Modeling a Dynamic Trade War using Julia: Assumptions, Simulation, and Impacts on the US Economy

Modeling a Dynamic Trade War using Julia: Assumptions, Simulation, and Impacts on the US Economy

Building a simple dynamic simulation in Julia


This article explains a simplified simulation using game theory (the prisoner's dilemma) to analyze the impacts of imposing tariffs between the US and its major trading partners, highlighting potential short-term economic benefits such as increased revenues and domestic protection. The examples are coded in Julia and the files are available on github. https://github.com/etorkia/SharedDecisionModels/tree/main/PrisonnerGame
Author: Eric Torkia
0 Comments
Article rating: No rating
Is Oracle Crystal Ball still relevant?

Is Oracle Crystal Ball still relevant?

Are Excel Simulation Add-Ins like Oracle Crystal Ball the right tools for decision making? This short blog deliberates on the pros and cons of Oracle Crystal Ball.
Author: Eric Torkia
0 Comments
Article rating: No rating
Decision Science Developper Stack

Decision Science Developper Stack

What tools should modern analysts master 3 tier design after Excel?

When it comes to having a full fledged developper stack to take your analysis to the next level, its not about tools only, but which tools are the most impactful when automating and sharing analysis for decision making or analyzing risk on projects and business operations. 

Author: Eric Torkia
0 Comments
Article rating: No rating
The Need For Speed 2019

The Need For Speed 2019

Comparing Simulation Performance for Crystal Ball, R, Julia and @RISK

The Need for Speed 2019 study compares Excel Add-in based modeling using @RISK and Crystal Ball to programming environments such as R and Julia. All 3 aspects of speed are covered [time-to-solution, time-to-answer and processing speed] in addition to accuracy and precision.
Author: Eric Torkia
0 Comments
Article rating: 3.8
Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data

Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data

How I Learned to Think of Business as a Scientific Experiment

Imagine playing a game in which someone asks you to infer the number of sides of a polyhedron die based on the face numbers that show up in repeated throws of the die. The only information you are given beforehand is that the actual die will be selected from a set of seven die having these number of faces: (4, 6, 8, 10, 12, 15, 18). Assuming you can trust the person who reports the outcome on each throw, after how many rolls of the die wil you be willing to specify which die was chosen?
Author: Robert Brown
0 Comments
Article rating: 2.5
RSS

Subject Matter Expertise in Distribution Selection (2/8)

Dec 23 2010

Are there discrete univariate probability distribution functions (PDFs) that can be used to simulate college basketball scores? Do we, as avid basketball observers, know enough to suggest one discrete PDF is better than another? In fitting distributions to data in your business problems, the analyst will be asking the same types of questions. If the analyst is not an expert on the inputs and their behavior, he or she should seek out a subject-matter expert (SME) who can provide insight. Putting experience and theoretical knowledge together this way is a best practice for distribution selection.

Out of the four best-fitting PDF candidates for Duke's game scores, the first three do make sense to use. The Binomial and Negative Binomial distributions, for instance, are appropriate in modeling basketball scores. Why? Both are used in modeling Binomial Processes, where a progressive series of "coin flips" are made. It represents a defined number of trials of individual coin flips (N, or # of Trials) that can either fail (# of Failures) or succeed (# of Successes). The coin is weighted with the probability, P, of a success. Nitpicky statisticians would point out the Shape factor, S, represents the number of successes when predicting the number of failures to occur before the r-th success. These are the parameters for the Negative Binomial. What about the Binomial distribution? It represents the number of successes achieved in N flips of coin with probability P. 

Why does the Binomial process matter to basketball games? It could be said that each trip up the court represents a scoring opportunity or a coin flip. Each team has a unique ability to affect their own probability of success throughout an entire game or season. Each trip up the court is an opportunity to test that probability. It is true that each flip is (usually) 2 points, a potential argument against using the Binomial process PDFs. Another con is that both assume a precise number of trials, N, which is not the case. Variation exists in N from game-to-game. Is there a method to account for that?

From a similar viewpoint, the Poisson makes sense, perhaps even better. The Poisson process models a sequential event process (much like coin flips) that occur in a set time. However, it is not a matter of success or failure per flip. It is simply a matter of when the coin gets flipped. There is variation with between-time, between events (or flips) occuring. The distribution associated with time between arrivals (Exponential) is continuous while the Poisson distribution is discrete. The Poisson could represent the number of times a college basketball team scores within 48 minutes, or the number of arrivals in a set time.

Despite its rank within the top four, (and noting its separation from Geometric via the Chi-Square criterion), the Discrete Uniform seems unlikely. It is the discrete univariate brother of the continuous univariate Uniform distribution. While useful in describing an expert's opinion about a range of potential values, the Uniform places no weighting of some values over another. Instead, all values are equally probable, generally resulting in over-conservative MCA results. It is the last line of defense in estimating variable uncertainty, true. But it makes no immediate sense for a college basketball output. We will concentrate future distribution-selection efforts around the Binomial or the Poisson Process.

It is safe to say that the distribution-selection process is a mixture of calculated criteria, statistical knowledge and experience. The CB distribution-fitting criterion takes care of the first part. The user should recognize the PDF alternatives and compare their intended use with what their experience tells them. Then make a balanced judgment call. Subject Matter Experts (SME) are an important component in modeling input variation accurately and should always be consulted before hitting the "Run" button.

Karl Luce is a Solutions Specialist who has a deep passion for using Monte Carlo analysis as a Six Sigma tool and quantifying uncertainty in the universe. His past roles included training Crystal Ball and quality concepts as a Design for Six Sigma (DFSS) Master Black Belt and a Six Sigma Transactional Black Belt.  He received his BS in Aeronautical/Astronautical Engineering from M.I.T. in 1985. Prior to joining Oracle in 2005, Karl held analytical and managerial positions within Fortune 500 corporations in the defense aerospace and automotive industries.  

RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS