Modeling a Dynamic Trade War using Julia: Assumptions, Simulation, and Impacts on the US Economy

Modeling a Dynamic Trade War using Julia: Assumptions, Simulation, and Impacts on the US Economy

Building a simple dynamic simulation in Julia


This article explains a simplified simulation using game theory (the prisoner's dilemma) to analyze the impacts of imposing tariffs between the US and its major trading partners, highlighting potential short-term economic benefits such as increased revenues and domestic protection. The examples are coded in Julia and the files are available on github. https://github.com/etorkia/SharedDecisionModels/tree/main/PrisonnerGame
Author: Eric Torkia
0 Comments
Article rating: No rating
Is Oracle Crystal Ball still relevant?

Is Oracle Crystal Ball still relevant?

Are Excel Simulation Add-Ins like Oracle Crystal Ball the right tools for decision making? This short blog deliberates on the pros and cons of Oracle Crystal Ball.
Author: Eric Torkia
0 Comments
Article rating: No rating
Decision Science Developper Stack

Decision Science Developper Stack

What tools should modern analysts master 3 tier design after Excel?

When it comes to having a full fledged developper stack to take your analysis to the next level, its not about tools only, but which tools are the most impactful when automating and sharing analysis for decision making or analyzing risk on projects and business operations. 

Author: Eric Torkia
0 Comments
Article rating: No rating
The Need For Speed 2019

The Need For Speed 2019

Comparing Simulation Performance for Crystal Ball, R, Julia and @RISK

The Need for Speed 2019 study compares Excel Add-in based modeling using @RISK and Crystal Ball to programming environments such as R and Julia. All 3 aspects of speed are covered [time-to-solution, time-to-answer and processing speed] in addition to accuracy and precision.
Author: Eric Torkia
0 Comments
Article rating: 3.8
Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data

Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data

How I Learned to Think of Business as a Scientific Experiment

Imagine playing a game in which someone asks you to infer the number of sides of a polyhedron die based on the face numbers that show up in repeated throws of the die. The only information you are given beforehand is that the actual die will be selected from a set of seven die having these number of faces: (4, 6, 8, 10, 12, 15, 18). Assuming you can trust the person who reports the outcome on each throw, after how many rolls of the die wil you be willing to specify which die was chosen?
Author: Robert Brown
0 Comments
Article rating: 2.5
RSS
All Posts Author: Karl - CB Expert

Crystal Ball vs ModelRisk in Discrete Distribution Fitting and Correlation/Copulas (8/8)

Is there a winner in this battle between Crystal Ball and ModelRisk? To quote that way-too-often-quoted reply: It depends. Some users will value certain technical capabilities over others. Some users will value user-friendliness over accuracy. If there is to be a group deployment of a MCA spreadsheet package, usability may trump technical capabilities overall. Does it matter if one package has more distributions to choose from if there are only three that are of interest for your particular class of stochastic problems? Would it matter what kind of correlation enforcement method is used if, as in many manufactured assemblies, there is practically no correlation between separate components? Probably not. But if they do (as in financial and insurance applications), there will be a clear winner.

Correlation of Duke Basketball Scores, in ModelRisk (7/8)

Correlation behavior in ModelRisk is enforced with the use of copulas. Copulas offer more flexibility in accurately simulating real data scatter-plot patterns than do single-value correlation coefficients. While this advantage is clear for financial and insurance applications, its implementation in an MCA spreadsheet simulator can make the difference between universal adoption and rejection by a majority of the intended user group. Let us now use ModelRisk (MR) to enforce the correlation behavior between Duke Basketball offense scores and their opponents' scores, based on the '09/'10 historical data.

Correlation of Duke Basketball Scores, in Crystal Ball (6/8)

In our quest to simulate future Duke Basketball scores, we have taken past historical data of individual games during the '09/'10 season and fitted probability distributions to that data. Two PDFs are generated; one for Duke's scores (offense) and one for their opponents' scores (defense). We have used both Crystal Ball and ModelRisk to perform this task. Is there something missing in our PDF formulations?

