RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS

 

One of the cool things about professional Monte-Carlo Simulation tools is that they offer the ability to fit data. Fitting enables a modeler to condensate large data sets into representative distributions by estimating the parameters and shape of the data as well as suggest which distributions (using these estimated parameters) replicates the data set best.

Fitting data is a delicate and very math intensive process, especially when you get into larger data sets. As usual, the presence of automation has made us drop our guard on the seriousness of the process and the implications of a poorly executed fitting process/decision. The other consequence of automating distribution fitting is that the importance of sound judgment when validating and selecting fit recommendations (using the Goodness-of-fit statistics) is forsaken for blind trust in the results of a fitting tool.

Now that I have given you the caveat emptor regarding fitting, we are going to see how each tools offers the support for modelers to make the right decisions. For this reason, we have created a series of videos showing comparing how each tool is used to fit historical data to a model / spreadsheet. Our focus will be on :

The goal of this comparison is to see how each tool handles this critical modeling feature.  We have not concerned ourselves with the relative precision of fitting engines because that would lead us down a rabbit hole very quickly – particularly when you want to be empirically fair.

  • 15 May 2011
  • Author: Eric Torkia
  • Number of views: 3067
  • Comments: 0

Excel Simulation Show Down (Part 1) - Defining Inputs and Outputs

Over the last 3 months, we have seen 3 of the 4 major players in the Excel Monte-Carlo Simulation arena introduce new releases. We hear a lot of talk about which tool is best and the truth is there is no perfect answer – it’s a personal thing dictated by user skill, preference and need.

For this reason, we have created a series of videos showing comparing how each tool is used to apply Monte-Carlo simulation to a model / spreadsheet. Our focus will be on :

To keep the playing field level, we have used a simple additive model, which is simply defining a series of distributions (i.e. costs, budget items…), summing them up and analyzing the resulting sensitivity analysis. We have kept things simple, so we are not correlating any of the variables nor using any fancy math.

As you will see, there are definite differences AND similarities regarding how these packages tackle building a model. We are going to focus on those relating to inserting and copying input distributions as well as defining and analyzing model outputs. The objective is to compare the ease, usability and efficiency of each tool and give people the opportunity to choose for themselves which tool reflects their needs and preferences better.

All the top dogs in the Monte Carlo Analysis spreadsheet universe have distribution-fitting capabilities. Their interfaces have common elements, of course, since they rely on (for the most part) the same PDFs in their arsenal of distribution-fitters. There are important differences, to be sure. It is hoped this comparison will illustrate pros and cons from a practical standpoint. Before going over our scorecard between Crystal Ball and ModelRisk, there is one more very important capability category begging for review: Correlation.

All the top dogs in the Monte Carlo Analysis spreadsheet universe have distribution-fitting capabilities. Their interfaces have common elements, of course, since they rely on (for the most part) the same PDFs in their arsenal of distribution-fitters. There are important differences, to be sure. It is hoped this comparison will illustrate pros and cons from a practical standpoint. Before going over our scorecard between Crystal Ball and ModelRisk, there is one more very important capability category begging for review: Correlation.

Change is constant. Or so the saying goes. However, even change is ever-varying. So perhaps we should say: Change is constantly changing. As occupants of planet earth, we intuitively know this and yet strive to keep everything the same, at least those things that do well by us. Uncertainty derails the best of our plans, even uncertainties that we recognize up front.

  • 9 December 2010
  • Author: mckibbinusa
  • Number of views: 1093
  • Comments: 0
RSS
1234