+E8*C9 =RiskTriang(G9,H9,I9,RiskName(\$B8&" "&F\$5) ame(\$B\$9) =RiskTriang(L10,M10,N10,RiskC

- **×** Model Strategy: If there is a failure, all the other stages are not executed
- ✗ Survival is a Binary (Bernoulli Dist) defined by a rate that is a Triangular
- The logic Gate is the combination of the model strategy and the survival distributions. This allows the partial assignment of development cost using SUMPRODUCT() I.e. 0 * phase investment vs. 1* phase investment

WHY IS THE PIPE IMPORTANT?

- **×** Success is conditional on 5 events going well.
- **×** 87% x 68% x 60% x 52% x 48%
 - = 8.87% Calculated Success Rate
- Less than 1/10 chance of making money and 9/10 to spend it
- **×** Correlation is KEY

@RISK Correl	PR1 - Stage !				
PR1 - Stage 1	1				
PR1 - Stage 2	0.8	1			
PR1 - Stage 3	0.4	0.8	1		
PR1 - Stage 4	0.2	0.6	0.8	1	
PR1 - Stage 5	0.1	0.2	0.4	0.8	1

	Rate	
	87%	
	68%	
	60%	
	52%	
	48%	

Survival Rates

Min	ML	Max
75%	90%	95%
50%	75%	80%
50%	55%	75%
45%	50%	60%
40%	45%	60%

EXAMPLES OF CONDITIONAL INVESTMENTS

			Survival	Rate	Logic Gate	Invest. In MM\$
		PR1 - Stage 1	1	87%	1	2.80
Clear 1 Stage =	0 NPV	PR1 - Stage 2	0	70%	0	13.43
Cost: 2.9M		PR1 - Stage 3	1	59%	0	78.60
Cost: 2.8M		PR1 - Stage 4	0	50%	0	133.99
		PR1 - Stage 5	1	47%	0	289.53
	Year 0	Year 1	Year 2	Year 3	Year 4 Y	ear 5 Year 6-15
PR1 Net Income	(\$2,237,103)	\$ 0	\$0	\$0	\$O	\$0 \$0
			Survival	Rate	Logic Gate	Invest. In MM\$
		PR1 - Stage 1	1	89%	1	2.54
Clear 3 Stages =	0 NPV	PR1 - Stage 2	1	71%	1	13.54
Cost: 80.95M		PR1 - Stage 3	1	70%	1	64.87
		PR1 - Stage 4	0	49%	0	153.25
		PR1 - Stage 5	1	43%	0	306.72
	Year 0	Year 1	Year 2	Year 3	Year 4	/ear 5 Year 6-15
PR1 Net Income	(\$2,237,103)	\$O	\$0	\$0	\$0	\$0 \$0
		Г	Constant	Data		
			Survival	Rate	Logic Gate	
Clear 3 Stages =	= \$759M NPV	PR1 - Stage 1	1	90%	1	2.06
Cost. 522M		PR1 - Stage 2	1	76%	1	14.18
Cost: 532M		PR1 - Stage 3	1	58%	1	64.23
		PR1 - Stage 4	1	55%	1	148.92
		PR1 - Stage 5	1	58%	1	435.76
	Year 0	Year 1	Year 2	Year 3	Year 4	Year 5 Year 6-15
PR1 Net Income	(\$532,328,728)	\$22,433,507	\$34,143,629	\$36,376,500	\$43,240,941 \$5	0,437,659 \$1,614,151,846
A PALISADE						

partner

1 PART DCF MODEL

Discounted Cash Flow if Product is Released

Year 0	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6-15	
Sell Price	\$58.44	\$58.70	\$57.79	\$61.75	\$68.33	\$79.59	
PR1 Units Sold	819,776	964,254	1,127,233	1,263,165	1,405,211	26,574,982	
Mean	802,000	967,000	1,132,000	1,297,000	1,462,000		
Std. Dev	25,000	30,000	30,000	35,000	35,000	,	R
Gross Revenues	\$47,907,708	\$56,600,732	\$65,138,095	\$78,002,091	\$96,020,664	\$2,152,909,372	
Unit Cost	\$20.74	\$15.92	\$11.23	\$9.79	\$8.98	\$4.75	
COGS	\$17,002,979	\$15,352,147	\$12,661,551	\$12,364,280	\$12,623,649	\$112,933,071	
Gross Income	\$30,904,729	\$41,248,585	\$52,476,544	\$65,637,811	\$83,397,015	\$2,039,976,301	
Operating Costs	\$4,918,350	\$6,564,528	\$8,351,408	\$10,445,965	\$13,272,263	\$324,653,133.61	
Net Income Before Taxes	\$25,986,379	\$34,684,057	\$44,125,136	\$55,191,846	\$70,124,752	\$1,715,323,167	
Taxes	\$4,677,548	\$6,243,130	\$7,942,525	\$9,934,532	\$12,622,455	\$308,758,170.14	
Initial Investment (\$1,208,208)							
PR1 Net Income (\$1,208,208)	\$0	\$0	\$0	\$0	\$0	\$0	

