RESEARCH ARTICLES | RISK + CRYSTAL BALL + ANALYTICS

 

One of the cool things about professional Monte-Carlo Simulation tools is that they offer the ability to fit data. Fitting enables a modeler to condensate large data sets into representative distributions by estimating the parameters and shape of the data as well as suggest which distributions (using these estimated parameters) replicates the data set best.

Fitting data is a delicate and very math intensive process, especially when you get into larger data sets. As usual, the presence of automation has made us drop our guard on the seriousness of the process and the implications of a poorly executed fitting process/decision. The other consequence of automating distribution fitting is that the importance of sound judgment when validating and selecting fit recommendations (using the Goodness-of-fit statistics) is forsaken for blind trust in the results of a fitting tool.

Now that I have given you the caveat emptor regarding fitting, we are going to see how each tools offers the support for modelers to make the right decisions. For this reason, we have created a series of videos showing comparing how each tool is used to fit historical data to a model / spreadsheet. Our focus will be on :

The goal of this comparison is to see how each tool handles this critical modeling feature.  We have not concerned ourselves with the relative precision of fitting engines because that would lead us down a rabbit hole very quickly – particularly when you want to be empirically fair.

  • 15 May 2011
  • Author: Eric Torkia
  • Number of views: 3087
  • Comments: 0

Excel Simulation Show Down (Part 1) - Defining Inputs and Outputs

Over the last 3 months, we have seen 3 of the 4 major players in the Excel Monte-Carlo Simulation arena introduce new releases. We hear a lot of talk about which tool is best and the truth is there is no perfect answer – it’s a personal thing dictated by user skill, preference and need.

For this reason, we have created a series of videos showing comparing how each tool is used to apply Monte-Carlo simulation to a model / spreadsheet. Our focus will be on :

To keep the playing field level, we have used a simple additive model, which is simply defining a series of distributions (i.e. costs, budget items…), summing them up and analyzing the resulting sensitivity analysis. We have kept things simple, so we are not correlating any of the variables nor using any fancy math.

As you will see, there are definite differences AND similarities regarding how these packages tackle building a model. We are going to focus on those relating to inserting and copying input distributions as well as defining and analyzing model outputs. The objective is to compare the ease, usability and efficiency of each tool and give people the opportunity to choose for themselves which tool reflects their needs and preferences better.

In the case of the one-way clutch example, the current MC quality prediction for system outputs provide us with approximately 3- and 6-sigma capabilities (Z-scores). What if a sigma score of three is not good enough? What does the design engineer do to the input standard deviations to comply with a 6 sigma directive?

In the case of the one-way clutch example, the current MC quality prediction for system outputs provide us with approximately 3- and 6-sigma capabilities (Z-scores). What if a sigma score of three is not good enough? What does the design engineer do to the input standard deviations to comply with a 6 sigma directive?

How do Monte Carlo analysis results differ from those derived via WCA or RSS methodologies? Let us return to the one-way clutch example and provide a practical comparison in terms of a non-linear response. From the previous posts, we recall that there are two system outputs of interest: stop angle and spring gap. These outputs are described mathematically with response equations, as transfer functions of the inputs.

RSS
1234