Correlation and Impact on Monte Carlo Analysis Results (5/8)

All the top dogs in the Monte Carlo Analysis spreadsheet universe have distribution-fitting capabilities. Their interfaces have common elements, of course, since they rely on (for the most part) the same PDFs in their arsenal of distribution-fitters. There are important differences, to be sure. It is hoped this comparison will illustrate pros and cons from a practical standpoint. Before going over our scorecard between Crystal Ball and ModelRisk, there is one more very important capability category begging for review: Correlation.

Discrete Distribution Fitting to Duke Basketball Scores, in ModelRisk (4/8)

Let the battle begin anew. We continue our journey in uncertainty modeling, having understood how to fit distributions to data using Crystal Ball (CB). How does that experience compare to what ModelRisk (MR) has to offer?

Open the Duke 09_10 Scores spreadsheet with ModelRisk loaded in the Excel environment. We will first create the MR Objects representing the fitted PDFs. (Just as with the CB exercise, it is good practice to examine a variety of best-fitting distributions, rather than blindly accepting the top dog.) Then, in distinctly separate cells, we will create the VoseSimulate functions that behave as sampled values from the PDFs modeled by the MR Objects.

Distributions in ModelRisk as Objects (3/8)

As with Crystal Ball, ModelRisk has the ability to fit distributions to historical data. The analyst looking to describe the variation of a Monte Carlo Analysis input can use "fitting" windows to select data and manipulate other options. How does the ModelRisk (MR) fitting experience stack up against the Crystal Ball (CB) methods and options? There are some important differences one should understand about MR before fitting PDFs to the Duke 09_10 Scores spreadsheet.

Subject Matter Expertise in Distribution Selection (2/8)

Are there discrete univariate probability distribution functions (PDFs) that can be used to simulate college basketball scores? Do we, as avid basketball observers, know enough to suggest one discrete PDF is better than another? In fitting distributions to data in your business problems, the analyst will be asking the same types of questions. If the analyst is not an expert on the inputs and their behavior, he or she should seek out a subject-matter expert (SME) who can provide insight. Putting experience and theoretical knowledge together this way is a best practice for distribution selection.

Discrete Distribution Fitting to Duke Basketball Scores, in Crystal Ball (1/8)

Let us assume we have a batch of historical data in a spreadsheet. Our mission-of-the-moment is to use this data and fit probability distributions that describe its past variability (or uncertainty). Consider using either Crystal Ball or ModelRisk to do this task. We offer free trials of both to registered users. If you register here, you can get yours too. Try fitting the same data using these two different packages. Let us know how and why one is better than the other. In demonstrating these capabilities, we gain first-hand experience on the usability and capabilities of the alternatives and which features compared have more priority. The best way to judge is to try them out for yourself.

Dealing with Uncertainty

Change is constant. Or so the saying goes. However, even change is ever-varying. So perhaps we should say: Change is constantly changing. As occupants of planet earth, we intuitively know this and yet strive to keep everything the same, at least those things that do well by us. Uncertainty derails the best of our plans, even uncertainties that we recognize up front.

Tolerance Analysis Summary (Part 13 / 13)

Nov 04 2010
10
0

Tolerance Analysis focuses on dimensional aspects of manufactured physical products and the process of determining appropriate tolerances (read: allowable variations) so that things fit together and work the way they are supposed to. When done properly in conjunction with known manufacturing capabilities, products don't feel sloppy nor inappropriately "tight" (i.e., higher operating efforts) to the customer. The manufacturer also minimizes the no-build scenario and spends less time (and money) in assembly, where workers are trying to force sloppy parts together. Defects are less frequent. There are a wealth of benefits too numerous to list but obvious nonetheless. Let us measure twice and cut once.

RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS