# RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS

## Dealing with Uncertainty Change is constant. Or so the saying goes. However, even change is ever-varying. So perhaps we should say: Change is constantly changing. As occupants of planet earth, we intuitively know this and yet strive to keep everything the same, at least those things that do well by us. Uncertainty derails the best of our plans, even uncertainties that we recognize up front.

## Tolerance Analysis using Monte Carlo, continued (Part 12 / 13) In the case of the one-way clutch example, the current MC quality prediction for system outputs provide us with approximately 3- and 6-sigma capabilities (Z-scores). What if a sigma score of three is not good enough? What does the design engineer do to the input standard deviations to comply with a 6 sigma directive?

## Tolerance Analysis using Monte Carlo, continued (Part 12 / 13) In the case of the one-way clutch example, the current MC quality prediction for system outputs provide us with approximately 3- and 6-sigma capabilities (Z-scores). What if a sigma score of three is not good enough? What does the design engineer do to the input standard deviations to comply with a 6 sigma directive?

## Tolerance Analysis using Monte Carlo (Part 11 / 13) How do Monte Carlo analysis results differ from those derived via WCA or RSS methodologies? Let us return to the one-way clutch example and provide a practical comparison in terms of a non-linear response. From the previous posts, we recall that there are two system outputs of interest: stop angle and spring gap. These outputs are described mathematically with response equations, as transfer functions of the inputs.

## Tolerance Analysis using Monte Carlo (Part 11 / 13) How do Monte Carlo analysis results differ from those derived via WCA or RSS methodologies? Let us return to the one-way clutch example and provide a practical comparison in terms of a non-linear response. From the previous posts, we recall that there are two system outputs of interest: stop angle and spring gap. These outputs are described mathematically with response equations, as transfer functions of the inputs.