Search
Services
Documentation
RateSheet
Brochure
Risk + Analytics Training
Onsite Training
Live 1-on-1 Training
Course Outlines
Consulting
Analytics Strategy
Risk Modeling + Analysis
Remote Consulting
Project Risk Analysis
Store
Oracle Crystal Ball
Crystal Ball Standard
Crystal Ball Suite (OptQuest)
Crystal Ball FAQ
Full Catalogue
Simulation
Project Risk
Statistical Tools
Optimization
Forecasting
Palisade @RISK
Research
Crystal Ball User Guides
Articles on Analytics & Risk
MCHammer.jl
Downloads
About Us
Company Profile
Business Team
Our Clients
Contact Us
Home
RESEARCH ARTICLES |
RISK + CRYSTAL BALL + ANALYTICS
Categories
0
RSS
Uncategorized
Expand/Collapse
1
RSS
Decision Science
Expand/Collapse
0
RSS
The Fundamentals of Decision Science
Expand/Collapse
1
RSS
Tools and Techniques for Effective Decision-Making
Expand/Collapse
0
RSS
Real-World Applications of Decision Science
Expand/Collapse
0
RSS
Trends to Watch in Decision Science
Expand/Collapse
60
RSS
Monte-Carlo Modeling
Expand/Collapse
70
RSS
Analytics Articles
Expand/Collapse
20
RSS
Engineering Modeling
Expand/Collapse
0
RSS
Best Practices
Expand/Collapse
1
RSS
Management Research
Expand/Collapse
2
RSS
Julia Programming
Expand/Collapse
Search
Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data
How I Learned to Think of Business as a Scientific Experiment
Imagine playing a game in which someone asks you to infer the number of sides of a polyhedron die based on the face numbers that show up in repeated throws of the die. The only information you are given beforehand is that the actual die will be selected from a set of seven die having these number of faces: (4, 6, 8, 10, 12, 15, 18). Assuming you can trust the person who reports the outcome on each throw, after how many rolls of the die wil you be willing to specify which die was chosen?
6 November 2018
Author:
Robert Brown
Number of views:
13843
Comments:
0
Bayesian Reasoning using R
Gender Inference from a Specimen Measurement
Imagine that we have a population of something composed of two subset populations that, while distinct from each other, share a common characteristic that can be measured along some kind of scale. Furthermore, let’s assume that each subset population expresses this characteristic with a frequency distribution unique to each. In other words, along the scale of measurement for the characteristic, each subset displays varying levels of the characteristic among its members. Now, we choose a specimen from the larger population in an unbiased manner and measure this characteristic for this specific individual. Are we justified in inferring the subset membership of the specimen based on this measurement alone? Baye’s rule (or theorem), something you may have heard about in this age of exploding data analytics, tells us that we can be so justified as long as we assign a probability (or degree of belief) to our inference. The following discussion provides an interesting way of understanding the process for doing this. More importantly, I present how Baye’s theorem helps us overcome a common thinking failure associated with making inferences from an incomplete treatment of all the information we should use. I’ll use a bit of a fanciful example to convey this understanding along with showing the associated calculations in the R programming language.
28 October 2018
Author:
Robert Brown
Number of views:
14980
Comments:
0
RSS