PR1 Full NPV -

PV -\$1,208,208

TECHNOLOGY PARTNERZ

SALES AND VARIABLE COSTS

PR1 Prod.

d. 86%

90%

4%

Wrights Learning Curve to estimate production Efficiencies

Estimate	d Unit Sales Years e	- Unit Costs	years	Sell Price								
		Sim	Min	ML	Max	Sim	Mean	Std. dev.				
Year 1	819,776	\$20.74	\$13.50	\$18.00	\$27.00	\$58.44	\$60.00	\$3.00	5%			
Year 2	964,254	\$15.92	\$11.57	\$15.42	\$23.13	\$58.70	\$61.39	\$3.68	6%			
Year 3	1,127,233	\$11.23	\$9.91	\$13.21	\$19.82	\$57.79	\$62.81	\$4.40	7%			
Year 4	1,263,165	\$9.79	\$8.49	\$11.32	\$16.98	\$61.75	\$64.27	\$5.14	8%			
Year 5	1,405,211	\$8.98	\$7.27	\$9.70	\$14.55	\$68.33	\$65.76	\$5.92	9%			
Year 6	1,564,378	\$7.06	\$6.23	\$8.31	\$12.46	\$78.96	\$67.28	\$6.73	10%			
Year 7	1,741,574	\$7.38	\$5.34	\$7.12	\$10.68	\$65.59	\$68.84	\$7.57	11%			
Year 8	1,938,842	\$5.02	\$4.57	\$6.10	\$9.15	\$63.25	\$70.44	\$8.45	12%			
Year 9	2,158,453	\$6.78	\$3.92	\$5.23	\$7.84	\$76.33	\$72.07	\$9.37	13%			
Year 10	2,402,940	\$4.59	\$3.36	\$4.48	\$6.72	\$72.42	\$73.74	\$10.32	14%			
Year 11	2,675,120	\$4.62	\$2.88	\$3.84	\$5.75	\$83.56	\$75.45	\$11.32	15%			
Year 12	2,978,130	\$4.38	\$2.46	\$3.29	\$4.93	\$103.09	\$77.20	\$12.35	16%			
Year 13	3,315,461	\$2.92	\$2.11	\$2.82	\$4.22	\$108.25	\$78.99	\$13.43	17%			
Year 14	3,691,002	\$2.24	\$1.81	\$2.41	\$3.62	\$70.36	\$80.82	\$14.55	18%			
Year 15	4,109,080	\$2.51	\$1.55	\$2.07	\$3.10	\$74.13	\$82.70	\$15.71	19%			

OPTIMIZATION OVERVIEW

WHAT IS STOCHASTIC OPTIMIZATION?

- ★ Simulation is "What If" → Optimization is "What's Best"
- × Allows non-linear problems to be solved
- **×** Requires Simulation

RISK OPTIMIZER

🔣 🛃 🍤	Image: Solution of the set of the s																			
File	Home	Insert	Page Layout	Formulas	Data	Review	View	Developer		@RISK										
		f x			\swarrow		Iterations Simulatio	i 100	* *	L C	<u> </u>		3			Summary Define Filters	A <i>I</i>	#	🎁 Libr	ary * ities *
Define Distribution	Add s Output	Insert Function *	Define Correlations	Distribution I Fitting *	Distribution Artist	Model Window	2	2 🕱 🛃	! [2	Start Simulation	Advanced Analyses *	R Optii	ISK mizer *	Browse Results		Xi = %	Excel Reports	Swap Functions	🕜 Helj	p *
			Model						9	Simulation		<u> </u>	Mode	l Definition	n	ilts		Tools		
	A1		-	f_{x}								ß	Settir	ngs						
A	E	B	C [) E	F	G	Н	1		J	K	$ \rangle$	Start			N	0	P	Q	R
2	!												Repo	rts	×					
3												¥	Utiliti	es	►					
4												0	Help		•	ļ				

- Can optimize a wide variety of statistics on any output cell in the model
- Allows you to define multiple constraints using simple logic
- **×** Build in Macros and special processing
- **x** Can run as long as you need it to

BUILDING THE OPTIMIZATION MODEL

Model was built by...

- **×** Consolidating Prices and Project Performance
- **×** Using SUMPRODUCT() and Decision Variables
- × Ran the model with Decision Optimizer
- × Maximize NPV
- × Minimize Loss

Constrain
 + Project spend
 + Pricing

OPTIMIZING THE PORTFOLIO VALUE WITH @RISK & RISK OPTIMIZER

Mgmt. Questions

- What is the best project combination for high returns?
- What is the best combination given my resources?
- This portfolio needs to be aligned with my needs

TECHNOLOGY PARTNERZ

OPTIMIZATION CHART

LOOKING AT THE SOLUTIONS

RISKOpti	mizer Watche	er											
Progress	<u>S</u> ummary	Log Po	pulation Dive	ersity Stoppin	ng Optio <u>n</u> s								
Show	All Sim	ulations			•								
Simul.	Elapsed Time	Iters	Result	Output Mean	Output Std Dev	Output Min	Output Max	B31	B32	B33	B34	B35	
1	00:00:14	1000	1700.6037	1700.6037	10.6854	1657.6212	1736.9698	0	1	0	1	1	1
2	00:00:30	1000	1548.4197	1548.4197	10.6737	1513.6945	1579.2885	0	1	0	1	1	1
3	00:00:43	1000	1564.1307	1564.1307	10.4799	1527.9834	1594.9930	0	0	0	1	1	1
4	00:01:28	1000	1835.0907	1835.0907	12.0423	1779.2712	1869.6089	0	1	0	1	1	1
5	00:02:18	1000	N/A	1789.1166	11.0156	1739.7649	1821.0489	0	1	0	1	1	1
6	00:02:32	1000	1835.3344	1835.3344	12.3410	1779.3172	1871.8197	0	1	0	1		1
7	00:02:46	1000	1583.1632	1583.1632	10.5984	1545.9624	1618.4863	0	1	0	1		1
8	00:03:20	1000	1700.1801	1700.1801	11.9405	1663.4222	1741.1179	1	1	0	1	1	1
9	00:03:34	1000	1529.0077	1529.0077	11.0208	1485.1663	1559.0259	0	1	0	1	(0
10	00:03:58	1000	N/A	1620.6942	11.0593	1579.4388	1658.6913	0	1	0	1	(0
11	00:04:27	1000	1834.7341	1834.7341	12.1993	1791.4623	1876.1510	0	1	0	1		1
12	00:04:41	1000	1703.0350	1703.0350	11.9044	1657.5678	1740.4091	0	0	0	1		1
13	00:04:54	1000	1531.7542	1531.7542	11.8402	1485.2187	1570.1854	0	0	0	1		0
14	00:05:08	1000	1663.8750	1663.8750	12.0152	1627.1979	1704.8985	0	1	0	1		0
15	00:05:22	1000	1863.7008	1863.7008	11.3660	1825.7779	1900.7167	0	1	0	1		1
16	00:05:36	1000	1841.3324	1841.3324	10.7940	1809.0157	1872.1657	0	1	0	1		1
17	00:05:51	1000	1843.7875	1843.7875	11.5978	1807.0648	1879.7177	0	1	0	1		1
18	00:06:05	1000	1568.5484	1568.5484	10.0891	1533.5034	1598.7395	0	1	0	1		1
19	00:06:20	1000	1706.5882	1706.5882	10.8100	1665.9429	1738.1248	0	1	0	1		1
20	00:06:34	1000	1568.8305	1568.8305	10.2623	1527.9093	1598.1743	0	0	0	1		1
21	00:06:53	1000	1532.8010	1532.8010	10.0699	1504.9701	1562.0044	0	1	0	1		1
22	00:07:07	1000	1817.9598	1817.9598	11.0325	1778.9780	1854. 1964	0	1	1	1		1
23	00:07:21	1000	1843.9636	1843.9636	11.5842	1801.8668	1876.0763	1	1	0	1		1
24	00:07:35	1000	1713.5368	1713.5368	11.5292	1669.2200	1746.6488	0	1	0	0		1
25	00:07:49	1000	1542.7280	1542.7280	10.5915	1502.9920	1576.9226	0	1	0	1	:	1
26	00:08:04	1000	1380.0649	1380.0649	9.4608	1350.3614	1408.9023	0	1	0	1	:	1
27	00:08:17	1000	1733.1221	1733.1221	11.3374	1693.6025	1766.5428	0	1	0	0	:	1
28	00:08:32	1000	N/A	1792.0797	10.6267	1755.9306	1829.8677	0	1	0	1	:	1
29	00:08:46	1000	1863.5332	1863.5332	11.2357	1822.3025	1896.7065	0	1	0	1		1
30	00:09:32	1000	1417.7107	1417.7107	10.3541	1382.3717	1447.9214	0	1	0	0		1
31	00:09:47	1000	N/A	1624.4384	9.8636	1595.9891	1656.4975	0	1	0	1		1
30	00+10+25	1000	1863 8787	1863 8787	10 0770	1921 4177	1808 3080	0	1	n	1		₁┸╢
												<u>•</u>	
0	₽ 🔍											•	

QUESTIONS AND ANSWERS

CONTACT US

550 Sherbrooke St. W., West Tower, Suite 1650 Montreal, Qc., Canada H3A 1B9

888-879-8440 / 514-278-2221 (Sales & Customer Support)

www.technologypartnerz.com etorkia@technologypartnerz.com