# RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS

## Using the CB.GetForeStatFN function in your Crystal Ball Models.

Crystal Ball utlizes several powerful functions and features to extract information and descriptive statistics. We are going to review these techniques and present the CB.GetForeStatFN in full detail, including Six Sigma Capability Metrics.

## Using the CB.GetForeStatFN function in your Crystal Ball Models.

Crystal Ball utlizes several powerful functions and features to extract information and descriptive statistics. We are going to review these techniques and present the CB.GetForeStatFN in full detail, including Six Sigma Capability Metrics.

## Transfer Functions & Response Surfaces in Tolerance Analysis (Part 5 / 13)

Transfer Functions (or Response Equations) are useful to understand the "wherefores" of your system outputs. The danger with a good many is that they are not accurate. ("All models are wrong, some are useful.") Thankfully, the very nature of Tolerance Analysis variables (dimensions) makes the models considered here concrete and accurate enough. We can tinker with their input values (both nominals and variance) and determine what quality levels may be achieved with our system when judged against spec limits. That is some powerful stuff!

## Transfer Functions & Response Surfaces in Tolerance Analysis (Part 5 / 13)

Transfer Functions (or Response Equations) are useful to understand the "wherefores" of your system outputs. The danger with a good many is that they are not accurate. ("All models are wrong, some are useful.") Thankfully, the very nature of Tolerance Analysis variables (dimensions) makes the models considered here concrete and accurate enough. We can tinker with their input values (both nominals and variance) and determine what quality levels may be achieved with our system when judged against spec limits. That is some powerful stuff!

## Probability Distributions in Tolerance Analysis (Part 4 / 13)

With uncertainty and risk lurking around every corner, it is incumbent on us to account for it in our forward business projections, whether those predictions are financially-based or engineering-centric. For the design engineer, he may be expressing dimensional variance in terms of a tolerance around his nominal dimensions. But what does this mean? Does a simple range between upper and lower values accurately describe the variation?