Is Oracle Crystal Ball still relevant?

Is Oracle Crystal Ball still relevant?

Are Excel Simulation Add-Ins like Oracle Crystal Ball the right tools for decision making? This short blog deliberates on the pros and cons of Oracle Crystal Ball.
Author: Eric Torkia
0 Comments
Article rating: No rating
Decision Science Developper Stack

Decision Science Developper Stack

What tools should modern analysts master 3 tier design after Excel?

When it comes to having a full fledged developper stack to take your analysis to the next level, its not about tools only, but which tools are the most impactful when automating and sharing analysis for decision making or analyzing risk on projects and business operations. 

Author: Eric Torkia
0 Comments
Article rating: No rating
The Need For Speed 2019

The Need For Speed 2019

Comparing Simulation Performance for Crystal Ball, R, Julia and @RISK

The Need for Speed 2019 study compares Excel Add-in based modeling using @RISK and Crystal Ball to programming environments such as R and Julia. All 3 aspects of speed are covered [time-to-solution, time-to-answer and processing speed] in addition to accuracy and precision.
Author: Eric Torkia
0 Comments
Article rating: 3.8
Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data

Bayesian Reasoning using R (Part 2) : Discrete Inference with Sequential Data

How I Learned to Think of Business as a Scientific Experiment

Imagine playing a game in which someone asks you to infer the number of sides of a polyhedron die based on the face numbers that show up in repeated throws of the die. The only information you are given beforehand is that the actual die will be selected from a set of seven die having these number of faces: (4, 6, 8, 10, 12, 15, 18). Assuming you can trust the person who reports the outcome on each throw, after how many rolls of the die wil you be willing to specify which die was chosen?
Author: Robert Brown
0 Comments
Article rating: 2.5
Bayesian Reasoning using R

Bayesian Reasoning using R

Gender Inference from a Specimen Measurement

Imagine that we have a population of something composed of two subset populations that, while distinct from each other, share a common characteristic that can be measured along some kind of scale. Furthermore, let’s assume that each subset population expresses this characteristic with a frequency distribution unique to each. In other words, along the scale of measurement for the characteristic, each subset displays varying levels of the characteristic among its members. Now, we choose a specimen from the larger population in an unbiased manner and measure this characteristic for this specific individual. Are we justified in inferring the subset membership of the specimen based on this measurement alone? Baye’s rule (or theorem), something you may have heard about in this age of exploding data analytics, tells us that we can be so justified as long as we assign a probability (or degree of belief) to our inference. The following discussion provides an interesting way of understanding the process for doing this. More importantly, I present how Baye’s theorem helps us overcome a common thinking failure associated with making inferences from an incomplete treatment of all the information we should use. I’ll use a bit of a fanciful example to convey this understanding along with showing the associated calculations in the R programming language.
Author: Robert Brown
0 Comments
Article rating: No rating
RSS

The virtual organization – Competencies and Resources (Part 2/5)

Feb 02 2011

This article covers the competencies, resources and assets that must be developped when making the transition to virtual organizing

A variety of authors have generated lists of firm capabilities and resources that may enable firms to conceive of and implement value-creating strategies (Barney, 1991; Bharadwaj, 2000).

In order to better define Venkatraman & Henderson's virtual organization, we have broken it down into components that are inspired by Barneys' (1991) three generic resource types and Nitin Nohria's (2003) model of organizational competencies; competencies that have characterized firms who performed exceptionally and developed or maintained a leadership position over the last 10 years. Nohria also suggests that to achieve overall success you need to excel in all 4 primary competencies and at least 2 of the secondary (See Figure 3). However Nohria emphasizes execution as primary means of success and differentiation.

 For this reason, we have put it (execution) at the top of the model (see Figure 4) to illustrate the universal importance of this competency.

Primary Competencies 

Secondary Competencies 

  • Strategy
  • Culture
  • Structure
  • Execution
  • Mergers and Partnerships
  • Leadership
  • Talent
  • Innovation

Figure 3: Organizational Competencies - Nohria (2003)

Distinct from Nohria's (2003) approach in explaining company success, Barney suggests that numerous possible firm resources can be conveniently classified into three categories:

  • Physical (& Operational) capital resources (Williamson, 1975, Venkatraman & Henderson, 1993) include the IS/IT processes, IS/IT Infrastructure, Operational and Adminstratives processes, physical technology used in a firm, a firm's plant and equipment, its geographic location, and its access to raw materials.
  • Human capital resources (Becker, 1964) include the training, experience, judgment, intelligence, relationships, and insight of individual managers and workers in a firm.
  • Organizational capital resources (Tomer, 1987) include a firm's formal reporting structure, its formal and informal planning, controlling, and coordinating systems, as well as informal relations among groups within a firm and between a firm and those in its environment.

   

Figure 4: A resource-based view of the virtual organization

In order to create value and develop a sustained competitive advantage, organizations require several things: Strategy, Resources (Human, Capital or other) and infrastructure. Therefore by developing a thorough understanding of the virtual organization in terms of resources, it then becomes much easier to mobilize and align them to business objectives.

In our next section, we are going to look at how organizations can deploy their resources in alignment with their virtual strategy.

SOURCES

  • What really works, Nitin Nohria, William Joyce, and Bruce Robertson, Harvard Business Review – July 2003
  • Firm Resources and Sustained Competitive Advantage, Jay Barney, Journal of Mangagement, Vol. 17, No. 1, 1991
  • Markets and hierarchies, O. Williamson, New York Free Press, 1975
  • Human capital, G.S. Becker, New York, Columbia 1964
  • Organizational Capital: The path to higher productivity and well-being, J.F. Tomer, Preager 1987

 

RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS